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Abstract
We consider the classical problem of sequential
probability assignment under logarithmic loss
while competing against an arbitrary, potentially
nonparametric class of experts. We obtain tight
bounds on the minimax regret via a new approach
that exploits the self-concordance property of the
logarithmic loss. We show that for any expert
class with (sequential) metric entropy O(γ−p) at
scale γ, the minimax regret is O(n

p
p+1 ), and that

this rate cannot be improved without additional as-
sumptions on the expert class under consideration.
As an application of our techniques, we resolve
the minimax regret for nonparametric Lipschitz
classes of experts.

1. Introduction
Sequential probability assignment is a classical problem that
has been studied intensely throughout domains including
portfolio optimization (Cover, 1991; Cover & Ordentlich,
1996; Cross & Barron, 2003), information theory (Rissa-
nen, 1984; Merhav & Feder, 1998; Xie & Barron, 2000),
and—more recently—adversarial machine learning (Good-
fellow et al., 2014; Grnarova et al., 2018; Liang & Modiano,
2018). The goal is for a player to assign probabilities to
an arbitrary, potentially adversarially generated sequence
of outcomes, and to do so nearly as well as a benchmark
class of experts. More formally, consider the following pro-
tocol: for rounds t = 1, . . . , n, the player receives a context
xt ∈ X , predicts a probability p̂t ∈ [0, 1] (using only the
context xt), observes a binary outcome yt ∈ {0, 1}, and
incurs the logarithmic loss (“log loss”), defined by

`(p̂t, yt) = −yt log(p̂t)− (1− yt) log(1− p̂t).
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The log loss penalizes the player based on how much prob-
ability mass they place on the actual outcome. Without
distributional assumptions, one cannot control the total in-
curred loss, and so it is standard to study the regret; that
is, the difference between the player’s total loss and the
total loss of the single best predictor in a (potentially un-
countable) reference class of experts. Writing the vector of
player predictions as p̂ = (p̂1, . . . , p̂n), and likewise defin-
ing x = (x1, . . . , xn) and y = (y1, . . . , yn), the player’s
regret with respect to a class of experts F ⊆ [0, 1]X is
defined as

Rn(F ; p̂,x,y) =

n∑
t=1

`(p̂t, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt).

Compared to similar sequential prediction problems found
throughout the literature on online learning (Cesa-Bianchi
& Lugosi, 2006; Hazan, 2016; Lattimore & Szepesvári,
2020), the distinguishing feature of the sequential proba-
bility assignment problem is the log loss, which amounts
to evaluating the log-likelihood of the observed outcome
under the player’s predicted distribution. Typical results in
online learning assume the loss function to be convex and
smooth or Lipschitz (e.g., absolute loss or square loss on
bounded predictions) or at least bounded (e.g., classification
loss), while the log loss may have unbounded values and
unbounded gradient. Consequently, beyond simple classes
of experts, naively applying the standard tools of online
learning leads to loose guarantees; instead, we exploit re-
fined properties of the log loss to obtain tight regret bounds
for sequential probability assignment.

Minimax Regret. We investigate the fundamental limits
for sequential probability assignment through the lens of
minimax analysis. We focus on minimax regret, defined by

Rn(F) = sup
x1

inf
p̂1

sup
y1

· · · sup
xn

inf
p̂n

sup
yn

Rn(F ; p̂,x,y) , (1)

where xt ∈ Xt (defined formally in Section 2), p̂t ∈ [0, 1],
and yt ∈ {0, 1} for all t ∈ [n]. The minimax regret ex-
presses worst-case performance of the best player across
all adaptively chosen data sequences. For simple (e.g.,
parametric) classes of experts, the minimax regret is well-
understood, including exact constants (Rissanen, 1986;
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1996; Shtar’kov, 1987; Freund, 2003). For rich classes
of experts, however, tight guarantees are not known, and
hence our aim in this paper is to answer: How does the
complexity of F shape the minimax regret?

A standard object used to control the minimax regret in
statistical learning and sequential prediction is the covering
number, which is a measure of the complexity of an expert
class F . The covering number for F is the size of the small-
est subset of F such that every element of F is close to an
element of the subset, where close is defined for appropriate
notions of scale and distance. Early covering-based bounds
for sequential probability assignment (Opper & Haussler,
1999; Cesa-Bianchi & Lugosi, 1999) use coarse notions of
distance, but these bounds become vacuous for sufficiently
rich expert classes.

More recently, Rakhlin & Sridharan (2015) gave sharper
guarantees that use a finer notion of cover, referred to as a
sequential cover (see Definition 1), which has previously
been shown to characterize the minimax regret for simpler
online learning problems with Lipschitz losses (Rakhlin
et al., 2015a). Unfortunately, to deal with the fact that log
loss is non-Lipschitz, this result (and all prior work in this
line) approximates regret by truncating the allowed proba-
bilities away from 0 and 1. This approximation forces the
gradient of log loss to be bounded, but leads to suboptimal
bounds for rich expert classes. Hence, Rakhlin & Sridharan
(2015) posed the problem of whether the minimax regret
for sequential probability assignment can be characterized
using only the notion of sequential covering. This question
is natural, as the answer is affirmative for the absolute loss
(Rakhlin et al., 2015a), square loss (Rakhlin & Sridharan,
2014), and other common Lipschitz losses such as the hinge.

1.1. Overview of Results

Our main result is to show that for experts classes F for
which the sequential entropy (the log of the sequential cov-
ering number) at scale γ grows as γ−p, we have

Rn(F) ≤ O(n
p
p+1 ).

This upper bound recovers the best-known rates for all val-
ues of p, and offers strict improvement whenever p > 1
(i.e., whenever the class F is sufficiently complex). We
further show that for certain expert classes—in particular,
nonparametric Lipschitz classes over [0, 1]

p—this rate can-
not be improved. As a consequence, we resolve the minimax
regret for these classes.

An important implication of our results is that for general
classesF , the optimal rate for regret cannot be characterized
purely in terms of sequential covering numbers; this follows
by combining our improved upper and lower bounds with
an earlier observation from Rakhlin & Sridharan (2015).

Our upper bounds are obtained through a new technique that
exploits the curvature of log loss (specifically, the property
of self-concordance) to bound the regret. This allows us to
handle the non-Lipschitzness of the log loss directly without
invoking the truncation and approximation arguments that
lead to suboptimal regret in previous approaches.

1.2. Related Work

For finite expert classes, it is well-known that the mini-
max regretRn(F) is of order log|F| (Vovk, 1998). Sharp
guarantees are also known for countable expert classes
(Banerjee, 2006) and parametric classes (Rissanen, 1986;
1996; Shtar’kov, 1987; Xie & Barron, 2000; Freund, 2003;
Miyaguchi & Yamanishi, 2019); see also Chapter 9 of Cesa-
Bianchi & Lugosi (2006).

In this work, we focus on obtaining tight guarantees for
rich, nonparametric classes of experts. Previous work in
this direction has obtained bounds for large expert classes
using various notions of complexity for the class. Opper &
Haussler (1999); Cesa-Bianchi & Lugosi (1999) bound the
minimax regret under log loss using covering numbers for
the expert class defined with respect to the sup-norm over the
context space; that is, dsup(f, g) = supx∈X |f(x)− g(x)|.
Covering with respect to all the elements in the domain is
rather restrictive, and there are many cases for which the
sup-norm covering number is infinite even though the class
is learnable, or where the sup-norm cover has undesirable
dependence on the dimension of the context space.

Building on a line of work which characterizes minimax
rates for Lipschitz losses (Rakhlin & Sridharan, 2014;
Rakhlin et al., 2015a), Rakhlin & Sridharan (2015) gave
improved upper bounds for sequential probability assign-
ment based on sequential covering numbers, which require
that covering elements are close only on finite sequences
of contexts induced by binary trees. Sequential covering
numbers can be much smaller than sup-norm covers. For
example, infinite dimensional linear functionals do not ad-
mit a finite sup-norm cover, but Rakhlin & Sridharan (2015)
show via sequential covering that they are learnable at a rate
of Õ(n3/4). Moreover, Rakhlin & Sridharan (2015) show
that sublinear regret is possible only for expert classes with
bounded sequential covering numbers.

While the rates obtained by Rakhlin & Sridharan (2015) are
nonvacuous for many expert classes, they have suboptimal
order for even moderately complex classes. Indeed, in or-
der to handle the unbounded gradient of log loss, Rakhlin
& Sridharan (2015) rely on truncation of the probabilities
allowed to be predicted: They restrict the probabilities to
[δ, 1 − δ] for some 0 < δ ≤ 1/2, and then bound the true
minimax regret by the minimax regret subject to this re-
stricted probability range, plus an error term of size O(nδ).
This strategy allows one to treat the log loss as uniformly
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bounded and 1/δ-Lipschitz, but leads to poor rates com-
pared to more common Lipschitz/strongly convex losses
such as the square loss. Subsequent work by Foster et al.
(2018) gave improvements to this approach that exploit the
mixability property of the log loss (Vovk, 1998). While their
results lead to improved rates for classes of “moderate” com-
plexity, they face similar suboptimality for high-complexity
expert classes.

1.3. Organization

Section 3 presents our improved minimax upper bound for
general, potentially nonparametric expert classes (Theo-
rem 2). In Section 3.1, we instantiate this bound for concrete
examples of expert classes, and present a lower bound that is
tight for certain expert classes (Theorem 3). In Section 3.2
we give a detailed comparison between our rates and those
of prior work as a function of the sequential entropy.

In Section 4, we prove our upper bound via a new approach
based on self-concordance of the log loss. Section 5 proves
our lower bound, completing our characterization of the
minimax regret.

We conclude the paper with a short discussion in Section 6.

2. Preliminaries
Contexts. We allow for time-varying context sets. At
time t, we take xt to belong to a set Xt ⊆ X , whose
value may depend on the history, defined by h1:t−1 =
(x1, y1, . . . , xt−1, yt−1), but not future observations. For-
mally, we have Xt : (X × {0, 1})t−1 → 2X , so that
xt ∈ Xt(h1:t−1). An example is the observed outcomes
up to a given round, given by Xt(h1:t−1) = {(y1:t−1)},
which covers the standard setting of Cesa-Bianchi & Lugosi
(1999). Another example is time-independent information,
for example, Xt(h1:t−1) = {x ∈ Rd : ‖x‖ ≤ 1}, which
can be viewed analogously to the covariates in a standard
regression task.

Sequential Covers and Metric Entropy. Sequential cov-
ering numbers are defined using binary trees indexed by
sequences of binary observations (“paths”). Formally, for a
set A, an A-valued binary tree a of depth n is a sequence
of mappings at : {0, 1}t−1 → A for t ∈ [n].

For a sequence (path) ε ∈ {0, 1}n and a tree a of depth n,
let at(ε) := at(ε1, . . . , εt−1) for t ∈ [n]. Also, denote the
sequence of values a tree a takes on a path ε by a(ε) =
(a1(ε), . . . , an(ε)). For a function f : A → R, let f ◦ a
denote the tree taking values (f(a1(ε)), . . . , f(an(ε))) on
the path ε. We extend this notation for a set of functions
F by defining F ◦ a = {f ◦ a : f ∈ F}. Further, we
say an X -valued binary tree x is consistent if for all rounds
t ∈ [n] and paths y ∈ {0, 1}n, xt(y) ∈ Xt(h1:t−1). For

the remainder of this paper we will only consider context
trees x with this property.

The notion of trees allows us to formally define a sequen-
tial cover, which may be thought of as a generalization of
the classical notion of empirical covering that encodes the
dependency structure of the online game.

Definition 1 (Rakhlin et al. 2015a). Let A and V be collec-
tions of R-valued binary trees of depth n. V is a sequential
cover for A at scale γ if

max
y∈{0,1}n

sup
a∈A

inf
v∈V

max
t∈[n]

|at(y)− vt(y)| ≤ γ.

Let N∞(A, γ) be the size of the smallest such cover.1

For a function class F , we define the sequential entropy
of F at scale γ and depth n as the log of the worst-case
sequential covering number:

H∞(F , γ, n) = sup
x

log N∞(F ◦ x, γ) ,

where the sup is taken over all context trees of depth n.

Sequential covering numbers incorporate the dependence
structure of online learning, and consequently are never
smaller than classical empirical covers found in statistical
learning, which require that the covering elements are close
only on a fixed sequence x1:n. While the sequential cov-
ering number of F ◦ x for context trees of depth n will
never be smaller than the empirical covering number for
datasets of size n, it will—importantly—always be finite.
Additionally, because the definition allows one to choose
the covering element as a function of the path y, the sequen-
tial covering number at depth n is typically much smaller
than, for example, the empirical covering number of size
2n, despite the context tree having 2n − 1 unique values.

Asymptotic Notation. We adopt standard big-oh notation.
Consider two real-valued sequences (xn) and (yn). We
write xn ≤ O(yn) if there exists a constant M > 0 such
that for all sufficiently large n, |xn| ≤ Myn. Conversely,
xn ≥ Ω(yn) if yn ≤ O(xn). We write xn ≤ Õ(yn) if
there is some r > 0 such that xn ≤ O(yn(log(n))r). We
also write xn = Θ(yn) if Ω(yn) ≤ xn ≤ O(yn), and
similarly xn = Θ̃(yn) if Ω(yn) ≤ xn ≤ Õ(yn). Note that
we do not specify a notion of Ω̃. Instead, we say a sequence
xn = polylog(yn) if there exist some 0 < r < s such
that Ω((log(yn))r) ≤ xn ≤ O((log(yn))s). Then, for any
function g, xn ≤ O(g(polylog(yn))) if there exists some
sequence y′n = polylog(yn) such that xn ≤ O(g(y′n)).

1The “∞” subscript reflects that the cover is defined with re-
spect to the empirical L∞ norm.
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3. Minimax Regret Bounds
We now state our upper bound on the minimax regret
for sequential probability assignment. Our result is non-
constructive; that is, we do not provide an explicit algorithm
that achieves our upper bound. Rather, we characterize the
fundamental limits of the learning problem for arbitrary ex-
pert classes, providing a benchmark for algorithm design
going forward.

Theorem 2. For any X and F ⊆ [0, 1]X ,

Rn(F) ≤ inf
γ>0

{
4nγ + cH∞(F , γ, n)

}
,

where c = 2−log(2)
log(3)−log(2) ≤ 4.

For simple parametric classes where H∞(F , γ, n) =
Θ(d log(1/γ)), Theorem 2 recovers the usual fast rate
of O(d log (en/d)). More interesting is the rich/high-
complexity regime where H∞(F , γ, n) = Θ(γ−p) for
p > 0, for which Theorem 2 implies that

Rn(F) ≤ O(n
p
p+1 ). (2)

As we discuss at length in Section 3.2, this rate improves
over prior work for all p > 1. More importantly, this upper
bound is tight for certain nonparametric classes (namely, the
1-Lipschitz experts). That is, if one wishes to bound regret
only in terms of sequential entropy, Theorem 2 cannot be
improved.

Theorem 3. For any p ∈ N, the classF of 1-Lipschitz (w.r.t.
`∞) experts on [0, 1]p satisfiesH∞(F , γ, n) = Θ(γ−p) and

Rn(F) = Θ(n
p
p+1 ).

While Theorem 3 shows that our new upper bound cannot
be improved in a worst-case sense, there is still room for im-
provement for specific function classes of interest. Let B2 be
the unit ball in a Hilbert space. Consider the class of infinite-
dimensional linear predictors F = {x 7→ 1

2 [〈w, x〉+ 1] |
w ∈ B2}, with X = B2. This class has sequential entropy
H∞(F , γ, n) = Θ̃(γ−2), so Rn(F) ≤ Õ(n2/3) by Theo-
rem 2. However, Rakhlin & Sridharan (2015) describe an
explicit algorithm that attains regret Õ(n1/2) for this class,
meaning that our upper bound is loose for this example. Yet,
since Theorem 3 shows that the upper bound cannot be im-
proved without further assumptions, we draw the following
conclusion.

Corollary 4. The minimax rates for sequential probability
assignment with the log loss cannot be characterized purely
in terms of sequential entropy.

We discuss a couple more features of Theorem 2 and Theo-
rem 3 below.

• The proof strategy for Theorem 2 differs from pre-
vious approaches by discretizing F at a single scale
rather than multiple scale levels (referred to as chain-
ing). Surprisingly, this rather coarse approach achieves
the previous best known results and improves on them
for rich expert classes. Key to this improvement is the
self-concordance of the log loss, which enables us to
avoid truncation arguments.

• Theorem 3 in fact lower bounds the minimax regret
when data is generated i.i.d. from a well-specified
model, which implies that for Lipschitz classes, this ap-
parently easier setting is in fact just as hard as the fully
adversarial setting. This is in contrast to the case for
square loss, where the rates for the i.i.d. well-specified
and i.i.d. misspecified settings diverge once p ≥ 2
(Rakhlin et al., 2017).

3.1. Further Examples

In order to place our new upper bound in the context of
familiar expert classes, we walk through some additional
examples below.

Example 1 (Sequential Rademacher Complexity). The se-
quential Rademacher complexity of an expert class F is
given by

Rn(F) = sup
x

Eε sup
f∈F

n∑
t=1

εt f(xt(ε)),

where supx ranges over all X -valued trees and ε ∈ {±1}n
are Rademacher random variables.2 Via Corollary 1 and
Lemma 2 of Rakhlin et al. (2015b), we deduce that

Rn(F) ≤ Õ
(
R2/3
n (F) · n1/3

)
.

Example 2 (Smooth Nonparametric Classes). Let F be the
class of all bounded functions over [0, 1]

d for which the first
k − 1 derivatives are Lipschitz. Then we may take p = d/k
(see, e.g., Example 5.11 of Wainwright, 2019), and hence
Theorem 2 gives that Rn(F) ≤ Õ(n

d
d+k ). One can show

that this is optimal via a small modification to the proof of
Theorem 3.

Example 3 (Neural Networks). Rakhlin et al. (2015a) show
that neural networks with Lipschitz activations and `1-
bounded weights have Rn(F) ≤ Õ(

√
n). We conclude

from Example 1 thatRn(F) ≤ Õ(n2/3) for these classes.

3.2. Comparing to Previous Regret Bounds

We now compare the bound from Theorem 2 to the previous
state of the art, Theorem 7 of Foster et al. (2018), which
shows that for any X and F ⊆ [0, 1]X ,

2Here we overload the definition of a tree in the natural way to
allow arguments in {±1} rather than {0, 1}.
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Rn(F) ≤ inf
γ≥α>0
δ>0

{
4nα

δ
+ 30

√
2n

δ

∫ γ

α

√
H∞(F , ε, n) dε

+
8

δ

∫ γ

α

H∞(F , ε, n) dε

+H∞(F , γ, n) + 3nδ log(1/δ)

}
. (3)

For any expert class F we will refer to the upper bound of
Theorem 2 by Unew

n (F) and the upper bound of Foster et al.
(2018, Theorem 7) by Uold

n (F). We observe the following
relationship, proven in Appendix B.

Proposition 5. For any X and F ⊆ [0, 1]X , the following
hold:

(i) If H∞(F , γ, n) = Θ(log(1/γ)),

Unew
n (F)

Uold
n (F)

= Θ (1) .

(ii) If H∞(F , γ, n) = Θ(γ−p) for p ≤ 1,

Unew
n (F)

Uold
n (F)

= Θ

(
1

polylog(n)

)
.

(iii) If H∞(F , γ, n) = Θ(γ−p) for p > 1,

Unew
n (F)

Uold
n (F)

= Θ

(
1

n
p−1

2p(p+1) polylog(n)

)
.

4. Proof of Theorem 2
We now prove our main result. The proof has three parts.
First, we use a minimax theorem to move to the dual of the
online learning game, where we can evaluate the optimal
strategy for the learner. This allows us to express the value
of the minimax regret as a dependent empirical processes.
For the next step, we move to a simpler, linearized upper
bound on this process using the self-concordance property
of the log loss, leading to a particular “offset” process. For
finite classes, we can directly bound the value of the offset
process by log|F|; the final bound in Theorem 2 follows by
applying this result along with a discretization argument.

Before proceeding, we elaborate on the second point above.
Let us take a step back and consider the simpler problem
of bounding the minimax regret for square loss. Rakhlin &
Sridharan (2014) show that via a similar minimax theorem,
it is possible to bound the regret by a dependent random
process called the offset sequential Rademacher complexity,
which, informally, takes the form

E sup
f∈F

[Xemp(f)− Yoffset(f)]. (4)

Here,Xemp(f) is a zero-mean Rademacher process indexed
by F and Yoffset(f) is a quadratic offset. The offset compo-
nent arises due to the strong convexity of the square loss,
and penalizes large fluctuations in the Rademacher process,
leading to fast rates.

For the log loss, the issue faced if one attempts to apply the
same strong convexity-based argument is that the process
Xemp(f), which involves the derivative of the loss, becomes
unbounded as f approaches the boundary of [0, 1], and the
quadratic offset Yoffset(f) does not grow fast enough to neu-
tralize it. The simplest way to address this issue, and the
one taken by Rakhlin & Sridharan (2015), is to truncate
predictions. Our main insight is that using self-concordance
of the log loss rather than strong convexity leads to an offset
that can neutralize the derivative, removing the need for
truncation and resulting in faster rates. The inspiration for
using this property came from Rakhlin & Sridharan (2015,
Section 6), who design a variant of mirror descent using a
self-concordant barrier as a regularizer to obtain fast rates
for linear prediction with the log loss, though our use of the
property here is technically quite different.

4.1. Minimax Theorem and Dual Game

As our first step, we move to the dual game in which the
order of max and min at each time step is swapped. Moving
to the dual game is a now-standard strategy (Abernethy
et al., 2009; Rakhlin & Sridharan, 2014; Rakhlin et al.,
2015a; Rakhlin & Sridharan, 2015; Foster et al., 2018), and
is a useful tool for analysis because the optimal strategy for
the learner is much more tractable to compute in the dual.

In particular, for our sequential probability assignment set-
ting, the following minimax theorem (Appendix A.1) holds.

Lemma 6. For any X and F ⊆ [0, 1]X ,

Rn(F) = sup
x1

sup
p1∈[0,1]

E
y1∼p1

· · · sup
xn

sup
pn∈[0,1]

E
yn∼pn

sup
f∈F

n∑
t=1

{
inf

p̂t∈[0,1]
E

yt∼pt
[`(p̂t, yt)]− `(f(xt), yt)

}
.

The parameter pt ∈ [0, 1] represents a distribution over
the adversary’s outcome yt ∈ {0, 1}, which the player can
observe before they select p̂t. For log loss, it is easy to see
that the infimum of the interior expectation in Lemma 6 is
achieved at p̂t = pt, so by the linearity of expectation the
minimax regret can be written as

sup
x1

sup
p1∈[0,1]

E
y1∼p1

· · · sup
xn

sup
pn∈[0,1]

E
yn∼pn

Rn(F ;p,x,y) .

We simplify this statement using the tree notation from
Section 2. In particular, writing Ey∼p to denote the nested
conditional expectations Eyt∼pt(y) for each t ∈ [n], we can
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write the minimax regret as

Rn(F) = sup
x,p

E
y∼p
Rn(F ;p(y),x(y),y) ,

where x and p are respectively X - and [0, 1]-valued binary
trees of depth n. We now fix an arbitrary context tree x and
probability tree p, and show that the bound of Theorem 2
holds for Ey∼pRn(F ;p(y),x(y),y). Recall that there is
a supf∈F insideRn(F ;p(y),x(y),y), so we must control
the expected supremum of a dependent empirical process.

4.2. Self-Concordance and Offset Process

As sketched earlier, the key step in our proof is to upper
boundRn(F ;p(y),x(y),y) in terms of a new type of off-
set process using self-concordance. Let us first introduce
the property formally.
Definition 7. A function F : Rd → R is self-concordant on
S ⊆ Rd if for all s ∈ interior(S) and h ∈ Rd,

d

dα
∇2F (s+ αh)

∣∣∣
α=0

4 2∇2F (s)
√
h>∇2F (s)h.

If F : R→ R, this can be written as

|F ′′′(s)| ≤ 2F ′′(s)3/2.

The class of self-concordant functions was first intro-
duced by Nesterov & Nemirovski (1994) to study interior
point methods. The logarithm is in fact the defining self-
concordant function, satisfying equality in Definition 7.
Consequently, we are able to apply the following result
about self-concordance to log loss (viewed as a function of
the predictions).
Lemma 8 (Nesterov 2004, Theorem 4.1.7). If F : S → R
is self-concordant on a convex set S, then for all s, t ∈
interior(S),

F (t) ≥ F (s) + 〈∇F (s), t− s〉+ w
(
‖t− s‖F,s

)
,

wherew(z) = z−log(1+z) and ‖h‖F,s =
√
h>∇2F (s)h

is the local norm with respect to F .

We use Lemma 8 to linearize the log loss, leading to a
decomposition similar to (4); note that we only require the
scalar version of the lemma. This decomposition allows us
to exploit the fact that, while both the logarithm’s value and
its derivative tend to infinity near the boundary, the value
does so at a much slower rate.
Lemma 9. Let η(p, y) = d

dp`(p, y) for p ∈ [0, 1] and y ∈
{0, 1}, and define ϕ(z) = z − |z| + log(1 + |z|). Then,
Rn(F ;p(y),x(y),y) is bounded above almost surely by

sup
f∈F

n∑
t=1

ϕ
(
η(pt(y), yt)[pt(y)− f(xt(y))]

)
under y ∼ p.

In the language of (4), we can interpret the linear term z in
ϕ(z) = z−(|z|− log(1+ |z|)) as giving rise to a mean-zero
process, while the term −(|z| − log(1 + |z|)) is a (negative)
offset that behaves like a quadratic for small values of z and
like the absolute value for large values.

Proof. Taking derivatives of `(p, y) with respect to p,

`′(p, y) =
−y
p

+
1− y
1− p

,

`′′(p, y) =
y

p2
+

1− y
(1− p)2

, and

`′′′(p, y) =
−2y

p3
+

2(1− y)

(1− p)3
.

Since y ∈ {0, 1}, |`′′′(p, y)| = 2`′′(p, y)3/2, so the log loss
is indeed self-concordant in p on (0, 1). Now, fix y ∈ {0, 1}
and t ∈ [n], and consider F (a) = `(a, y). We can then
apply Lemma 8 to F evaluated at p = pt(y) ∈ (0, 1) and
f = f(xt(y)) ∈ (0, 1). This gives

F (p)− F (f) ≤ (p− f)F ′(p)− w(‖p− f‖F,p). (5)

By definition, (p− f)F ′(p) = (p− f)η(p, y). Further,

‖p− f‖F,p =
√

(p− f)2F ′′(p).

Finally, since y ∈ {0, 1}, `′′(p, y) = η(p, y)2, so

‖p− f‖F,p = |(p− f)η(p, y)|.

Applying the definition of w(z) gives the result on (0, 1).
For the boundary points p ∈ {0, 1} and f ∈ {0, 1}, it
is easy to check the inequality holds by observing that
p = 0 implies y = 0 a.s. and p = 1 implies y = 1 a.s.; we
complete this calculation in Lemma 16.

4.3. Applying Sequential Covering

We now follow the standard strategy of covering the expert
class F , bounding the supremum for the cover, and then
paying a penalty for approximation.

Consider the class of trees Fp,x = {p− (f ◦ x) : f ∈ F}.
Our goal is to obtain a bound in terms of the sequential
entropy of this class, which we observe is the same as
the sequential entropy of F ◦ x. Fix some γ > 0, and
let Vp,x be a sequential cover of Fp,x at scale γ. Then,
by adding and subtracting terms after applying Lemma 9,
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Ey∼pRn(F ;p(y),x(y),y) is bounded above by

E
y∼p

sup
g∈Fp,x

min
v∈Vp,x

n∑
t=1{

ϕ
(
η(pt(y), yt)gt(y)

)
− ϕ

(
η(pt(y), yt)vt(y)

)}
(6)

+ E
y∼p

max
v∈Vp,x

n∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)
. (7)

We have now reduced the problem to controlling the approx-
imation error (6) and the finite class process (7). Controlling
the approximation error is handled by the following property
of the function ϕ, which we prove in Appendix A.3.

Lemma 10. For any s, t ∈ R, ϕ(s)− ϕ(t) ≤ 2|s− t|.

Applying Lemma 10, the approximation error term (6) is
bounded above by

2 E
y∼p

sup
g∈Fp,x

min
v∈Vp,x

n∑
t=1

∣∣∣η(pt(y), yt)[gt(y)− vt(y)]
∣∣∣

≤ 2γ E
y∼p

n∑
t=1

∣∣∣η(pt(y), yt)
∣∣∣, (8)

where we have used the fact that Vp,x is a sequential cover
of Fp,x at scale γ.

For any particular realization of y, the value of η(pt(y), yt)
in (8) depends inversely on pt and 1 − pt, and so can be
arbitrarily large. Luckily, we recognize that the large values
of η are exactly controlled by the small probability of paths
that generate them. That is, adopting the shorthand yt =
y1:t,

E
y∼p

n∑
t=1

∣∣∣η(pt(y), yt)
∣∣∣

= E
yn−1∼p

E
yn∼pn(y)

[
n∑
t=1

(
yt

pt(y)
+

1− yt
1− pt(y)

)]

= E
yn−1∼p

[
n−1∑
t=1

(
yt

pt(y)
+

1− yt
1− pt(y)

)

+ E
yn∼pn(y)

[(
yn

pn(y)
+

1− yn
1− pn(y)

)]]

= E
yn−1∼p

n−1∑
t=1

∣∣∣η(pt(y), yt)
∣∣∣+ 2.

Iterating this argument down to t = 1 gives

E
y∼p

n∑
t=1

∣∣∣η(pt(y), yt)
∣∣∣ = 2n. (9)

It remains to control the value of the finite-class process in
(7). For this we use the offset property, and again exploit
the fact that the η term only takes large values on paths with
low probability.

For a [0, 1]-valued tree p, we say that a [−1, 1]-valued tree v
is a [p− 1,p]-valued tree if for all t ∈ [n] and y ∈ {0, 1}n,
vt(y) ∈ [pt(y)− 1, pt(y)]. We have the following bound.
Lemma 11. Consider a [0, 1]-valued binary tree p and a
finite class V of [p− 1,p]-valued trees. Then

E
y∼p

max
v∈V

n∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)
≤ c log|V |,

where c = 2−log(2)
log(3)−log(2) .

Proof. First, for all λ > 0, we have

E
y∼p

max
v∈V

n∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)
= log

(
exp

{
λ

1

λ
E

y∼p
max
v∈V

n∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)})

≤ 1

λ
log

(
E

y∼p
exp

{
λmax

v∈V

n∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)})

≤ 1

λ
log

(∑
v∈V

E
y∼p

exp

{
λ

n∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)})
,

where the first inequality is Jensen’s and the second follows
because the maximum is contained in the sum. Now, for
any fixed tree v,

E
y∼p

exp

{
λ

n∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)}

= E
yn−1∼p

E
yn∼pn(y)

[
exp

{
λ

n∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)}]

= E
yn−1∼p

[
exp

{
λ

n−1∑
t=1

ϕ
(
η(pt(y), yt)vt(y)

)}
×

ψpn(y),λ

(
vn(y)

)]
, (10)

where, for any p ∈ [0, 1] and λ > 0, we define ψp,λ :
[−1, 1]→ R by

ψp,λ(v) = Ey∼p exp
{
λϕ
(
η(p, y)v

)}
= p

(
1 +
|v|
p

)λ
exp

{
−λ
(
v + |v|
p

)}
+ (1− p)

(
1 +

|v|
1− p

)λ
exp

{
λ

(
v − |v|
1− p

)}
.

Then, we observe the following.
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Lemma 12. Whenever λ ≤ log(3)−log(2)
2−log(2) ,

sup
p∈[0,1]

sup
v∈[p−1,p]

ψp,λ(v) ≤ 1.

The proof of Lemma 12 is a tedious calculation, and we
leave it for Appendix A.4, but we provide a brief sketch
of the argument here. First, ψp,λ(v) can be simplified by
fixing v to be positive or negative. This allows us to show
that if λ is smaller than some function of p and v, ψp,λ(v) is
increasing when v < 0 and decreasing when v > 0. Then,
we observe that this function of p and v (which must upper
bound λ) is lower bounded by log(3)−log(2)

2−log(2) . Finally, since
ψp,λ(0) = 1 for any p ∈ [0, 1] and λ > 0, the result holds.

Thus, when λ ≤ log(3)−log(2)
2−log(2) , (10) is bounded above by

E
yn−1∼p

exp

{
λ

n−1∑
t=1

ϕ (η(pt(y), yt)vt(y))

}
.

Iterating this argument through t ∈ [n] and taking λ as
large as possible gives the result.

We can apply Lemma 11 directly to (7) by observing that
each tree g ∈ Fp,x can be written as p− (f ◦ x) for some
f ∈ F , and consequently gt(y) ∈ [pt(y)− 1, pt(y)] for all
times t ∈ [n] and paths y ∈ {0, 1}n. Thus, without loss of
generality, any cover Vp,x of Fp,x can also be assumed to
satisfy vt(y) ∈ [pt(y) − 1, pt(y)], as clipping its value to
this range will only decrease the approximation error.

Theorem 2 now follows by applying (8) and (9) to (6) and
applying Lemma 11 to (7).

5. Proof of Theorem 3
We now prove Theorem 3. Lemma 19 in Appendix C shows
that for F defined to be the 1-Lipschitz experts on [0, 1]p,
H∞(F , γ, n) = Θ(γ−p), so (2) applies for the upper bound.
It remains to show that the lower bound holds. To begin, we
lower bound the minimax regret in our adversarial setting
by the minimax risk (the analogue of regret in batch learn-
ing) for the simpler i.i.d. batch setting with a well-specified
model, which admits a simple expression in terms of KL
divergence.

Let f̂ denote an arbitrary prediction strategy for the player
that, for each t, outputs a predictor f̂t : X → [0, 1] us-
ing only the history h1:t−1. Then, let P be the set of all
distributions on (X , [0, 1]), and define the set

PF =
{
D ∈ P : ∃f∗D ∈ F ∀x ∈ X f∗D(x) = E

(x,y)∼D
[y|x]

}
.

Using these new objects, and letting KL (p ‖ q) denote the

KL divergence between Ber(p) and Ber(q), we obtain the
following result (proven in Appendix C.1).

Lemma 13. For any X and F ⊆ [0, 1]X ,

1

n
Rn(F) ≥ inf

f̂

sup
D∈PF

E
[
KL
(
f∗D(x) ‖ f̂n(x)

) ]
,

where E denotes expectation over (x1:n−1, y1:n−1) ∼
D⊗n−1 and (x, y) ∼ D.

Thus, we have reduced the problem to lower-bounding the
minimax risk for F under a well-specified model, which
is a more standard problem. To proceed, we use an argu-
ment along the lines of Assouad’s lemma (Assouad, 1983),
applied to our class F of 1-Lipschitz functions on [0, 1]p.

First, fix ε ∈ (0, 1/8), divide the space [0, 1]p into N =
( 1
4ε )p bins of width 4ε, and without loss of generality sup-

pose that N is an integer. Denote the centers of each bin
by x(1), . . . , x(N). Define the set V = {±1}N and the class
FV ⊆ F as follows: for each v ∈ V , define the function
fv such that fv(x(i)) = 4ε1{vi = 1} + ε1{vi = −1}
for i ∈ [N ]. Define the rest of fv by some linear inter-
polation between these points, and observe that fv is 1-
Lipschitz. Finally, for any v ∈ V , define the distribution
Dv on ([0, 1]p, [0, 1]) by x ∼ Unif({x(1), . . . , x(N)}) and
y|x ∼ Ber(fv(x)).

Pick v ∈ V and f : [0, 1]p → [0, 1]. By definition of Dv ,

E
x∼Dv

KL (fv(x) ‖ f(x)) =
1

N

N∑
i=1

KL (fv(x
(i)) ‖ f(x(i))) .

Next, we use Lemma 18 in Appendix C to lower bound the
KL divergence. Specifically, if vi = 1 then fv(x(i)) = 4ε,
so

KL (fv(x
(i)) ‖ f(x(i))) ≥ 2ε

3
1{f(x(i)) ≤ 2ε},

and if vi = −1 then fv(x(i)) = ε, so

KL (fv(x
(i)) ‖ f(x(i))) ≥ ε

4
1{f(x(i)) ≥ 2ε}.

That is, for all i ∈ [N ],

KL (fv(x
(i)) ‖ f(x(i)))

≥ ε

4

[
1{vi = 1 ∧ f(x(i)) < 2ε}

+ 1{vi = −1 ∧ f(x(i)) ≥ 2ε}
]
.

Now, since the expression in Lemma 13 involves the supre-
mum over all D ∈ PF , we can obtain a lower bound by
taking an expectation over v uniformly chosen from V and
setting D = Dv. In particular, for each i ∈ N , we define
the distributions D⊗n−1+i = 2−(N−1)

∑
v∈V:vi=1D⊗n−1v
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and D⊗n−1−i = 2−(N−1)
∑
v∈V:vi=−1D

⊗n−1
v . Using the

shorthand D⊗n−1(·) to denote P(x1:n−1,y1:n−1)∼D⊗n−1(·),
we obtain the lower bound for any f̂ of

sup
D∈PF

E
[
KL
(
f∗D(x) ‖ f̂n(x)

) ]
≥ 1

2N

∑
v∈V

E
[
KL
(
fv(x) ‖ f̂n(x)

) ]

≥ 1

2N

∑
v∈V

ε

4N

N∑
i=1

[
1{vi = 1}D⊗n−1v (f̂n(x(i)) < 2ε)

+ 1{vi = −1}D⊗n−1v (f̂n(x(i)) ≥ 2ε)
]

=
ε

8N

N∑
i=1

[
D⊗n−1+i (f̂n(x(i)) < 2ε)

+D⊗n−1−i (f̂n(x(i)) ≥ 2ε)
]
.

Then, we observe that for each i ∈ [N ],

D⊗n−1+i (f̂n(x(i)) < 2ε) +D⊗n−1−i (f̂n(x(i)) ≥ 2ε)

= 1 +D⊗n−1+i (f̂n(x(i)) < 2ε)−D⊗n−1−i (f̂n(x(i)) < 2ε)

≥ 1− |D⊗n−1+i (f̂n(x(i)) < 2ε)−D⊗n−1−i (f̂n(x(i)) < 2ε)|
≥ 1−

∥∥D⊗n−1+i −D⊗n−1−i
∥∥
TV

.

Next, for each v ∈ V , we define D⊗n−1v,+i to be the distribu-
tionD⊗n−1v with vi forced to 1, and similarly defineD⊗n−1v,−i
to be the distribution D⊗n−1v with vi forced to −1. Then,
following the standard argument, we observe that∥∥D⊗n−1+i −D⊗n−1−i

∥∥
TV

=

∥∥∥∥∥ 1

2N

∑
v∈V

[D⊗n−1v,+i −D
⊗n−1
v,−i ]

∥∥∥∥∥
TV

≤ 1

2N

∑
v∈V

∥∥D⊗n−1v,+i −D
⊗n−1
v,−i

∥∥
TV

≤ max
v,i

∥∥D⊗n−1v,+i −D
⊗n−1
v,−i

∥∥
TV

.

Thus, we can apply this to Lemma 13 to get

Rn(F) ≥ nε
8

[
1−max

v,i

∥∥D⊗n−1v,+i −D
⊗n−1
v,−i

∥∥
TV

]
. (11)

To further lower bound this, consider a fixed v ∈ V and
i ∈ [N ], and use fv,+i to denote fv with vi forced to 1, with
the analogous definition for fv,−i. By Pinsker’s inequality
and chain rule for KL,∥∥D⊗n−1v,+i −D

⊗n−1
v,−i

∥∥2
TV

≤ 1

2
KL
(
D⊗n−1v,+i ‖ D

⊗n−1
v,−i

)
=
n− 1

2N

N∑
j=1

KL (fv,+i(x
(j)) ‖ fv,−i(x(j)))

=
n− 1

2N
· KL (4ε ‖ ε) ,

where the last step uses that fv,+i and fv,−i agree every-
where except x(i). Finally, we observe that

KL (4ε ‖ ε) = 4ε log(4) + (1− 4ε) log

(
1− 4ε

1− ε

)
≤ 4ε log(4)

≤ 8ε.

We conclude from the definition of N that∥∥D⊗n−1v,+i −D
⊗n−1
v,−i

∥∥2
TV
≤ 4

(n− 1)ε

N
= 4(n− 1)ε(4ε)p

≤ n(4ε)1+p.

Setting ε = 1
8n
− 1
p+1 gives n(4ε)1+p = 2−(1+p) ≤ 1/4,

and plugging this into (11) gives the lower bound

Rn(F) ≥ nn
− 1
p+1

(8)(8)
[1− 1/2] =

n
p
p+1

128
.

6. Discussion
We have shown that the self-concordance property of log
loss leads to improved bounds on the minimax regret for
sequential probability assignment with rich classes of ex-
perts, and that the rates we provide cannot be improved
further without stronger structural assumptions on the ex-
pert class. An important open problem is to develop more
refined complexity measures (e.g., variants of sequential
entropy tailored directly to the log loss rather than the L∞
norm) that lead to matching upper and lower bounds for all
classes of experts; we intend to pursue this in future work.

On the technical side, it would be interesting to extend our
guarantees to infinite outcome spaces; that is, adversarial
online density estimation. To the best of our knowledge,
very little progress has been made on this problem without
stochastic assumptions.
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Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cam-
bridge University Press, 2020.

Liang, Q. and Modiano, E. Minimizing Queue Length Re-
gret under Adversarial Network Models. In ACM on
Measurement and Analysis of Computing Systems. Asso-
ciation for Computing Machinery, 2018.

Merhav, N. and Feder, M. Universal Prediction. IEEE
Transactions on Information Theory, 44(6):2124–2147,
1998.

Miyaguchi, K. and Yamanishi, K. Adaptive Minimax
Regret against Smooth Logarithmic Losses over High-
Dimensional `1-Balls via Envelope Complexity. In Pro-
ceedings of Machine Learning Research, volume 89, pp.
3440–3448, 2019.

Nesterov, Y. Introductory Lectures on Convex Optimization:
A Basic Course. Springer, 2004.

Nesterov, Y. and Nemirovski, A. Interior-Point Polynomial
Algorithms in Convex Programming. SIAM, Philadelphia,
USA, 1994.

Opper, M. and Haussler, D. Worst Case Prediction over
Sequences under Log Loss. In Cybenko, G., O’Leary, D.,
and Rissanen, J. (eds.), The Mathematics of Information
Coding, Extraction and Distribution, pp. 81–90, New
York, NY, 1999. Springer New York.

Rakhlin, A. and Sridharan, K. Statistical Learning and Se-
quential Prediction, 2012. URL http://www.mit.edu/
∼rakhlin/courses/stat928/stat928 notes.pdf.

http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf
http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf


Tight Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance

Rakhlin, A. and Sridharan, K. Online Nonparametric Re-
gression. In Proceedings of the 27th Conference on Learn-
ing Theory, 2014.

Rakhlin, A. and Sridharan, K. Sequential Probability As-
signment with Binary Alphabets and Large Classes of
Experts, 2015. arXiv:1501.07340.

Rakhlin, A., Sridharan, K., and Tewari, A. Online Learn-
ing via Sequential Complexities. Journal of Machine
Learning Research, 16(6):155–186, 2015a.

Rakhlin, A., Sridharan, K., and Tewari, A. Sequential Com-
plexities and Uniform Martingale Laws of Large Num-
bers. Probability Theory and Related Fields, 161(1):
111–153, 2015b.

Rakhlin, A., Sridharan, K., and Tsybakov, A. Empirical
Entropy, Minimax Regret and Minimax Risk. Bernoulli,
23(2):789–824, 2017.

Rissanen, J. Universal Coding, Information, Prediction, and
Estimation. IEEE Transactions on Information Theory,
30:629–636, 1984.

Rissanen, J. Complexity of Strings in the Class of Markov
Sources. IEEE Transactions on Information Theory, 32
(4):526–532, 1986.

Rissanen, J. Fisher Information and Stochastic Complexity.
IEEE Transactions on Information Theory, 42(1):40–47,
1996.

Shtar’kov, Y. Universal Sequential Coding of Single Mes-
sages. Problems of Information Transmission, 23(3):3–17,
1987.

Sion, M. On General Minimax Theorems. Pacific Journal
of Mathematics, 8:171–176, 1958.

Vovk, V. A Game of Prediction with Expert Advice. Journal
of Computer and System Sciences, 56:153–173, 1998.

Wainwright, M. High-Dimensional Statistics: A Non-
Asymptotic Viewpoint. Cambridge University Press, 2019.

Xie, Q. and Barron, A. Asymptotic Minimax Regret for Data
Compression, Gambling, and Prediction. IEEE Transac-
tions on Information Theory, 46(2):431–445, 2000.



Tight Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance

Supplementary Material

A. Additional Details for Proof of Theorem 2
A.1. Proof of Lemma 6

The proof follows similarly to that of Abernethy et al. (2009) and Rakhlin et al. (2015a), but since we require a variant for
unbounded losses we work out the details here for completeness. To keep notation compact, we adopt the repeated operator
notation from Rakhlin & Sridharan (2012), using ⟪Opt⟫nt=1 [· · ·] to denote Op1Op2 · · ·Opn[· · ·].

To begin, let us assume for simplicity that for every sequence x1:n, y1:n, inff∈F
∑n
t=1 `(f(xt), yt) <∞; note that this can

always be made to hold by adding the constant 1/2 function to F , and this only increases the sequential entropy by an
additive constant.

Next, let us move to an upper bound by restricting the player’s predictions to the interval Iδ := [δ, 1− δ], where 0 < δ ≤ 1/2.
Then, we may write

Rn(F) ≤ ⟪sup
xt

inf
p̂t∈Iδ

sup
yt∈{0,1}

⟫
n

t=1

[ n∑
t=1

`(p̂t, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)

]

= ⟪sup
xt

inf
p̂t∈Iδ

sup
yt∈{0,1}

⟫
n−1

t=1

sup
xn

inf
p̂n∈Iδ

sup
pn∈[0,1]

E
yn∼pn

[ n∑
t=1

`(p̂t, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)

]
.

We now wish to apply a minimax theorem to the function

A(p̂n, pn) = E
yn∼pn

[ n∑
t=1

`(p̂t, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)

]
.

We appeal to a basic variant of von Neumann’s minimax theorem.

Theorem 14 (Sion 1958). Let X be a convex, compact subset of a linear topological space and Y be a compact subset of
a linear topological space. Let f : X × Y → R. Suppose that f(x, ·) is upper-semicontinuous and quasiconcave for all
x ∈ X and f(·, y) is lower-semicontinuous and quasiconvex for all y ∈ Y . Then

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).

To apply this result, we take X = Iδ and Y = [0, 1], both of which are convex and compact. We observe that A(p̂n, pn)
depends on p̂n only through Ey∼pn `(p̂n, pn), which is convex and continuous over Iδ. Moreover A(p̂n, pn) is a bounded
linear function of pn over [0, 1], and hence is concave and continuous. Thus, the theorem applies, and we have

Rn(F) ≤ ⟪sup
xt

inf
p̂t∈Iδ

sup
yt∈{0,1}

⟫
n−1

t=1

sup
xn

sup
pn∈[0,1]

inf
p̂n∈Iδ

E
yn∼pn

[ n∑
t=1

`(p̂t, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)

]

= ⟪sup
xt

inf
p̂t∈Iδ

sup
yt∈{0,1}

⟫
n−1

t=1

[ n−1∑
t=1

`(p̂t, yt) + sup
xn

sup
pn∈[0,1]

[
inf

p̂n∈Iδ
E

yn∼pn
`(p̂n, yn)− E

yn∼pn
inf
f∈F

n∑
t=1

`(f(xt), yt)
]]

= ⟪sup
xt

inf
p̂t∈Iδ

sup
yt∈{0,1}

⟫
n−2

t=1

sup
xn−1

inf
p̂n−1∈Iδ

sup
pn−1∈[0,1]

E
yn−1∼pn−1[ n−1∑

t=1

`(p̂t, yt) + sup
xn

sup
pn∈[0,1]

[
inf

p̂n∈Iδ
E

yn∼pn
`(p̂n, yn)− E

yn∼pn
inf
f∈F

n∑
t=1

`(f(xt), yt)
]]
.

Once again, we wish to apply the minimax theorem, but this time to the function

B(p̂n−1, pn−1) = E
yn−1∼pn−1

[ n−1∑
t=1

`(p̂t, yt) + sup
xn

sup
pn∈[0,1]

[
inf

p̂n∈Iδ
E

yn∼pn
`(p̂n, yn)− E

yn∼pn
inf
f∈F

n∑
t=1

`(f(xt), yt)
]]
.



Tight Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance

The same logic applies, where we observe that B is a bounded linear function in pn−1 and only depends on p̂n−1 through
`(p̂n−1, yn−1), so the convexity and continuity of log loss over Iδ suffices. That is,

Rn(F) ≤ ⟪sup
xt

inf
p̂t∈Iδ

sup
yt∈{0,1}

⟫
n−2

t=1

sup
xn−1

sup
pn−1∈[0,1]

inf
p̂n−1∈Iδ

E
yn−1∼pn−1[ n−1∑

t=1

`(p̂t, yt) + sup
xn

sup
pn∈[0,1]

[
inf

p̂n∈Iδ
E

yn∼pn
`(p̂n, yn)− E

yn∼pn
inf
f∈F

n∑
t=1

`(f(xt), yt)

]]

= ⟪sup
xt

inf
p̂t∈Iδ

sup
yt∈{0,1}

⟫
n−3

t=1

sup
xn−2

inf
p̂n−2∈Iδ

sup
pn−2∈[0,1]

E
yn−2∼pn−2[

n−2∑
t=1

`(p̂t, yt) + sup
xn−1

sup
pn−1∈[0,1]

[
inf

p̂n−1∈Iδ
E

yn−1∼pn−1

`(p̂n−1, yn−1)

+ E
yn−1∼pn−1

sup
xn

sup
pn∈[0,1]

[
inf

p̂n∈Iδ
E

yn∼pn
`(p̂n, yn)− E

yn∼pn
inf
f∈F

n∑
t=1

`(f(xt), yt)

]]]
.

Collecting terms and iterating the argument down through all n rounds gives

Rn(F) ≤ ⟪sup
xt

sup
pt∈[0,1]

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

inf
p̂t∈Iδ

E
yt∼pt

[`(p̂t, yt)]− `(f(xt), yt)

]
.

Applying Lemma 15, this is bounded by

Rn(F) ≤ ⟪sup
xt

sup
pt∈[0,1]

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

inf
p̂t∈[0,1]

E
yt∼pt

[`(p̂t, yt)]− `(f(xt), yt)

]
+ 2δn.

Since the right-hand side only depends on δ through the error term 2δn, we can take the limit as δ → 0 to get

Rn(F) ≤ ⟪sup
xt

sup
pt∈[0,1]

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

inf
p̂t∈[0,1]

E
yt∼pt

[`(p̂t, yt)]− `(f(xt), yt)

]
.

The inequality in the other direction holds trivially by the max-min inequality, so we conclude equality.

Lemma 15. For any p ∈ [0, 1] and δ ∈ [0, 1/2], define

pδ =

 δ, p < δ,
p, p ∈ [δ, 1− δ],
1− δ, p > 1− δ.

Then for all y ∈ {0, 1}, `(pδ, y) ≤ `(p, y) + 2δ.

Proof. If y = 1, we have `(pδ, y)− `(p, y) = log(p/pδ). If p ≤ 1− δ, this is at most zero. Otherwise, we have

log(p/pδ) = log

(
p

1− δ

)
= log

(
1 +

p− (1− δ)
1− δ

)
≤ p− (1− δ)

1− δ
≤ 2δ,

where the last inequality uses that 1− δ ≥ 1/2 and p− (1− δ) ≤ δ.

If y = 0, we have `(pδ, y)− `(p, y) = log
(

1−p
1−pδ

)
, and the only non-trivial case is where p < δ, where

log

(
1− p
1− pδ

)
= log

(
1− p
1− δ

)
= log

(
1 +

δ − p
1− δ

)
≤ δ − p

1− δ
≤ 2δ.
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A.2. Additional Details for Proof of Lemma 9

Lemma 16. For the same setting as Lemma 9, the inequality (5) holds almost surely when either f ∈ {0, 1} or p ∈ {0, 1}.

Proof. We first observe that the desired inequality may be written as

y log

(
f

p

)
+ (1− y) log

(
1− f
1− p

)
≤
(
−y
p

+
1− y
1− p

)
(p− f)−

(
y

p
+

1− y
1− p

)
|p− f |+ log

(
1 +

(
y

p
+

1− y
1− p

)
|p− f |

)
. (12)

First, observe that if p = 1, we must have y = 1 almost surely. Furthermore, since y = 1, we may restrict to f ∈ (0, 1], as
the left-hand side above approaches −∞ for f → 0. For all f ∈ (0, 1], the inequality simplifies to

log(f) ≤ log(2− f)− 2(1− f).

This can be seen to hold by observing that log(f)− log(2− f) = log
(

1− 2 1−f
2−f

)
≤ − 2(1− f), where we have used that

log(1 + x) ≤ 2x
2+x for x ∈ (−1, 0].

Next, we similarly observe that for p = 0, we may take y = 0 and f ∈ [0, 1), and (12) simplifies to

log(1− f) ≤ log(1 + f)− 2f,

which follows from the same elementary inequality.

Next, suppose that p ∈ (0, 1) and either f = 0 or f = 1. In this case, we may take y = 0 or y = 1 respectively, or else (12)
is trivial. By direct calculation, we can verify that (12) holds with equality in both cases.

A.3. Proof of Lemma 10

First, observe that

ϕ(s)− ϕ(t) = (s− t)− (|s| − |t|) + log

(
1 +
|s| − |t|
1 + |t|

)
.

There are two cases to consider. If |t| < |s|, then since log(1 + z) ≤ z for all z > −1,

|t| − |s|+ log

(
1 +
|s| − |t|
1 + |t|

)
≤ |t| − |s|+ |s| − |t|

1 + |t|
≤ |t| − |s|+ |s| − |t| = 0 ≤ |s− t|.

Otherwise, if |s| ≤ |t|, since ||a| − |b|| ≤ |a− b| for all a, b ∈ R,

|t| − |s|+ log

(
1 +
|s| − |t|
1 + |t|

)
≤ |t| − |s|+ log(1) ≤ |s− t|.

Trivially, (s− t) ≤ |s− t|, which completes the proof.

A.4. Proof of Lemma 12

Recall that

ψp,λ(v) = Ey∼p exp
{
λϕ
(
η(p, y)v

)}
= p

(
1 +
|v|
p

)λ
exp

{
−λ
(
v + |v|
p

)}
+ (1− p)

(
1 +

|v|
1− p

)λ
exp

{
λ

(
v − |v|
1− p

)}
.

We now prove that for λ ≤ log(3)−log(2)
2−log(2) ,

sup
p∈[0,1]

sup
v∈[p−1,p]

ψp,λ(v) ≤ 1.
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Clearly, for any p ∈ [0, 1] and λ > 0, ψp,λ(0) = 1. We claim that there is a choice for λ which does not depend on p for
which the point 0 in fact attains the maximum over all v ∈ [p− 1, p]. To see this, consider ψ′p,λ(v) = d

dvψp,λ(v). We will
show that there is some λ > 0 such that for all p ∈ [0, 1], ψ′p,λ(v) ≥ 0 for v ∈ [p − 1, 0) and ψ′p,λ(v) ≤ 0 for v ∈ (0, p],
which suffices since ψp,λ(v) is continuous in v.

First, we handle the edge cases.

Suppose p = 0 and λ > 0. Then, for v ∈ [−1, 0],

ψ0,λ(v) = (1 + |v|)λeλ(v−|v|) = (1− v)λe2λv.

It remains to show ψ0,λ(v) is increasing on v ∈ [−1, 0], which follows since

ψ′0,λ(v) = −λ(1− v)λ−1e2λv + 2λ(1− v)λe2λv ≥ −λ(1− v)λ−1e2λv + 2λ(1− v)λ−1e2λv ≥ 0,

where we have used that (1− v)λ ≥ (1− v)λ−1, which holds for all λ ≥ 0 since 1− v ≥ 1.

Next, suppose p = 1 and λ > 0. Then, for v ∈ [0, 1],

ψ1,λ(v) = (1 + |v|)λeλ(v+|v|) = (1 + v)λe2λv.

We now wish to show ψ1,λ(v) is decreasing on v ∈ [0, 1], which follows since

ψ′1,λ(v) = λ(1 + v)λ−1e−2λv − 2λ(1 + v)λe−2λv ≤ λ(1 + v)λe−2λv − 2λ(1 + v)λe−2λv ≤ 0,

where we have similarly used that (1 + v)λ−1 ≤ (1 + v)λ whenever λ, v ≥ 0.

Thus, we can now fix p ∈ (0, 1). First, consider v ∈ [p− 1, 0). Then,

ψp,λ(v) = p

(
1− v

p

)λ
+ (1− p)

(
1− v

1− p

)λ
exp

{(
2λv

1− p

)}
,

where we have used that |v| = −v to simplify. Thus,

ψ′p,λ(v) = pλ

(
1− v

p

)λ−1(
−1

p

)
+ (1− p)λ

(
1− v

1− p

)λ−1(
− 1

1− p

)
exp

{(
2λv

1− p

)}
+ (1− p)

(
1− v

1− p

)λ
exp

{(
2λv

1− p

)}
2λ

1− p

= λ

[(
1− p− v

1− p
e

2v
1−p

)λ(
2− 1− p

1− p− v

)
−
(
p− v
p

)λ−1]
.

That is,

ψ′p,λ(v) ≥ 0

⇐⇒ λ

[(
1− p− v

1− p
e

2v
1−p

)λ(
2− 1− p

1− p− v

)
−
(
p− v
p

)λ−1]
≥ 0

⇐⇒
(

1− p− v
1− p

e
2v

1−p

)λ(
1− p− 2v

1− p− v

)
≥
(
p− v
p

)λ−1
⇐⇒

(
p(1− p− v)

(1− p)(p− v)
e

2v
1−p

)λ
≥ p(1− p− v)

(1− p− 2v)(p− v)
, (13)

where we have used that p − v, 1 − p − v, and 1 − p − 2v are all positive. Now, we wish to be able to rearrange this
expression to extract a sufficient condition for λ. To do so, we need to check the sign of the terms to determine which way
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the inequality changes.

d

dv

p(1− p− v)

(1− p)(p− v)
e

2v
1−p =

p

1− p

[
2

1− p
1− p− v
p− v

e
2v

1−p +
1− p− v
(p− v)2

e
2v

1−p − 1

p− v
e

2v
1−p

]
=

p

(1− p)(p− v)
e

2v
1−p

[
2(1− p− v)

1− p
+

1− p− v
p− v

− 1

]
=

p

(1− p)(p− v)
e

2v
1−p

[
1− 2v

1− p
+

1− p− v
p− v

]
≥ 0.

The final inequality follows since v < 0. So, since this term is increasing as v increases, and at v = 0 it takes the value
1, we have p(1−p−v)

(1−p)(p−v)e
2v

1−p ≤ 1. Thus, taking logarithms on both sides of (13), we conclude that for all p ∈ (0, 1) and
v ∈ [p− 1, 0),

ψ′p,λ(v) ≥ 0 ⇐⇒ λ ≤ log(p) + log(1− p− v)− log(p− v)− log(1− p− 2v)

log(p) + log(1− p− v)− log(p− v)− log(1− p) + 2v
1−p

. (14)

Next, we show that the RHS of (14) admits a lower bound independent of p and v, so that making λ small enough will always
give us ψ′p,λ(v) ≥ 0. To do so, we write the RHS above as a ratio of functions Np(v)/Dp(v), where Np(v) denotes the
numerator in (14) andDp(v) denotes the denominator. Observe that log(p) < log(p−v) and log(1−p−v) < log(1−p−2v),
so Np(v) < 0. Similarly, since log(1 + x) ≤ x for x > 0 and − v

1−p > 0,

log(1− p− v)− log(1− p) +
2v

1− p
= log

(
1 +

−v
1− p

)
+

2v

1− p
≤ − v

1− p
+

2v

1− p
=

v

1− p
< 0,

which implies Dp(v) < 0. Now, differentiating the numerator,

N ′p(v) =
−1

1− p− v
+

1

p− v
+

2

1− p− 2v
=

1− p
(1− p− v)(1− p− 2v)

+
1

p− v
> 0.

Similarly, differentiating the denominator gives

D′p(v) =
−1

1− p− v
+

1

p− v
+

2

1− p
=

1− p− 2v

(1− p− v)(1− p)
+

1

p− v
> 0.

In particular, we see that N ′p(v) ≤ D′p(v), since 2
1−p−2v ≤

2
1−p when v ≤ 0. Further,

N ′′p (v) =
−1

(1− p− v)2
+

1

(p− v)2
+

4

(1− p− 2v)2
=

3(1− p)2 − 4v(1− p)
(1− p− v)2(1− p− 2v)2

+
1

(p− v)2
> 0,

and

D′′p (v) =
−1

(1− p− v)2
+

1

(p− v)2
< N ′′p (v).

We will now apply the following elementary fact.

Lemma 17. Let f1 and f2 be two nonnegative, twice differentiable functions defined on (−∞, 0] with f1(0) = f2(0) = 0.
If f ′2(x) ≤ f ′1(x), f ′′1 (x) ≤ f ′′2 (x), and f ′′1 (x) ≤ 0 for all x ≤ 0, then f1(x)/f2(x) is increasing on (−∞, 0].

Proof. First, observe that for any x ≤ 0,

f1(x) = −
∫ 0

x

f ′1(x)dx ≤ −
∫ 0

x

f ′2(x)dx = f2(x).

Then, we wish to show that d
dx

f1(x)
f2(x)

≥ 0 for all x ≤ 0. By quotient rule, it suffices to show that f ′1(x)f2(x) ≥ f1(x)f ′2(x).
Since f ′1(0)f2(0) = 0 = f1(0)f ′2(0), we only need to show that f ′1(x)f2(x)− f1(x)f ′2(x) is decreasing on (−∞, 0], which
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we do by showing it has negative derivative. In particular,

d

dx
[f ′1(x)f2(x)− f1(x)f ′2(x)] = f ′′1 (x)f2(x) + f ′1(x)f ′2(x)− f ′1(x)f ′2(x)− f1(x)f ′′2 (x)

≤ f ′′1 (x)f1(x)− f1(x)f ′′2 (x)

≤ f ′′2 (x)f1(x)− f1(x)f ′′2 (x)

= 0,

where the first inequality holds because f1(x) ≤ f2(x) and f ′′1 (x) ≤ 0, and the second inequality holds because
f ′′1 (x) ≤ f ′′2 (x) and f1(x) ≥ 0.

Applying Lemma 17 to −Np(v) and −Dp(v) gives that the minimum of Np(v)/Dp(v) over [p− 1, 0) will be achieved at
v = p− 1. Thus,

log(p) + log(1− p− v)− log(p− v)− log(1− p− 2v)

log(p) + log(1− p− v)− log(p− v)− log(1− p) + 2v
1−p

≥ log(p) + log(1− p− (p− 1))− log(p− (p− 1))− log(1− p− 2(p− 1))

log(p) + log(1− p− (p− 1))− log(p− (p− 1))− log(1− p) + 2(p−1)
1−p

=
log(p) + log(2− 2p)− log(1)− log(3− 3p)

log(p) + log(2− 2p)− log(1)− log(1− p)− 2

=
log(p) + log(2)− log(3)

log(p) + log(2)− 2
.

Since log(2) < log(3) < 2, and since log(p) ≤ 0, the expression above decreases as p increases, which means the minimum
is achieved at p = 1, so we conclude that

log(p) + log(1− p− v)− log(p− v)− log(1− p− 2v)

log(p) + log(1− p− v)− log(p− v)− log(1− p) + 2v
1−p
≥ log(3)− log(2)

2− log(2)
.

This means that for all p ∈ (0, 1),

λ ≤ log(3)− log(2)

2− log(2)
=⇒ ∀ v ∈ [p− 1, 0], ψ′p,λ(v) ≥ 0.

We now consider the case when v ∈ (0, p], which follows from the same logic as the argument for v < 0.

ψp,λ(v) = p

(
1 +

v

p

)λ
exp

{
−
(

2λv

p

)}
+ (1− p)

(
1 +

v

1− p

)λ
.

Thus,

ψ′p,λ(v) = pλ

(
1 +

v

p

)λ−1(
1

p

)
exp

{
−
(

2λv

p

)}
− p

(
1 +

v

p

)λ
exp

{
−
(

2λv

p

)}(
2λ

p

)
+ (1− p)λ

(
1 +

v

1− p

)λ−1(
1

1− p

)
= λ

[(
p+ v

p
e
−2v
p

)λ(
p

p+ v
− 2

)
+

(
1− p+ v

1− p

)λ−1]
.
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That is,

ψ′p,λ(v) ≤ 0

⇐⇒ λ

[(
p+ v

p
e
−2v
p

)λ(
p

p+ v
− 2

)
+

(
1− p+ v

1− p

)λ−1]
≤ 0

⇐⇒
(

1− p+ v

1− p

)λ−1
≤
(
p+ v

p
e
−2v
p

)λ(
p+ 2v

p+ v

)
⇐⇒ (1− p)(p+ v)

(1− p+ v)(p+ 2v)
≤
(

(p+ v)(1− p)
p(1− p+ v)

e
−2v
p

)λ
.

Now,

d

dv

(p+ v)(1− p)
p(1− p+ v)

e
−2v
p =

1− p
p

[(
−2

p

)
p+ v

1− p+ v
e
−2v
p − p+ v

(1− p+ v)2
e
−2v
p +

1

1− p+ v
e
−2v
p

]
=

1− p
p(1− p+ v)

e
−2v
p

[
1− p+ v

1− p+ v
− 2(p+ v)

p

]
= − 1− p

p(1− p+ v)
e
−2v
p

[
1 +

2v

p
+

p+ v

1− p+ v

]
≤ 0.

So, since this term is decreasing as v increases, and at v = 0 it takes the value 1, we have (p+v)(1−p)
p(1−p+v) e

−2v
p ≤ 1. Thus, for all

p ∈ (0, 1),

ψ′p,λ(v) ≤ 0 ⇐⇒ λ ≤ log(1− p) + log(p+ v)− log(1− p+ v)− log(p+ 2v)

log(1− p) + log(p+ v)− log(1− p+ v)− log(p)− 2v
p

. (15)

By the same argument from the v < 0 case applied to Np(−v) and Dp(−v) defined by the RHS of (15), and another
application of Lemma 17, we conclude that the minimum of the RHS over (0, p] will be achieved at v = p. That is,

log(1− p) + log(p+ v)− log(1− p+ v)− log(p+ 2v)

log(1− p) + log(p+ v)− log(1− p+ v)− log(p)− 2v
p

≥ log(1− p) + log(p+ p)− log(1− p+ p)− log(p+ 2p)

log(1− p) + log(p+ p)− log(1− p+ p)− log(p)− 2p
p

=
log(1− p) + log(2p)− log(1)− log(3p)

log(1− p) + log(2p)− log(1)− log(p)− 2

=
log(1− p) + log(2)− log(3)

log(1− p) + log(2)− 2
.

Again, since log(2) < log(3) < 2, this decreases as p decreases, which means the minimum is achieved at p = 0, so

log(1− p) + log(p+ v)− log(1− p+ v)− log(p+ 2v)

log(1− p) + log(p+ v)− log(1− p+ v)− log(p)− 2v
p

≥ log(3)− log(2)

2− log(2)
.

This implies that for all p ∈ (0, 1),

λ ≤ log(3)− log(2)

2− log(2)
=⇒ ∀ v ∈ [0, p], ψ′p,λ(v) ≤ 0.

Combining these results, we have that for all p ∈ [0, 1],

λ ≤ log(3)− log(2)

2− log(2)
=⇒ ∀ v ∈ [p− 1, p], Ey∼p exp {λη(p, y)v − λ|η(p, y)v|+ λ log (1 + |η(p, y)v|)} ≤ 1.
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B. Proof of Proposition 5
For case (i), letH∞(F , γ, n) = Θ(log(1/γ)). Taking γ = 1/n gives Unew

n (F) = Θ(log(n)), which is known to be optimal
(see, e.g., Rissanen, 1996).

To handle the remaining two cases, we need to optimize Uold
n (F) for each sequential entropy specification by finding the

values of γ, δ, and α that minimize the order of the largest term. Our strategy is to plug in a specific instance of these
three parameters, and then show that changing them in any way will lead to an increase in the order of the largest term.
We observe the following. For any p > 0, when H∞(F , γ, n) = Θ(γ−p), our bound is simple to optimize. The optimal
parametrization is γ = n−

1
p+1 , which gives Unew

n (F) = Θ(n
p
p+1 ).

Also, for any p > 0, we see that (3) becomes

Uold
n (F) = inf

γ≥α>0

δ>0

Θ̃
(αn
δ

+

√
n

δ

2

2− p

[
γ

2−p
2 − α

2−p
2

]
+

1

δ

1

1− p

[
γ1−p − α1−p

]
+ γ−p + nδ

)
. (16)

Of course, when p = 1 or p = 2 the second and first integrals respectively become log(1/γ)− log(1/α) rather than 0/0.
We will first consider when p /∈ {1, 2}, and then observe our result still holds for these specific cases.

Next, observe that for all p > 0, (16) is convex with respect to α. Then, differentiating with respect to α and setting it equal
to zero (ignoring constants) gives

n

δ
−
√
n

δ
α−p/2 − 1

δ
α−p ≈ 0,

which we can simplify to

n−
√
nδα−p/2 − α−p ≈ 0.

Solving this quadratic reveals that, up to constants, α = n−
1
p , so we only have to optimize over γ and δ. Plugging this into

(16), we get

Uold
n (F) = inf

γ≥n−
1
p , δ>0

Θ̃

(
n
p−1
p

δ
+

√
n

δ

2

2− p

[
γ

2−p
2 − n

p−2
2p

]
+

1

δ

1

1− p

[
γ1−p − n

p−1
p

]
+ γ−p + nδ

)
. (17)

We now turn to proving statements (ii) and (iii).

(ii) If 0 < p < 1, taking γ = n−
1
p+1 and δ = n−

1
p+1 gives

Uold
n (F) = Θ̃

(
n
p2+p−1
p(p+1) +

2

2− p

[
n

p
p+1 − n

2p2+p−2
2p(p+1)

]
+

1

1− p

[
n

p
p+1 − n

p2+p−1
p(p+1)

]
+ n

p
p+1 + n

p
p+1

)
= Θ̃

(
n

p
p+1

)
. (18)

We need to show that (18) is the optimal polynomial dependence on n for Uold
n (F) when 0 < p < 1.

First, observe that when p < 1, 2p2+p−2
2p(p+1) ≤

p2+p−1
p(p+1) < p

p+1 , so the negative terms are not cancelling all of the higher
order terms. Also, since we require α ≤ γ, the negative (third and fifth) terms can at most cancel the second and fourth
terms. Now, suppose that the highest order exponent p

p+1 could be lowered. This would require lowering the polynomial

dependence on n for the seventh term, which corresponds to nδ in (17). Consequently, this would require δ = n−
1
p+1−β for

some β > 0. We would then obtain

Uold
n (F) = Θ̃

(
n
p2+p−1
p(p+1)

+β +
2

2− p

[
n

p
p+1+β/2 − n

2p2+p−2
2p(p+1)

+β/2
]

+
1

1− p

[
n

p
p+1+β − n

p2+p−1
p(p+1)

+β
]

+ n
p
p+1 + n

p
p+1−β

)
.

The second and fourth terms now have increased in order, and can only be lowered by taking γ = n−
1
p+1−β

′
for some

β′ > 0. This results in

Uold
n (F) = Θ̃

(
n
p2+p−1
p(p+1)

+β +
2

2− p

[
n

p
p+1+β/2−β

′( 2−p
2 ) − n

2p2+p−2
2p(p+1)

+β/2
]

+
1

1− p

[
n

p
p+1+β−β

′(1−p) − n
p2+p−1
p(p+1)

+β
]

+ n
p
p+1+β

′p + n
p
p+1−β

)
.
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However, now the sixth term has increased in order. So, we conclude that the exponent p
p+1 cannot be lowered, and thus

(18) is the optimal polynomial dependence on n for Uold
n (F) when 0 < p < 1.

(iii) If 1 < p < 2, taking γ = n−
2p+1

2p(2+p) and δ = n−
1
2p gives

Uold
n (F) = Θ̃

(
n

2p−1
2p +

2

2− p

[
n

2p+1
2(2+p) − n

4p−3
4p

]
+

1

p− 1

[
− n

2p2+1
2p(2+p) + n

2p−1
2p

]
+ n

2p+1
2(2+p) + n

2p−1
2p

)
= Θ̃

(
n

2p−1
2p

)
. (19)

We now need to show that (19) is the optimal polynomial dependence on n for Uold
n (F) when 1 < p < 2. Our argument is

very similar to the argument we gave for 0 < p < 1.

First, observe that when 1 < p < 2, 4p−3
4p and 2p2+1

2p(2+p) are both less than 2p−1
2p , so the negative terms are not cancelling all

of the higher order terms. Further, since we require α ≤ γ, this means we require γ1−p ≤ α1−p for p > 1, so at most the
third term can cancel the second term and the fourth term can cancel the fifth term.

Now, suppose that the exponent 2p−1
2p could be lowered. This would again require lowering the polynomial dependence on

n for the seventh term, so would require δ = n−
1
2p−β for some β > 0. This leads to

Uold
n (F) = Θ̃

(
n

2p−1
2p +β +

2

2− p

[
n

2p+1
2(2+p)

+β/2 − n
4p−3
4p +β/2

]
+

1

p− 1

[
− n

2p2+1
2p(2+p)

+β + n
2p−1
2p +β

]
+ n

2p+1
2(2+p) + n

2p−1
2p −β

)
.

The only remaining way to reduce the order is to set γ = n−
2p+1

2p(2+p)
−β′ for some β′ > 0, which leads to

Uold
n (F) = Θ̃

(
n

2p−1
2p +β +

2

2− p

[
n

2p+1
2(2+p)

+β/2−β′( 2−p
2 ) − n

4p−3
4p +β/2

]
+

1

p− 1

[
− n

2p2+1
2p(2+p)

+β+β′(p−1) + n
2p−1
2p +β

]
+ n

2p+1
2(2+p)

+β′p + n
2p−1
2p −β

)
.

Thus, the first term has increased in order, and as argued cannot be cancelled by either of the negative terms, so we conclude
(19) is the optimal polynomial dependence on n for Uold

n (F) when 1 < p < 2.

Otherwise, if p > 2, taking γ = 1 and δ = n−
1
2p gives

Uold
n (F) = Θ̃

(
n

2p−1
2p +

2

p− 2

[
− n

2p+1
4p + n

4p−3
4p

]
+

1

p− 1

[
−n

1
2p + n

2p−1
2p

]
+ 1 + n

2p−1
2p

)
= Θ̃

(
n

2p−1
2p

)
. (20)

The argument that (20) is the optimal polynomial dependence on n for Uold
n (F) when p > 2 follows from the same logic as

when 1 < p < 2. The only difference is that now we observe requiring α ≤ γ means both γ
2−p
2 ≤ α

2−p
2 and γ1−p ≤ α1−p.

Then, any adjustment of δ will force either the first or seventh term to increase in order, and no adjustment of γ can cause
one of the negative terms to cancel this.

Finally, when p ∈ {1, 2}, the logic is preserved since we still require α ≤ γ and we are already ignoring polylog(n) factors
by using Θ̃. Thus, all cases have been considered, and dividing Θ(n

p
p+1 ) by the respective optimizations of (3) gives the

desired result.

C. Additional Details for Proof of Theorem 3
C.1. Proof of Lemma 13

The argument proceeds using the standard online-to-batch conversion argument (see, e.g., Cesa-Bianchi et al., 2004). First,
for any class F , we can rewrite the minimax regret as

Rn(F) = sup
x1∈X

inf
p̂1∈[0,1]

sup
p1∈[0,1]

E
y1∼p1

· · · sup
xn∈X

inf
p̂n∈[0,1]

sup
pn∈[0,1]

E
yn∼pn

Rn(F ; p̂,x,y) .
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Next, we observe that using the prediction strategy notation f̂ described in Section 5, this is equal to

Rn(F) = inf
f̂

sup
x1∈X

sup
p1∈[0,1]

E
y1∼p1

· · · sup
xn∈X

sup
pn∈[0,1]

E
yn∼pn

Rn
(
F ; f̂ ◦ x,x,y

)
.

Then, since the adversary is free to choose the contexts and observations an any way to maximize the expected regret, we
can move to a lower bound by forcing them to draw (xt, yt) i.i.d. from a joint distribution D ∈ P . Thus,

Rn(F) ≥ inf
f̂

sup
D∈P

E
(x1:n,y1:n)∼D

Rn
(
F ; f̂ ◦ x,x,y

)
.

Then, expanding the definition of regret and applying Jensen’s inequality to the supf∈F gives

Rn(F) ≥ inf
f̂

sup
D∈P

sup
f∈F

E
(x1:n,y1:n)∼D⊗n

n∑
t=1

[
`(f̂t(xt), yt)− `(f(xt), yt)

]
.

Next, rewriting the sum over t as an average gives

Rn(F) ≥ n · inf
f̂

sup
D∈P

sup
f∈F

E
t∈[n]

E
(x1:t,y1:t)∼D⊗t

[
`(f̂t(xt), yt)− `(f(xt), yt)

]
.

Clearly, for any distribution D ∈ PF ,

sup
f∈F

E
t∈[n]

E
(x1:t,y1:t)∼D⊗t

[
− `(f(xt), yt)

]
= − inf

f∈F
E

(x,y)∼D

[
`(f(x), y)

]
= − E

(x,y)∼D

[
`(f∗D(x), y)

]
.

Further, by convexity of ` in the first argument, for any f̂ and D it holds that

E
t∈[n]

E
(x1:t,y1:t)∼D⊗t

[
`(f̂t(xt), yt)

]
= E

(x1:n−1,y1:n−1)∼D⊗n−1
E

(x,y)∼D
E

t∈[n]

[
`(f̂t(x), y)

]
≥ E

(x1:n−1,y1:n−1)∼D⊗n−1
E

(x,y)∼D

[
`(f̄n(x), y)

]
,

where we’ve used that the function f̂t is determined by (x1:t−1, y1:t−1). Thus, the minimax regret is further lower bounded
by

Rn(F) ≥ n · inf
f̂

sup
D∈PF

E
[
`(f̄n(x), y)− `(f∗D(x), y)

]
,

where E is shorthand for the expectation over (x1:n−1, y1:n−1) ∼ D⊗n−1 and (x, y) ∼ D with D satisfying y|x ∼
Ber(f∗D(x)). Finally, since the difference of log loss is exactly the KL divergence conditional on an input x,

Rn(F) ≥ n · inf
f̂

sup
D∈PF

E
[
KL
(
Ber(f∗D(x)) ‖ Ber(f̄n(x))

) ]
, (21)

where Ber(p) denotes the Bernoulli distribution with mean p. The result then follows by observing that the RHS of (21)
upper bounds the inf over the risk of all f̂n, since this includes the possibility of f̂n = f̄n.

C.2. Additional Lemmas

Lemma 18. For any 0 < ε ≤ 1/2 and q ∈ [0, 1],

KL (ε ‖ q) ≥ ε

4
1{q ≥ 2ε}+

ε

6
1{q ≤ ε/2}.
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Proof. Fix 0 < ε ≤ 1/2. First, observe that for all p, q ∈ [0, 1],

(1− p) log

(
1− p
1− q

)
= (1− p) log

(
1 +

q − p
1− q

)
≥ q − p,

where we have used that log(1 + x) ≥ x
1+x for all x ≥ −1. Then,

KL (ε ‖ 2ε) = ε log
( ε

2ε

)
+ (1− ε) log

(
1− ε
1− 2ε

)
≥ −ε log(2) + 2ε− ε = ε(1− log(2)) ≥ ε

4
.

Similarly,

KL (ε ‖ ε/2) = ε log

(
ε

ε/2

)
+ (1− ε) log

(
1− ε

1− ε/2

)
≥ ε log(2) + ε/2− ε = ε(log(2)− 1/2) ≥ ε

6
.

Next, consider the map f(q) = KL (ε ‖ q). By definition,

f ′(q) = −ε
q

+
1− ε
1− q

=
q − ε
q(1− q)

.

That is, f ′(q) ≥ 0 when q ≥ ε and f ′(q) < 0 when q < ε, so if q ≥ 2ε then KL (ε ‖ q) ≥ ε/4 and if q ≤ ε/2 then
KL (ε ‖ q) ≥ ε/6.

Lemma 19. For any p ∈ N, let F = {f : [0, 1]p → R | ∀x, y ∈ [0, 1]p |f(x) − f(y)| ≤ ‖x− y‖∞} denote the class of
1-Lipschitz functions. Then,H∞(F , γ, n) = Θ(γ−p).

Proof. Since sequential entropy is never larger than the uniform metric entropy, the upper bound follows from a standard
argument bounding the uniform entropy for Lipschitz functions (see, e.g., Example 5.10 of Wainwright, 2019).

Then, we observe that sequential entropy is lower bounded by empirical entropy,

Ĥ∞ (F , γ, n) = sup
x1:n

log(N∞ (F|x1:n
, γ)),

where N∞ (F|x1:n , γ) denotes the L∞ covering number of the restriction of F to x1:n = (x1, . . . , xn). This bound holds
since any dataset x1:n can be turned into a tree z of depth n by taking zt(y) = xt for all y ∈ {0, 1}n. Divide [0, 1]p into
γ−p equally spaced intervals and once again use the usual packing construction for Lipschitz functions from Wainwright
(2019), which has size 2(γ/c)

−p
for some numerical constant c > 0. Then, once n > γ−p, this construction serves as a

packing on F|x1:n
when x1:n contains the grid coordinates, so Ĥ∞ (F , γ, n) ≥ Ω(γ−p).


