

Provable Guarantees for Decision Tree Induction

A. Near-Matching Lower Bound: Theorem 3
Our function f witnessing the lower bound of Theorem 3 will be a variant of the well-known TRIBES` : {0, 1}` → {0, 1}
function from the analysis of boolean functions. Recall that TRIBES` is a read-once DNF formula with m := b ` c terms of w
width exactly w over disjoint variables (with some variables possibly left unused),

TRIBES`(x) := T1(x) ∨ · · · ∨ Tm(x),

and w := log ̀ − log ln ̀ + o`(1) is chosen so that Pr[TRIBES`(x) = 1] is as close to 1 as possible.4 (For more on2
the TRIBES function, see Chapter §4.2 of (O’Donnell, 2014).) Our construction will also involve the Majority function, PkMAJk(y) := 1[i=1 yi ≥ 0].

0The function that witnesses the separation. Let m < m be chosen so that the function TRIBES 0 : {0, 1}` → {0, 1},`

0TRIBES ̀ (x) := T1(x) ∨ · · · ∨ Tm0 (x),

0has acceptance probability Pr[TRIBES ̀ (x) = 1] as close to 0.499 as possible.5 We additionally defne REST` : {0, 1}` →
{0, 1} to be:

0REST`(x) := TRIBES`(x) ∧ ¬ TRIBES`(x),

nothing that Pr[REST`(x) = 1] = 0.001.

Our function f`,k : {0, 1}` × {0, 1}k → {0, 1} is defned as follows:

01 if TRIBES ̀ (x) = 1
⎧⎪⎨ ⎪⎩ f`,k(x, y) := MAJk(y) if REST`(x) = 1

0 otherwise,

where k and ` are chosen so that Equation (2) in the statement of Lemma A.2 below is satisfed with equality.

Proposition A.1 (Upper bound on opt). optf`,k ,2` ≤ 0.01.

Proof. We have that

Pr[f`,k(x, y) 6= TRIBES`(x)] = Pr[REST`(x) = 1 and MAJk(y) 6= TRIBES`(x)]

= Pr[REST`(x) = 1] · Pr[MAJk(y) = 0]
1 = 0.001 · < 0.01.2

Since TRIBES` is computed by a decision tree of size ≤ 2 `, it follows that that optf`,k,2` ≤ 0.01.

Lemma A.2 (Lower bound on TOPDOWNERROR). There are universal constants c1 and c2 such that the following holds.
Suppose k and ` satisfy:

c1√
k
≥

log ̀
.

`
(2)

Then TOPDOWNERROR(f`,k, 2 c2k/ log k) ≥ 0.49.

Proof of Theorem 3 assuming Lemma A.2. We choose k and ` such that Equation (2) is satisfed with equality, and defne
s := 2 ` . Theorem 3 follows as an immediate consequence of Proposition A.1 and Lemma A.2 since 2Ω(k/ log k) =
2Ω(`

2/(log ̀)3) Ω(log s)˜
= s .

4While this acceptance probability cannot be made exactly 1
2 for all values of ` due to granularity issues, it will be the case that

1 ± O(log ` Pr[TRIBES`(x)] =
2 `). For clarity we will assume for the remainder of this proof the acceptance probability of TRIBES` is

exactly 1
2 , noting that the same calculations go through if one carries around the additive o`(1) factor.

5The same remark as in the previous footnote applies here.

Provable Guarantees for Decision Tree Induction

A.1. Proof of Lemma A.2

Our proof of Lemma A.2 draws on many of the ideas in (Blanc et al., 2020)’s proof of their Theorem 6(b). Let T denote the
tree constructed by BUILDTOPDOWNDT(f`,k, 2 c2k/ log k), where c2 is a universal constant that will be determined later.

1Claim A.3. Let π be a path in T that leads to a frst query to an x-variable. Then Infyj (MAJk(y)π) ≤ √ for all
100 k

j ∈ [k].

Proof. Suppose without loss of generality that π leads to a query to x1. By the splitting criterion of BUILDTOPDOWNDT
and Fact 2.1, we have that

Infx1 (fπ) ≥ Infyj (fπ) for all j ∈ [k].

Since � �
log ̀

Infx1 (fπ) ≤ Infx1 (TRIBES`) + Infx1 (TRIBES0 `) ≤ O ,
`

and
Infyj (fπ) = Pr[REST`(x) = 1] · Infyj (MAJk(y)π) = 0.001 · Infyj (MAJk(y)π),

(MAJk(y)π) ≤ O(log ̀ it follows that Infyj). The claim follows by choosing c1 to be a suffciently small constant`
in Equation (2).

Corollary A.4. There is a universal constant c3 such that the following holds. Let (x, y) ∼ {0, 1}k × {0, 1}` be a uniform
random input, and π(x,y) be the corresponding root-to-leaf path in T that (x, y) follows. The probability that π(x,y) queries
an x-variable before at least c3k/ log k many y-variables is at most 0.001.

Proof. Call an input (x, y) bad if π(x,y) queries an x-variable before c3k many y-variables. Let π denote the truncation of
1π(x,y) to its prefx before the frst query to an x-variable. By Claim A.3, we have that Infyj (MAJk(y)π) ≤ √ , and so

100 k√
the discrepancy between the number of 0’s and 1’s in π must be Ω(k). Therefore, we can bound

c3k

c3k/ log kX � √ �
Pr[(x, y) is bad] ≤

t=1

Pr
1b∼Bin(t,)2

|b − t | ≥ Ω(2 k)

c3k/ log kX
≤ −Θ(k/t)e (Hoeffding’s inequality)

t=1

−Θ(log k/c3)≤ c3k · e ≤ ok(1).

where the fnal inequality holds by choosing c3 to be a suffciently small constant.

We are now ready to prove Lemma A.2. Let ξ : {0, 1}k × {0, 1}`

h → {0, 1} be the indicator i
ξ(x, y) := 1 π(x,y) queries an x-variable before at least many y-variables .

log k

By Corollary A.4 we have that Pr[ξ(x, y) = 1] ≤ 0.001. If (x, y) is such that Pr[ξ(x, y) = 0], then either

c3k1. |π(x,y)| ≥ , or
log k

c3k2. |π(x,y)| < and π(x,y) does not query any x-variables.
log k

Since the fraction of inputs that follow any specifc path of length ≥ c3k/ log k is at most 2−c3k/ log k, and the size of T is
12 c2k/ log k by assumption, choosing c2 = c3 ensures that the fraction of inputs (x, y) such that π(x,y) falls into the frst 2

case above (i.e. |π(x,y)| ≥ c3k/ log k) is at most 0.001.

Provable Guarantees for Decision Tree Induction

Therefore, at least a 0.998 fraction of inputs (x, y) are such that π(x,y) falls into the second case above. For such (x, y)’s,
we have that

Pr[fπ(x,y)
= 1] ≥ Pr[TRIBES0 = 1] = 0.499`

Pr[fπ(x,y)
= 0] ≥ Pr[TRIBES` = 0] = 0.5,

and so Pr[Tπ(x,y)
6] ≥ 0.49. We conclude that Pr[T (x, y) 6= f(x, y)] ≥ 0.998 × 0.499 > 0.49, which completes = fπ(x,y)

the proof of Lemma A.2.

B. Proof of Theorem 1
We frst prove Theorem 5.

Proof of Theorem 5. First, without loss of generality, we can assume that D is the uniform distribution on [0, 1]n . Otherwise,
1we can transform each variable by its CDF. This also means that we will set θ? = .2

We will use Theorem 4 as a black box in our proof of Theorem 5. In order to do this, we will relate T , a decision tree with
real-valued inputs, to a specially constructed decision tree with boolean-valued inputs. Each input of T will be encoded into
a boolean vector of width w = O(log(s/ε)) using the encoder E : [0, 1] → {±1}w defned as follows.

E(x) = BINARY(bx · 2w c),

where BINARY is the function that encodes an integer in binary form. We want to ensure that if two inputs are encoded as
the same Boolean vector evaluate to the same value. This requires rounding the thresholds in T .

Lemma B.1. Let T : [0, 1]n → {0, 1} be a balanced size-s tree and ε > 0. Then for w = O(log(s/ε)) let Tround be the
tree formed by rounding all thresholds of T to the nearest 2−w . Then dist(T, Tround) ≤ ε/2.

Proof of Lemma B.1. Since T and Tround have the same label at every leaf, if T (x) 6= Tround(x), it means that x reaches
different leaves in T and Tround. Fix some leaf ` of T . Then, ` is reached by some subcube of inputs of the form.

ai ≤ xi < bi for i = 1 ∈ [n]

The corresponding leaf, ` round, of Tround is reached by all inputs satisfying the following, where round(·) rounds an input to
the nearest multiple of 2−w .

round(ai) ≤ xi < round(bi) for i = 1 ∈ [n]

We will upper bound the probability that a randomly chosen x ∈ [0, 1]n reaches ` in T but does not reach ` round in Tround. For
that to occur, there must be one i ∈ [n] such that xi ∈ [ai, round(ai)] or xi ∈ [round(bi), bi]. Since |round(z) − z| ≤ 2−w ,
for any fxed i, xi falls in one of those ranges with probability at most 2 · 2−w .

Furthermore, since T is balanced, ` has depth at most O(log(s)). This means that for all but O(log(s)) choices for i, ai = 0
and bi = 1, in which case there is no chance that xi ∈ [ai, round(ai)] or xi ∈ [round(bi), bi]. By union bounding the up to
O(log(s)) input coordinates that matter for `, we have that the probability that x reaches ` in T but does not reach ` round in
Tround is at most O(log(s) · 2−w).

By union bound over the s leaves, the probability x reaches a different leaf in T as in Tround is at most O(s log s · 2−w).
Setting this equal to ε/2 and solving for w yields the desired result.

We are now ready to complete the proof of Theorem 5. Note that

bias(f) − dist(f, Tround) ≥ bias(f) − (dist(f, T) + dist(T, Tround))
ε ≥ bias(f) − dist(f, T) −
2

ε ≥ .
2

Provable Guarantees for Decision Tree Induction

We will create a tree with Boolean inputs, S : {±1}wn → {0, 1}, satisfying the following relation

S(E(x1), ..., E(xn)) = Tround(x) for all x ∈ [0, 1]n .

The decision tree computing S is the tree computing T where each threshold is replaced with the tree of size at most w
specifying that threshold. Replacing each node of T with a tree of size w creates a tree that is a factor of wd larger than T ,
where d is the depth of T . Using w = O(log(s/ε)), we then have that S has size

= 2O(log(s) log log(s/ε))O(log(s/ε))d .

We are now ready to apply Theorem 4. We have determined that bias(f)−dist(f, Tround) ≥ ε/2, and that Tround is encodable
as a decision tree of size 2log(s) log(log(s/ε)) with Boolean inputs. By Theorem 4, there is a bit of the encoding with infuence,
with respect to f , at least Ω(ε/ log(s) log log(s/ε)).

All that remains is to show that the most infuential bit of the encoding, is a single threshold of the form 1[xi ≥ 1]. All2
bits of the encoding for a variable, xi, restrict xi to exactly half of the space in [0, 1]. Since f is monotone, the most
infuential such restriction is 1[xi ≥ 1]. Hence, the split 1[xi ≥ 1] has infuence at least Ω (ε/ log(s) log log(s/ε)). Since2 2
f is monotone, this is also the correlation of 1[xi ≥ 1] with f , proving Theorem 5.2

The remainder of the proof of Theorem 1 is the same as the proof of Theorem 2. Let T ◦ be the size-(j + 1) partial tree built
BUILDTOPDOWNDTafter j iterations. As long as dist(f, T ◦) > balanced opt + ε, we know there is a split that results in f s

purity gain of at least6

� �
κ · ε2

Ω .
j · (log(s) log log(s/ε))2

Therefore, after we have run for

t = 2O(log(s) log log(s/ε))
2/κε2

Õ((log s)/κε2)= s

we must have that dist(f, T ◦) < balanced opt + ε, proving Theorem 1.f s

C. The Realizable Case
(Blanc et al., 2020)’s work on the realizable setting analyzed the performance of a variant of the top-down heuristics; their
variant does not correspond to any impurity function G . Consider BUILDTOPDOWNDTInf , defned in Figure 2.

6From Theorem 5, we actually know there is a split with this much purity that is the median of one input coordinate, although
BUILDTOPDOWNDTmay choose one that is not the median if it results in more purity gain.

Provable Guarantees for Decision Tree Induction

BUILDTOPDOWNDTInf (f, t):

Initialize T ◦ to be the empty tree.

while (size(T ◦) < t {
1. (Score) For every leaf ` in T ◦, let xi(`) denote the most infuential variable of the subfunction f`:

Infi(`)(f`) ≥ Infj (f`) for all j ∈ [n].

Assign ` the score:

scoreInf (`) := 2−|`| · Infi(`)(f`),

where |`| denotes the depth of ` in T ◦ .

2. (Split) Let `? be the leaf with the highest score. Grow T ◦ by replacing `? with a query to xi(`?).

}
Output f -completion of T ◦ .

Figure 2. Top-down heuristic for building a decision tree approximation for f from (Blanc et al., 2020)

1Lemma C.1 ((Theorem 5 of (Blanc et al., 2020)). For every ε ∈ (0,) and monotone function f : {±1}n → {0, 1} exactly 2
computable by a size s decision tree,

√
log s/ε)) ≤ ε.TOPDOWNERRORInf (f, s

O(

We will show that as a consequence of Lemma C.1, a similar upper bound can be shown for BUILDTOPDOWNDTG for
any strongly-concave G . We frst briefy summarize the proof of Lemma C.1 given in (Blanc et al., 2020). They defne the
following potential function: X

2−|`|uf (T ◦) := · Inf(f`).
leaves ` ∈ T ◦

For monotone functions f : {±1}n → {0, 1} that are computable by size-s decision trees, a result of (O’Donnell &
Servedio, 2007) gives the following bound: p

uf (empty tree) = Inf(f) ≤ log s.

Furthermore, they show that if T ◦ is the size-(j + 1) tree built after j iterations of BUILDTOPDOWNDTInf (f), and
dist(f, T ◦) ≥ ε, then the leaf, `?, selected in the next iteration satisfes. f

score(`?) ≥
ε

.
(j + 1) log s

Since uf (T ◦) decreases by the score of the leaf selected, and uf (T ◦) upper bounds dist(f, T ◦), (Blanc et al., 2020) aref
able to conclude that a growing a decision tree of size

√ √
2O(log s·log(s)/ε) O(log s/ε)= s

suffces to ensure an error of ≤ ε. Using this same proof outline, we will establish the same guarantee for
BUILDTOPDOWNDTG for any strongly concave impurity function G :

Theorem 6 (Extending Theorem 5 of (Blanc et al., 2020) to actual top-down heuristics). Let G be any κ-strongly concave
1impurity function, ε ∈ (0,), and f : {±1}n → {0, 1} be a monotone function computable by a size-s decision tree. Then,2

√
log s/ε)/κ) ≤ ε.TOPDOWNERRORG (f, s

O(

Provable Guarantees for Decision Tree Induction

Proof. Recalling Proposition 2.2, for any leaf ` ∈ T ◦, the variable with maximum infuence in f` will also be the variable
that results in the maximum purity gain when split. Therefore, BUILDTOPDOWNDTG will always choose the same variable
at any leaf to split as BUILDTOPDOWNDTInf , but may just choose a different order of leaves to split. Splitting extra leaves
can only decrease the error, so once BUILDTOPDOWNDTG has split every leaf that BUILDTOPDOWNDTInf would in √
sO(log s/ε) iterations, the resulting tree must have error less than ε.

√
We know that running BUILDTOPDOWNDTInf for sO(log s/ε) iterations is suffcient to ensure an error of at most ε.
Let T ◦ be the size-(j + 1) tree built after j iterations of BUILDTOPDOWNDTInf (f). (Blanc et al., 2020) proved that if
dist(f, T ◦) ≥ ε, then the leaf, `?, selected in the next iteration satisfes: f

score(`?) ≥
ε

.
(j + 1) log s

√
Therefore, we can substitute in j = sO(log s/ε) to fnd that if BUILDTOPDOWNDTInf has split all leaves with score at least

ε 1
√ = √ ,

sO(log s/ε) sO(log s/ε)· log s

the tree it has built must have error ε. We will show that BUILDTOPDOWNDTG will not take too long to split any leaf with √
score at least 1/sO(log s/ε), therefore proving an upper bound on the number of iterations it needs to reach error ε. Let ` be √
any leaf with score at least 1/sO(log s/ε) and i be the index of its most infuential variable. Then,

G -purity-gainf (T ◦, ̀ , xi) ≥ 2|−`| · κ · Infi(f)2 (Lemma 2.4)
32

κ · (2|−`|≥ · Infi(f))2
32

=
κ · score(`)2
32

κ ≥ √ .
sO(log s/ε)

Let `? be some leaf with larger purity gain that `, and i? be the associated variable that is split. Then, since√ √
G -purity-gainf (T ◦ , `∗ , xi?) ≤ 2−|`

?|, we must have that |`?| < log(sO(log s/ε)/κ). There are at most sO(log s/ε)/κ
√

possible such nodes, so after constructing a tree of size sO(log s/ε)/κ, BUILDTOPDOWNDTG must split ̀ , and we conclude
that it must have achieved error at most ε.

