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1. Generator and stationary distribution
1.1. Boomerang Sampler

For simplicity take x? = 0. The generator of the
Boomerang Sampler is defined by

Lψ(x,v) = 〈v,∇xψ(x,v)〉 − 〈x,∇vψ(x,v)〉
+ λ(x,v) (ψ(x,R(x)v)− ψ(x,v))

+ λrefr

(∫
Rd

ψ(x,w)φ(w) dw − ψ(x,v)

)
,

for any compactly supported differentiable function ψ on S,
where φ is the probability density function of N (0,Σ).

Taking λ(x,v) and R(x) as in Eqs. (2) and (3) of the paper
respectively, we will now verify that

∫
S
Lψ dµ = 0 for all

such functions ψ, and for µ being the measure on S with
density exp(−U(x)) relative to µ0. This then establishes
that the Boomerang Sampler has stationary distribution µ.
A complete proof also requires verification that the com-
pactly supported, differentiable functions form a core for the
generator, which is beyond the scope of this paper. For a dis-
cussion of this topic for archetypal PDMPs see (Holderrieth,
2019).

First we consider the terms involving the partial derivatives
of ψ. By partial integration, we find∫

S

〈v,∇xψ(x,v)〉 − 〈x,∇vψ(x,v)〉µ(dx,dv)

=

∫
S

ψ(x,v)〈v,∇U(x)〉µ(dx,dv)

Next we inspect the term representing the switches occur-
ring at rate λ(x,v). By Eq. (5) of the paper, the coordinate
transform w = R(x)v (for fixed x) leaves the measure
N (0,Σ) over the velocity component invariant. Using this
observation, we find that∫

S

λ(x,v)(ψ(x,R(x)v)− ψ(x,v))µ(dx,dv)

=

∫
S

λ(x,R(x)w)ψ(x,w)µ(dx, dw)

−
∫
S

λ(x,v)ψ(x,v)µ(dx,dv)

=

∫
S

[λ(x,R(x)v)− λ(x,v)]ψ(x,v)µ(dx,dv).

Using Eq. (2) and (4) of the paper, and the identity (−a)+−
(a)+ = −a, it follows that this expression is equal to∫
S

[〈R(x)v,∇U(x)〉+ − 〈v,∇U(x)〉+]ψ(x,v)µ(dx,dv)

= −
∫
S

〈v,∇U(x)〉ψ(x,v)µ(dx,dv).

Finally by changing the order of integration, it can be shown
that∫
S

λrefr

(∫
Rd

ψ(x,v)φ(v) dv − ψ(x,v)

)
µ0(dx,dv) = 0.

Adding all terms yields that
∫
S
Lψ dµ = 0.

1.2. Factorised Boomerang Sampler

The Factorised Boomerang Sampler has generator

Lψ(x,v) = 〈v,∇xψ(x,v)〉 − 〈x,∇vψ(x,v)〉

+

d∑
i=1

λi(x,v)(ψ(x,Fi(v))− ψ(x,v))

+ λrefr

(∫
ψ(x,w)φ(w) dw − ψ(x,v)

)
.

Verifying stationarity of µ is done analogously to the case
of the non-factorised Boomerang Sampler, but now has to
be carried out componentwise.

2. Computational bounds
Suppose (xt,vt) satisfies the Hamiltonian dynamics ODE
of Eq. (1) in the paper, starting from (x0,v0) in Rd × Rd.
Throughout we assume U : Rd → R is a twice continuously
differentiable function with Hessian matrix ∇2U . Further-
more we assume without loss of generality that x? = 0.
First we consider bounds for switching intensities of the
form λ(x,v) = 〈v,∇U(x)〉+. For a matrix A ∈ Rd×d
we use ‖A‖ to denote the matrix norm induced by the Eu-
clidean metric.

Lemma 2.1 (Constant bound). Suppose there exists a con-
stant M > 0 such that for all x ∈ Rd we have the global
bound

‖∇2U(x)‖ ≤M.
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Define m := |∇U(0)|. Then for all t ≥ 0,

λ(xt,vt) ≤
M

2
(|x0|2 + |v0|2) +m

√
|x0|2 + |v0|2. (1)

Proof. We have the following estimate on the switching
intensity.

λ(x,v) = 〈v,∇U(x)〉+

≤ 〈v,∇U(0)〉+ +

∫ 1

0

|〈v,∇2U(xs)x〉|ds.

We may bound the inner product in the integrand as follows.

|〈v,∇2U(y)x〉| ≤ ‖∇2U(x)‖ |v| |x|

≤M
(
|v|2 + |x|2

2

)
by the Cauchy–Schwarz inequality. Also

|〈v,∇U(0)〉| ≤ m|v| ≤ m
√
|x|2 + |v|2.

Combining these estimates and the fact that |xt|2 + |vt|2 is
invariant under the dynamics of Eq. (1) in the paper yields
the stated result.

Lemma 2.2 (Affine bound). Suppose ‖∇2U(x)‖ ≤ M
for all x ∈ Rd, and let m = |∇U(0)|. Then for a so-
lution (xt,vt) to Eq. (1) of the paper with λ(x,v) =
〈v,∇U(x)〉+, we have for all t ≥ 0

λ(xt,vt) ≤ (a(x0,v0) + tb(x0,v0))+ ,

where

a(x,v) = 〈v,∇U(x)〉+, and

b(x,v) = M
(
|x|2 + |v|2

)
+m

√
|x|2 + |v|2.

Proof. By the Hamiltonian dynamics,

d

dt
〈vt,∇U(xt)〉

= −〈xt,∇U(xt)〉+ 〈vt,∇2U(xt)vt〉

= −〈xt,∇U(0)〉 −
∫ 1

0

〈xt,∇2U(sxt)xt〉ds

+ 〈vt,∇2U(xt)vt〉
≤ |xt||∇U(0)|+M

(
|xt|2 + |vt|2

)
.

Using that |xt|2 + |vt|2 is invariant under the dynamics
yields the stated result.

Lemma 2.3. Suppose |∇U(y)| ≤ C for all y ∈ Rd. Then,
for all trajectories (xt,vt) satisfying Eq. (1) of the paper
we have

λ(xt,vt) ≤ C
√
|x0|2 + |v0|2.

Proof. We have

λ(x,v) ≤ C|v| ≤ C
√
|x|2 + |v|2,

and the latter expression is constant along trajectories.

Analogously we have the following useful bound for the
Factorized Boomerang Sampler.

Lemma 2.4. Suppose U : Rd → R is differentiable.
Suppose there exist constants c1, . . . , cd such that, for all
y ∈ Rd and i = 1, . . . , d, we have

|∂iU(x)| ≤ ci for all x, i.

Then
λi(xt,vt) ≤ ci

√
|xi0|2 + |vi0|2.

Lemma 2.5. Suppose for all i we have that√∑
j

∂i∂jU(x)2 ≤Mi,

and
|∂iU(0)| ≤ mi.

Then

λi(xt,vt) ≤ (ai(x0,v0) + bi(x0,v0)t)
+

where
ai(x,v) = (vi∂iU(x))+

bi(x,v)

=
√

(xi)2 + (vi)2
(
mi +Mi

√
|x|2 + |v|2

)
.

Proof. We compute

d

dt
vit∂iU(xt)

= −xit∂iU(xt) + vit

d∑
j=1

∂i∂jU(xt)v
j
t

= −xit∂iU(0)−
∫ 1

0

xit

d∑
j=1

∂i∂jU(sxt)x
j
tds

+ vit

d∑
j=1

∂i∂jU(xt)v
j
t

≤
√

(xit)
2 + (vit)

2|∂iU(0)|+Mi|xit||xt|+Mi|vit||vt|

≤
√

(xit)
2 + (vit)

2|∂iU(0)|

+Mi/2
(
α(|xit|2 + |vit|2) + (1/α)(|xt|2 + |vt|2)

)
.

Optimising over α, and using that |xit|2 + |vit|2 is constant
along Factorised Boomerang Trajectories, yields the stated
result.
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2.1. Computational bounds for subsampling

In the case of subsampling we use the unbiased estimator of
Eq. (9) of the paper.

Lemma 2.6. Suppose that for some positive definite matrix
Q we have that, for all i, and y1,y2 ∈ Rd,

∇2Ei(y1)−∇2Ei(y2) � Q, (2)

whereA � B meansB−A is positive semidefinite. Suppose
∇̂U(x) is given by Eq. (9) of the paper, and ∇E(0) =
0. Along a trajectory (xt,vt) satisfying the Hamiltonian
dynamics of Eq. (1) of the paper, we have, for all t ≥ 0, that

〈vt, ∇̂U(xt)〉 ≤ 1
2 (|Q1/2x0|2 + |Q1/2v0|2), a.s.

where the almost sure statement is with respect to all random
(subsampling) realisations of the switching intensity.

Remark 2.7. Lemma (2.6) is easily extended to the case in
which∇E(0) 6= 0. In this case we have

〈vt, Û(xt)〉 ≤ 1
2 (|Q1/2x0|2 + |Q1/2v0|2)

+ (|v0|2 + |x0|2)1/2|∇E(0)|, a.s.

Remark 2.8. In practice one may wish to take Q to be a
diagonal matrix, which reduces the computation of the com-
putational bound to a O(d) computation instead of O(d2).
For example one could take Q = cI for a suitable constant
c > 0 such that (2) is satisfied.
Remark 2.9 (Affine bound for subsampling is strictly worse).
When we try to obtain an affine bound, of the form

̂λ(xt,vt) ≤ a(x0,v0) + b(x0,v0),

then it seems we cannot avoid an expression for a of the
form of the bound in Lemma 2.6. As a consequence, the
affine bound is strictly worse than the constant bound.

Proof (of Lemma 2.6). Suppose we have I = i for the ran-
dom index I in Eq. (9) of the paper. We compute

〈vt, ∇̂U(xt)〉
= 〈vt,∇Ei(xt)−∇2Ei(0)xt −∇Ei(0)〉

= 〈vt,
∫ 1

0

∇2Ei(sxt)xt ds−∇2Ei(0)xt〉.

Then we may continue the above computation to find, using
Lemma 2.10 below, that

〈vt, ∇̂U(xt)〉 =

∫ 1

0

〈vt, [∇2Ei(sxt)−∇2Ei(0)]xt〉ds

≤
∫ 1

0

|Q1/2vt| |Q1/2xt|ds

≤ 1
2 (|Q1/2vt|2 + |Q1/2xt|2).

Since 1
2 (|Q1/2vt|2 + |Q1/2xt|2) is invariant under the dy-

namics, the stated conclusion follows.

Lemma 2.10. Suppose M ,P ∈ Rd×d are symmetric
matrices with P positive definite and such that −P �
M � P . Then 〈My, z〉 ≤ |P 1/2y| |P 1/2z| for all
y, z ∈ Rd×d.

Proof. Taking y = P−1/2x, we find

|〈P−1/2MP−1/2x,x〉| = |〈My,y〉| ≤ 〈Py,y〉 = |x|2,

which establishes that ‖P−1/2MP−1/2‖ ≤ 1. Using this
observation we arrive at

〈My, z〉 ≤ ‖P−1/2MP−1/2‖︸ ︷︷ ︸
≤1

|P 1/2y| |P 1/2z|.

3. Scaling with dimension
In Section 3.2 of the paper, we discuss the scaling of the
Boomerang Sampler with dimension. The argument in that
section is self contained, but relies on the observation that
the change of Ed(xt) over a time interval of order 1 is at
least of order d1/2. Here we motivate this observation.

In the following arguments, we assume stationarity of the
process for simplicity. Let Ud, Σd, Ed, Πd, Ed be as de-
scribed in Section 3.2 of the manuscript. For simplicity
and without loss of generality we assume that Ed(x) is
normalised as Ed[Ed(x)] = 0. Furthermore, for simplicity
we assume that Ed[x] = 0 although this condition can be
relaxed.

As discussed we suppose that the sequence (Ud) satisfies

sup
d∈N

Ed[|Σ1/2
d ∇Ud(x)|2] ≤ κ (3)

for some κ > 0. Furthermore, we assume that the following
form of the Poincaré inequality is satisfied for Πd(dx) ∝
exp(−Ed(x))dx:

C Ed
[
fd(x)2

]1/2 ≤ Ed
[
|Σ1/2

d ∇fd(x)|2
]1/2

(4)

for some constant C > 0 not depending on d, and any
differentiable function fd : Rd → R with mean 0 and finite
variance.

By (3) the expected number of reflections per unit time
Ed[〈v,∇Ud(x)〉+] is bounded with respect to dimension.
However the process mixes well in a single time unit under
suitable regularity conditions as we will discuss now.

By applying (4) to fd(x) = (Σ
−1/2
d x)i, where vi denotes

the i-th coordinate of v, we have C2Ed[|Σ−1/2d x|2] ≤
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Ed[trace(Σ
−1/2
d ΣdΣ

−1/2
d )] = d, using the stated assump-

tion Ed[x] = 0.

Also by (4) and by Minkowski’s inequality,

Ed[Ed(x)2]1/2 ≤ C−1Ed[|Σ1/2
d ∇Ed(x)|2]1/2

= C−1Ed[|Σ1/2
d ∇Ud(x) + Σ

−1/2
d x|2]1/2

= C−1(κ1/2 + C−1d1/2) = O(d1/2).

If (xt,vt) satisfies the ODE Eq. (1) of the paper, the unit
time difference Ed(xt)− Ed(x0) is∫ t

0

〈∇Ed(xs),vs〉ds ≈
∫ t

0

〈Σ−1d xs,vs〉ds.

Here, the difference between the left- and the right-hand
sides is

∫ t
0
〈Σ1/2

d ∇U(xs),Σ
−1/2
d vs〉ds which is of order

d1/2 under the assumption of stationarity by (3) and the
Cauchy-Schwarz inequality, using that Ed[|Σ−1/2d vs|2] = d.
The right-hand may be simplified to∫ t

0

〈Σ−1d (x0 cos s+ v0 sin s),−x0 sin s+ v0 cos s〉ds

= A0

∫ t

0

2 sin s cos s ds+B0

∫ t

0

(cos2 s− sin2 s)ds

= A0(1− cos 2t)/2 +B0(sin 2t)/2

where A0 = (〈v0,Σ
−1
d v0〉 − 〈x0,Σ

−1
d x0〉)/2 and B0 =

〈x0,Σ
−1
d v0〉. Then A0 and B0 are uncorrelated since

Σ
−1/2
d v0 follows the standard normal distribution. Also,

Ed[A2
0] ≥ Var(A0) ≥ Var(〈v0,Σ

−1
d v0〉) = 2d. There-

fore,

Ed[|Ed(xt)− Ed(x0)|2] & Ed[A2
0]

(
1− cos 2t

2

)2

≥ 2d

(
1− cos 2t

2

)2

.

Thus the change of Ed(xt) over a term interval of O(1)
is of order d1/2 whereas Ed(xt) itself has the same order.
These informal arguments suggest that dynamics of the
Boomerang sampler in a finite time interval sufficiently
changes the log density even in high dimension. However,
further study should be made in this direction.

4. Logistic regression
We assume a prior distribution π0(x) ∼ N (0, σ2I) on
Rd. Given predictors y(1), . . . ,y(n) in Rd, and outcomes
z(1), . . . , z(n) in {0, 1}, we obtain the negative log posterior
distribution as

E(x) =

n∑
i=1

{
log(1 + ex

>y(i)

)− z(i)x>y(i)
}

+ |x|2/2σ2.

We then have

∇E(x) = x/σ2 +

n∑
i=1

y(i)

[
ex

>y(i)

1 + ex>y(i)
− z(i)

]
,

∇2E(x) = I/σ2 +

n∑
i=1

y(i)(y(i))>ex
>y(i)(

1 + ex>y(i)
)2 .

In the experiments in this paper we take a flat prior, i.e.
σ2 =∞.

Let
x? = arg min

x∈Rd

E(x).

We take Σ−1 = ∇2E(x?). We have U(x) = E(x) −
(x − x?)

>∇2E(x?)(x − x?)/2, which is a difference of
two positive definite matrices. Using the general inequality
a 7→ |a|/(1 + a)2 ≤ 1/4, we find

− 1
4

n∑
i=1

y(i)(y(i))> � ∇2U(x) � 1
4

n∑
i=1

y(i)(y(i))>.

We then simply have

‖∇2U(y)‖ ≤M := 1
4‖

n∑
i=1

y(i)(y(i))>‖.

These observations may be applied in conjunction with the
lemmas of Section 2 in this supplement to obtain useful
constant and affine computational bounds for the switching
intensities.

5. Diffusion bridge simulation
We consider diffusion bridges of the form

dXt = α sin(Xt)dt+dWt, X0 = u,XT = v, t ∈ [0, T ]
(5)

where W is a scalar Brownian motion and α ≥ 0. The
diffusion path is expanded with a truncated Faber-Schauder
basis such that

XN
t = ¯̄φ(t)u+ φ̄(t)v +

N∑
i=0

2i−1∑
j=0

φi,j(t)xi,j ,

where N is the truncation of the expansion and

φ̄(t) = t/T, ¯̄φ(t) = 1− t/T,

φ0,0(t) =
√
T
(
(t/T )1[0,T/2](t) + (1− t/T )1(T/2,T ](t)

)
,

φi,j(t) = 2−i/2φ0,0(2it− jT ) i ≥ 0, 0 ≤ j ≤ 2i − 1,

are the Faber-Schauder functions. As shown in (Bierkens
et al., 2020), the measure of the coefficients corresponding
to (5) is derived from the Girsanov formula and given by

dµ

dµ0
(x,v) ∝ exp

{
−α
2

∫ T

0

(
α sin2(XN

s ) + cos(XN
s )
)

ds

}
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where µ0 = N (0, I)⊗N (0, I) with I the 2N+1−1 dimen-
sional identity matrix. By standard trigonometric identities
we have that

∂xi,j
U(x) =

α

2

∫
Si,j

φi,j(t)
(
α sin

(
2XN

t

)
− sin

(
XN
t

))
dt

where Si,j is the support of the basis function φi,j . Similarly
to (Bierkens et al., 2020), for each i, j, we use subsampling
and consider the unbiased estimator for ∂xi,j

U(x) given by

̂∂xi,j
U(x) = Si,jφi,j(τi,j)

(
α2 sin

(
2XN

τi,j

)
− α sin

(
XN
τi,j

))
where τi,j is a uniform random variable on Si,j . This gives
Poisson rates ̂λi,j(x,v) = 〈v, ̂∂xi,j

U(x)〉+. In this case,

for all i, j, | ̂∂xi,jU(x)| is globally bounded, say by mi,j .
We use the constant Poisson bounding rates given, in similar
spirit as in Section 2.3 of the paper, by

λi,j(xt,vt) = mi,j

√
|xi,j0 |2 + |vi,j0 |2,

where we used that t → |xi,jt |2 + |vi,jt |2 is constant un-
der the Factorised Boomerang trajectories. Similarly to
(Bierkens et al., 2020), the FBS gains computational effi-
ciency by a local implementation which exploits the fact
that each λi,j(x,v) is a function of just the coefficient xi,j
(see (Bierkens et al., 2020), Algorithm 3, for an algorith-
mic description of the local implementation of a factorised
PDMP).
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