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Abstract

The estimation of treatment effects is a perva-
sive problem in medicine. Existing methods for
estimating treatment effects from longitudinal ob-
servational data assume that there are no hidden
confounders, an assumption that is not testable in
practice and, if it does not hold, leads to biased
estimates. In this paper, we develop the Time Se-
ries Deconfounder, a method that leverages the
assignment of multiple treatments over time to
enable the estimation of treatment effects in the
presence of multi-cause hidden confounders. The
Time Series Deconfounder uses a novel recurrent
neural network architecture with multitask output
to build a factor model over time and infer latent
variables that render the assigned treatments con-
ditionally independent; then, it performs causal
inference using these latent variables that act as
substitutes for the multi-cause unobserved con-
founders. We provide a theoretical analysis for
obtaining unbiased causal effects of time-varying
exposures using the Time Series Deconfounder.
Using both simulated and real data we show the
effectiveness of our method in deconfounding the
estimation of treatment responses over time.

1. Introduction
Forecasting the patient’s response to treatments assigned
over time represents a crucial problem in the medical do-
main. The increasing availability of observational data
makes it possible to learn individualized treatment responses
from longitudinal disease trajectories containing informa-
tion about patient covariates and treatment assignments
(Robins et al., 2000a; Robins & Hernán, 2008; Schulam
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& Saria, 2017; Lim et al., 2018; Bica et al., 2020a). Exist-
ing methods for estimating individualized treatment effects
over time assume that all confounders—variables affecting
the treatment assignments and the potential outcomes—are
observed, an assumption which is not testable in practice1

and probably not true in many situations.

To understand why the presence of hidden confounders in-
troduces bias, consider the problem of estimating treatment
effects for patients with cancer. They are often prescribed
multiple treatments at the same time, including chemother-
apy, radiotherapy and/or immunotherapy based on their tu-
mor characteristics. These treatments are adjusted if the tu-
mor size changes. The treatment strategy is also changed as
the patient starts to develop drug resistance (Vlachostergios
& Faltas, 2018) or the toxicity levels of the drugs increase
(Kroschinsky et al., 2017). Drug resistance and toxicity
levels are multi-cause confounders since they affect not only
the multiple causes (treatments)2, but also the patient out-
come (e.g. mortality, risk factors). However, drug resistance
and toxicity may not be observed and, even if observed,
may not be recorded in the electronic health records. Es-
timating, for instance, the effect of chemotherapy on the
cancer progression in the patient without accounting for the
dependence on drug resistance and toxicity levels (hidden
confounders) will produce biased results.

Wang & Blei (2019) developed theory for deconfounding—
adjusting for the bias introduced by the existence of hidden
confounders in observational data—in the static causal infer-
ence setting and noted that the existence of multiple causes
makes this task easier. Wang & Blei (2019) observed that
the dependencies in the assignment of multiple causes can
be used to infer latent variables that render the causes inde-
pendent and act as substitutes for the hidden confounders.

In this paper, we propose the Time Series Deconfounder, a
method that enables the unbiased estimation of treatment
responses over time in the presence of hidden confounders,
by taking advantage of the dependencies in the sequential
assignment of multiple treatments. We draw from the main

1Since counterfactuals are never observed, it is not possible to
test for the existence of hidden confounders that could affect them.

2Causes and treatments are used interchangeably throughout
the paper.
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idea in Wang & Blei (2019), but note that the estimation
of hidden confounders in the longitudinal setting is signif-
icantly more complex than in the static setting, not just
because the hidden confounders may vary over time but in
particular because the hidden confounders may be affected
by previous treatments and covariates. Thus, standard latent
variable models are no longer applicable, as they cannot
capture these time dependencies.

The Time Series Deconfounder relies on building a factor
model over time to obtain latent variables which, together
with the observed variables render the assigned causes condi-
tionally independent. Through theoretical analysis we show
that these latent variables can act as substitutes for the multi-
cause unobserved confounders and can be used to satisfy
the sequential strong ignorability condition in the potential
outcomes framework for time-varying exposures (Robins &
Hernán, 2008) and obtain unbiased estimates of individu-
alized treatment responses, using weaker assumptions than
standard methods. Following our theory, we propose a novel
deep learning architecture, based on a recurrent neural net-
work with multi-task outputs and variational dropout, to
build such a factor model and infer the substitutes for the
hidden confounders in practice.

The Time Series Deconfounder shifts the need for observing
all multi-cause confounders (untestable condition) to con-
structing a good factor model over time (testable condition).
To assess how well the factor model captures the distribu-
tion of assigned treatments, we extend the use of predictive
checks (Rubin, 1984; Wang & Blei, 2019) to the temporal
setting and compute p-values at each timestep. We perform
experiments on a simulated dataset where we control the
amount of hidden confounding applied and on a real dataset
with patients in the ICU (Johnson et al., 2016) to show how
the Time Series Deconfounder allows us to deconfound the
estimation of treatment responses in longitudinal data. To
the best of our knowledge, this represents the first method
for learning latent variables that can act as substitutes for
the unobserved confounders in the time series setting.

2. Related Work
Previous methods for causal inference mostly focused on
the static setting (Hill, 2011; Wager & Athey, 2017; Alaa
& van der Schaar, 2017; Shalit et al., 2017; Yoon et al.,
2018; Alaa & Schaar, 2018; Zhang et al., 2020; Bica et al.,
2020c), and less attention has been given to the time series
setting. We discuss methods for estimating treatment effects
over time, as well as methods for inferring substitute hidden
confounders in the static setting.

Potential outcomes for time-varying treatment assign-
ments. Standard methods for performing counterfactual
inference in longitudinal data are found in the epidemiol-

ogy literature and include the g-computation formula, g-
estimation of structural nested mean models, and inverse
probability of treatment weighting of marginal structural
models (Robins, 1994; Robins et al., 2000a; Robins &
Hernán, 2008). Alternatively, (Lim et al., 2018) improves
on the standard marginal structural models by using recur-
rent neural networks to estimate the propensity weights and
treatment responses, while (Bica et al., 2020a) propose us-
ing balancing representations to handle the time-dependent
confounding bias when estimating treatment effects over
time. Despite the wide applicability of these methods in
forecasting treatment responses, they are all based on the
assumption that there are no hidden confounders. Our paper
proposes a method for deconfounding such outcome models,
by inferring substitutes for the hidden confounders which
can lead to unbiased estimates of the potential outcomes.

The potential outcomes framework has been extended to
the continuous-time setting by (Lok et al., 2008). Several
methods have been proposed for estimating treatment re-
sponses in continuous time (Soleimani et al., 2017; Schulam
& Saria, 2017), again assuming that there are no hidden con-
founders. Here, we focus on deconfounding the estimation
of treatment responses in the discrete-time setting.

Sensitivity analysis methods that evaluate the potential im-
pact that an unmeasured confounder could have on the
estimation of treatment effects have also been developed
(Robins et al., 2000b; Roy et al., 2016; Scharfstein et al.,
2018). However, these methods assess the suitability of
applying existing tools, rather than propose a direct solu-
tion for handling the presence of hidden confounders in
observational data.

Latent variable models for estimating hidden con-
founders. The most similar work to ours is the one of
Wang & Blei (2019), who proposed the deconfounder, an
algorithm that infers latent variables that act as substitutes
for the hidden confounders and then performs causal infer-
ence in the static multi-cause setting. The deconfounder
involves finding a good factor model of the assigned causes
which can be used to estimate substitutes for the hidden con-
founders. Then, the deconfounder fits an outcome model for
estimating the causal effects using the inferred latent vari-
ables. Our paper extends the theory for the deconfounder
to the time-varying treatments setting and shows how the
inferred latent variables can lead to sequential strong ig-
norability. To estimate the substitute confounders, Wang &
Blei (2019) used standard factor models (Tipping & Bishop,
1999; Ranganath et al., 2015), which are only applicable
in the static setting. To build a factor model over time, we
propose an RNN architecture with multitask output and
variational dropout.

Several other methods have been proposed for taking ad-
vantage of the multiplicity of assigned treatments in the
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static setting and capture shared latent confounding (Tran &
Blei, 2018; Heckerman, 2018; Ranganath & Perotte, 2018).
These works are based on Pearl’s causal framework (Pearl,
2009) and use structural equation models. Alternative meth-
ods for dealing with hidden confounders in the static setting
use proxy variables as noisy substitutes for the confounders
(Lash et al., 2014; Louizos et al., 2017; Lee et al., 2018).

A different line of research involves performing causal dis-
covery in the presence of hidden confounders (Spirtes et al.,
2000). In this context, several methods have been proposed
to perform causal graphical model structure learning with la-
tent variables (Leray et al., 2008; Jabbari et al., 2017; Raghu
et al., 2018). However, in this paper, we are not aiming
to discover causal relationships between patient covariates
over time. Instead, we improve existing methods for estimat-
ing the individualized effects of time-dependent treatments
by accounting for multi-cause unobserved confounders.

3. Problem Formulation
Let the random variables X(i)

t ∈ Xt be the time-dependent
covariates, A(i)

t = [A
(i)
t1 . . . A

(i)
tk ] ∈ At be the possible

assignment of k treatments (causes) at timestep t and let
Y

(i)
t+1 ∈ Yt be the observed outcomes for patient (i). Treat-

ments can be either binary and/or continuous. Static fea-
tures, such as genetic information, do not change our theory,
and, for simplicity, we assume they are part of the observed
covariates.

The observational data for patient (i), also known as the pa-
tient trajectory, consists of realizations of the previously de-
scribed random variables ζ(i) = {x(i)

t ,a
(i)
t ,y

(i)
t+1}T

(i)

t=1 , with
samples collected for T (i) discrete and regular timesteps.
Electronic health records consist of data for N independent
patients D = {τ (i)}Ni=1. For simplicity, we omit the patient
superscript (i) unless it is explicitly needed.

We leverage the potential outcomes framework proposed by
Rubin (1978) and Neyman (1923), and extended by Robins
& Hernán (2008) to take into account time-varying treat-
ments. Let Y(ā) be the potential outcome, either factual or
counterfactual, for each possible course of treatment ā.

Let Āt = (A1, . . . ,At) ∈ Āt be the history of treatments
and let X̄t = (X1, . . . ,Xt) ∈ X̄t be the history of covari-
ates until timestep t. For each patient, we want to estimate
individualized treatment effects, i.e. potential outcomes con-
ditional on the patient history of covariates and treatments:

[Y(ā≥t) | Āt−1, X̄t], (1)

for any possible treatment plan ā≥t that starts at timestep
t and consists of a sequence of treatments that ends just
before the patient outcome Y is observed. The observa-
tional data can be used to fit a regression model to estimate

E[Y | ā≥t, Āt−1, X̄t]. Under certain assumptions, these
estimates are unbiased so that E[Y(ā≥t) | X̄t, Āt−1] =
E[Y | ā≥t, Āt−1, X̄t]. These conditions include Assump-
tions 1 and 2, which are standard among the existing meth-
ods for estimating treatment effects over time and can be
tested in practice (Robins & Hernán, 2008).

Assumption 1. Consistency. If Ā≥t = ā≥t, then the po-
tential outcomes for following the treatment plan ā≥t is the
same as the observed (factual) outcome Y(ā≥t) = Y.

Assumption 2. Positivity (Overlap) (Imai & Van Dyk,
2004): If P (Āt−1 = āt−1, X̄t = x̄t) 6= 0 then P (At =
at | Āt−1 = āt−1, X̄t = x̄t) > 0 for all at.

The positivity assumption means that at each timestep t,
each treatment has a non-zero probability of being given to
the patient. This assumption is testable in practice.

In addition to these two assumptions, existing methods also
assume sequential strong ignorability:

Y(ā≥t) ⊥⊥ At | Āt−1, X̄t, (2)

for all possible treatment plans ā≥t and for all t ∈
{0, . . . , T}. This condition holds if there are no hidden
confounders and it cannot be tested in practice. To under-
stand why this is the case, note that the sequential strong
ignorability assumption requires the conditional indepen-
dence of the treatments with all of the potential outcomes,
both factual and counterfactual, conditional on the patient
history. Since the counterfactuals are never observed, it is
not possible to test for this conditional independence.

In this paper, we assume that there are hidden confounders.
Consequently, using standard methods for computing E[Y |
ā≥t, Āt−1, X̄t] from the dataset will result in biased esti-
mates since the hidden confounders introduce a dependence
between the treatments at each timestep and the potential
outcomes (Y(ā≥t) 6⊥⊥ At | Āt−1, X̄t) and therefore:

E[Y(ā≥t) | Āt−1, X̄t] 6= E[Y | ā≥t, Āt−1, X̄t]. (3)

By extending the method proposed by Wang & Blei (2019),
we take advantage of the multiple treatment assignments at
each timestep to infer a sequence of latent variables Z̄t =
(Z1, . . . ,Zt) ∈ Z̄t that can be used as substitutes for the
unobserved confounders. We will then show how Z̄t can be
used to estimate the treatment effects over time.

4. Time Series Deconfounder
The idea behind the Time Series Deconfounder is that multi-
cause confounders introduce dependencies between the
treatments. As treatment assignments change over time
we infer substitutes for the hidden confounders that take ad-
vantage of the patient history to capture these dependencies.
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Figure 1. (a) Graphical factor model. Each Zt is built as a function of the history, such that, with Xt, it renders the assigned causes
conditionally independent: p(at1, . . . , atk | zt,xt) =

∏k
j=1 p(atj | zt,xt). The variables can be connected to Y(ā≥t) in any way. (b)

Graphical model explanation for why this factor model construction ensures that Zt captures all of the multi-cause hidden confounders.

4.1. Factor Model

The Time Series Deconfounder builds a factor model to
capture the distribution of the causes (treatments) over time.
At time t, the factor model constructs the latent variable
zt = g(h̄t−1), where h̄t−1 = (āt−1, x̄t−1, z̄t−1) is the
realization of history H̄t−1. The latent variable zt, together
with the observed patient covariates xt, render the assigned
treatments conditionally independent:

p(at1, . . . , atk | zt,xt) =

k∏
j=1

p(atj | zt,xt). (4)

Figure 1(a) illustrates the corresponding graphical model
for timestep t. The factor model of the assigned treatments
is built as a latent variable model with joint distribution:

p(θ1:k, x̄T ,z̄T , āT ) = p(θ1:k)p(x̄T )·
T∏

t=1

(
p(zt | h̄t−1)

k∏
j=1

p(atj | zt,xt, θj)
)
,

(5)

where θ1:k are parameters. The distribution of the treatments
p(āT ) is the corresponding marginal. Notice that we do not
assume that, in the observational data, the patient covariates
xt at timestep t are independent of the patient history. The
graphical factor model shows how the latent variables zt
that can act as substitutes for the multi-cause unobserved
confounders are built. As we will see in Section 4.2 these
latent variables will be used as part of an outcome model
that estimates the potential outcomes Y(ā≥t).

By taking advantage of the dependencies between the mul-
tiple treatment assignments, the factor model allows us to
infer the sequence of latent variables Z̄t that can be used
to render the assigned causes conditionally independent.
Through this factor model construction and under correct
model specifications, we can rule out the existence of other
multi-cause confounders that are not captured by Zt. To un-
derstand why this is the case, consider the graphical model

in Figure 1(b). By contradiction, assume that there exists an-
other multi-cause confounder Vt not captured by Zt. Then,
by d-separation the conditional independence between the
assigned causes given Zt and Xt does not hold anymore.
This argument cannot be used for single-cause confounders,
such as Lt, which are only affecting one of the causes and
the potential outcomes. Thus, we assume sequential single
strong ignorability (no hidden single cause confounders).

Assumption 3. Sequential single strong ignorability:

Y(ā≥t) ⊥⊥ Atj | Xt, H̄t−1, (6)

for all ā≥t, for all t ∈ {0, . . . , T}, and for all j ∈
{1, . . . , k}.

Causal inference relies on assumptions. Existing methods
for estimating treatment effects over time assume that there
are no multi-cause and no single-cause hidden confounders.
In this paper, we make the weaker assumption that there are
no single-cause hidden confounders. While this assumption
is also untestable in practice, as the number of treatments
increases for each timestep, it becomes increasingly weaker:
the more treatments we observe, the more likely it becomes
for a hidden confounder to affect multiple of the these treat-
ments rather than a single one of them.

Theorem 1. If the distribution of the assigned causes p(āT )
can be written as the factor model p(θ1:k, x̄T , z̄T , āT ), we
obtain sequential ignorable treatment assignment:

Y(ā≥t) ⊥⊥ (At1, . . . , Atk) | Āt−1, X̄t, Z̄t, (7)

for all ā≥t and for all t ∈ {0, . . . , T}.

Theorem 1 is proved by leveraging Assumption 3, the fact
that the latent variables Zt are inferred without knowledge
of the potential outcomes Y(ā≥t) and the fact that the
causes (At1, . . . , Atk) are jointly independent given Zt and
Xt. The result means that, at each timestep, the variables
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X̄t, Z̄t, Āt−1 contain all of the dependencies between the
potential outcomes Y(ā≥t) and the assigned causes At.
See Appendix A for the full proof.

As discussed in Wang & Blei (2019), the substitute con-
founders Zt also need to satisfy positivity (Assumption 2),
i.e. if P (Āt−1 = āt−1, Z̄t = z̄t, X̄t = x̄t) 6= 0 then
P (At = at | Āt−1 = āt−1, Z̄t = z̄t, X̄t = x̄t) > 0 for all
at. After fitting the factor model, this can be tested (Robins
& Hernán, 2008). When positivity is limited, the outcome
model estimates of treatment responses will also have high
variance. In practice, positivity can be enforced by setting
the dimensionality of Zt to be smaller than the number of
treatments (Wang & Blei, 2019).

Predictive Checks over Time: The theory holds if the fit-
ted factor model captures well the distribution of assigned
treatments. This condition can be assessed by extending
predictive model checking (Rubin, 1984) to the time-series
setting. We compute p-values over time to evaluate how sim-
ilar the distribution of the treatments learned by the factor
model is with the distribution of the treatments in a valida-
tion set of patients. At each timestep t, for the patients in
the validation set, we obtain M replicas of their treatment
assignments {a(i)t,rep}Mi=1 by sampling from the factor model.
The replicated treatment assignments are compared with the
actual treatment assignments, at,val, using the test statistic
T (at):

T (at) = EZ [log p(at | Zt, Xt)], (8)

which is related to the marginal log likelihood (Wang & Blei,
2019). The predictive p-value for timestep t is computed as
follows:

1

M

M∑
i=1

1
(
T
(
a
(i)
t,rep

)
< T (at,val)

)
, (9)

where 1(·) represents the indicator function.

If the model captures well the distribution of the assigned
causes, then the test statistics for the treatment replicas
are similar to the test statistics for the treatments in the
validation set, which makes 0.5 the ideal p−value in this
case.

4.2. Outcome Model

If the factor model passes the predictive checks, the Time
Series Deconfounder fits an outcome model (Robins et al.,
2000a; Lim et al., 2018) to estimate individualized treatment
effects over time. After sampling the sequence of latent vari-
ables ˆ̄Zt = [Ẑ1 . . . Ẑt] from the factor model, the outcome
model can be used to estimate E[Y | ā≥t, Āt−1, X̄t,

ˆ̄Zt] =

E[Y(ā≥t) | Āt−1, X̄t,
ˆ̄Zt].

To compute uncertainty estimates of the potential outcomes,
we can sample ˆ̄Zt repeatedly and then fit an outcome

model for each sample to obtain multiple point estimates of
Y(ā≥t). The variance of these point estimates will repre-
sent the uncertainty of the Time Series Deconfounder.

D’Amour (2019) raised some concerns about identifiabil-
ity of the mean potential outcomes using the deconfounder
framework in Wang & Blei (2019) in the static setting and
illustrated some pathological examples where identifiability
might not hold.3 In practical settings, the outcome esti-
mates from the Time Series Deconfounder are identifiable,
as supported by the experimental results in Sections 6 and 7.
Nevertheless, when identifiability represents an issue, the
uncertainty in the potential outcomes can be used to assess
the reliability of the Time Series Deconfounder. In particu-
lar, the variance in the potential outcomes indicates how the
finite observational data inform the estimation of substitutes
for the hidden confounders and subsequently the treatment
outcomes of interest. When the treatment effects are non-
identifiable, the estimates of the Time Series Deconfounder
will have high variance.

By using this framework to estimate substitutes for the hid-
den confounders we are trading off confounding bias for
estimation variance (Wang & Blei, 2019). The treatment
effects computed without accounting for the hidden con-
founders will inevitably be biased. Alternatively, using the
latent variables from the factor model will result in unbiased,
but higher variance estimates of treatment effects.

5. Factor Model over Time in Practice
Since we are dealing with time-varying treatments, we can-
not use standard factor models, such as PCA (Tipping &
Bishop, 1999) or Deep Exponential Families (Ranganath
et al., 2015), as they can only be applied in the static set-
ting. Using the theory developed for the factor model over
time we introduce a practical implementation based on a
recurrent neural network (RNN) with multitask output and
variational dropout as illustrated in Figure 2.

The recurrent part of the model infers the latent variables
Zt such that they depend on the patient history:

Z1 = RNN(L), (10)
Zt = RNN(Z̄t−1, X̄t−1, Āt−1,L), (11)

where L consists of randomly initialized parameters that are
trained with the rest of the parameters in the RNN.

The size of the RNN output is DZ and this specifies the
size of the latent variables that are inferred as substitutes
for the hidden confounders. In our experiments, we use
an LSTM unit (Hochreiter & Schmidhuber, 1997) as part
of the RNN. Moreover, to infer the assigned treatments at

3See Wang & Blei (2019) for a longer discussion addressing
the concerns in (D’Amour, 2019).
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Figure 2. (a) Proposed factor model implementation. Zt is generated by RNN as a function of the history H̄t−1, given by the hidden state
ht, and current input. Multitask output is used to construct the treatments such that they are independent given Zt and Xt. (b) Closer
look at a single timestep.

timestep t, At = [At1, . . . , Atk] such that they are condi-
tionally independent given the latent variables Zt and the
observed covariates Xt, we propose using multitask mul-
tilayer perceptrons (MLPs) consisting of fully connected
(FC) layers:

Atj = FC(Xt,Zt; θj), (12)

for all j = 1, . . . k and for all t = 1, . . . T , where θj are the
parameters in the FC layers used to obtain Atj . We use a
single FC hidden layer before the output layer. For binary
treatments, the sigmoid activation is used in the output layer.
For continuous treatments, MC dropout (Gal & Ghahramani,
2016a) can instead be applied in the FC layers to obtain
p(Atj | Xj ,Zj).

To model the probabilistic nature of factor models we incor-
porate variational dropout (Gal & Ghahramani, 2016b) in
the RNN as illustrated in Figure 2. Using dropout enables us
to obtain samples from Zt and treatment assignments Atj .
These samples allow us to obtain treatment replicas and to
compute predictive checks over time, but also to estimate
the uncertainty in Zt and potential outcomes.

Using the treatment assignments from the observational
dataset, the factor model can be trained using gradient de-
scent based methods. The proposed factor model architec-
ture follows from the theory developed in Section 4 where
at each timestep the latent variable Zt is built as a function
of the history (parametrized by an RNN). The multitask out-
put is essential for modeling the conditional independence
between the assigned treatments given the latent variables
generated by the RNN and the observed covariates. The fac-
tor model can be extended to allow for irregularly sampled
data by using a PhasedLSTM (Neil et al., 2016).

Note that our theory does not put restrictions on the factor
model that can be used. Alternative factor models over time

are generalized dynamic-factor model (Forni et al., 2000;
2005) or factor-augmented vector autoregressive models
(Bernanke et al., 2005). These come from the econometrics
literature and explicitly model the dynamics in the data.
The use of RNNs in the factor model enables us to learn
complex relationships between X̄t, Z̄t, and Āt from the
data, which is needed in medical applications involving
complex diseases. Nevertheless, predictive checks should
be used to assess any selected factor model.

6. Experiments on Synthetic Data
To validate the theory developed in this paper, we perform
experiments on synthetic data where we vary the effect of
hidden confounding. It is not possible to validate the method
on real datasets since the true extent of hidden confounding
is never known (Wang & Blei, 2019; Louizos et al., 2017).

6.1. Simulated Dataset

To keep the simulation process general, we propose build-
ing a dataset using p-order autoregressive processes. At
each timestep t, we simulate k time-varying covariates Xt,k

representing single cause confounders and a multi-cause
hidden confounder Zt as follows:

Xt,j =
1

p

p∑
i=1

(αi,jXt−i,j + ωi,jAt−i,j) + ηt (13)

Zt =
1

p

p∑
i=1

(βiZt−i +

k∑
j=1

λi,jAt−i,j) + εt, (14)

for j = 1, . . . , k, αi,k, λi,j ∼ N (0, 0.52), ωi,k, βi ∼
N (1− (i/p), (1/p)2), and ηt, εt ∼ N (0, 0.012). The value
of Zt changes over time and is affected by the treatment
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assignments.

Each treatment assignmentAt,j depends on the single-cause
confounder Xt,j and multi-cause hidden confounder Zt:

πtj = γAẐt + (1− γA)X̂tj (15)
Atj | πtj ∼ Bernoulli(σ(λπtj)), (16)

where X̂tj and Ẑt are the sum of the covariates and con-
founders respectively over the last p timesteps, λ = 15,
σ(·) is the sigmoid function and γA controls the amount of
hidden confounding applied to the treatment assignments.
The outcome is also obtained as a function of the covariates
and the hidden confounder:

Yt+1 = γY Zt+1 + (1− γY )
(1

k

k∑
j=1

Xt+1,j

)
, (17)

where γY controls the amount of hidden confounding ap-
plied to the outcome. We simulate datasets consisting of
5000 patients, with trajectories between 20 and 30 timesteps,
and k = 3 covariates and treatments. To induce time depen-
dencies we set p = 5. Each dataset undergoes a 80/10/10
split for training, validation and testing respectively. Hyper-
parameter optimization is performed for each trained factor
model as explained in Appendix B. Using the training ob-
servational dataset, we fit the Time Series Deconfounder to
perform one-step ahead estimation of treatment responses.

6.2. Evaluating Factor Model using Predictive Checks

Our theory for using the inferred latent variables as sub-
stitutes for the hidden confounders and obtain unbiased
treatment responses relies on the fact that the factor model
captures well the distribution of the assigned causes.
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Figure 3. Predictive checks over time. We show the mean p-values
at each timestep and the std error.

To assess the suitability of our proposed factor model archi-
tecture, we compare it with the following baselines: RNN
without multitask output (predicting the k treatment assign-
ments by passing Xt and Zt through a FC layer and output

layer with k neurons) and multilayer perceptron (MLP) used
instead of the RNN at each timestep to generate Zt. The
MLP factor model does not use the entire history for gener-
ating Zt. See Appendix C for details.

Figure 3 shows the p-values over time computed for the test
set in 30 simulated datasets with γA = γY = 0.5. The p-
values for the MLP factor model decrease over time, which
means that there is a consistent distribution mismatch be-
tween the treatment assignments learned by this model and
the ones in the test set. Conversely, the predictive checks
for our proposed factor model are closer to the ideal p-value
of 0.5. This illustrates that having an architecture capa-
ble of capturing time-dependencies and accumulating past
information for inferring the latent confounders is crucial.
Moreover, the performance for the RNN without multitask
is similar to our model, which indicates that the factor model
constraint does not affect the performance in capturing the
distribution of the causes.

6.3. Deconfounding the Estimation of Treatment
Responses over Time

We evaluate how well the Time Series Deconfounder 4 can
remove hidden confounding bias when used in conjunction
with the following outcome models:

Standard Marginal Structural Models (MSMs). MSMs
(Robins et al., 2000a; Hernán et al., 2001) have been widely
used in epidemiology to estimate treatment effects over
time. MSMs use inverse probability of treatment weighting
(IPTW) to adjust for the time-dependent confounding bias
present in observational datasets (Mansournia et al., 2017;
Bica et al., 2020b). MSMs compute the propensity weights
by using logistic regression; through IPTW, these models
construct a pseudo-population from the observational data
where the treatment assignment probability no longer de-
pends on the time-varying confounders. The treatment re-
sponses over time are computed using linear regression. For
full implementation details in Appendix D.1.

Recurrent Marginal Structural Networks (R-MSNs). R-
MSNs (Lim et al., 2018) also use IPTW to remove the bias
from time-dependent confounders when estimating treat-
ment effects over time. However, R-MSNs estimate the
propensity scores using RNNs instead. The use of RNNs is
more robust to changes in the treatment assignment policy.
To estimate the treatment responses over time R-MSNs also
use a model based on RNNs. For implementation details,
see Appendix D.2.

4The implementation of the Time Series Deconfounder can
be found at https://bitbucket.org/mvdschaar/
mlforhealthlabpub/src/master/alg/time_
series_deconfounder/ and at https://github.
com/ioanabica/Time-Series-Deconfounder.

https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/time_series_deconfounder/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/time_series_deconfounder/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/time_series_deconfounder/
https://github.com/ioanabica/Time-Series-Deconfounder
https://github.com/ioanabica/Time-Series-Deconfounder
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Figure 4. Results for deconfounding the one-step ahead estimation of treatment responses in two outcome models: (a) Marginal Structural
Models (MSM) and (b) Recurrent Marginal Structural Networks (R-MSN). The average RMSE and the standard error in the results are
computed for 30 dataset simulations for each different degree of confounding, as measured by γ.

Notice that these outcome models were also chosen because
they are capable of handling multiple treatments (that may
be assigned simultaneously) at the same timstep. In the sim-
ulated dataset, parameters γA and γY control the amount of
hidden confounding applied to the treatments and outcomes
respectively. We vary this amount through γA = γY = γ.

The Time Series Deconfounder is used to obtain unbiased
estimates of one-step ahead treatment responses. For a
comparative evaluation, the outcome models are trained
to estimate these treatment responses in the following sce-
narios: without information about Z̄t in which case they
estimate E[Yt+1(at) | Āt−1, X̄t] (Confounded), with infor-
mation about the simulated (oracle) Z̄t which leads to the
following regression model E[Yt+1(at) | Āt−1, X̄t, Z̄t]
(Oracle), as well as after applying the Time Series Decon-
founder with different model specifications and in this case
E[Yt+1(at) | Āt−1, X̄t,

ˆ̄Zt] is estimated (Deconfounded).
To highlight the importance of Assumption 3, we also apply
the Time Series Deconfounder after removing the single-
cause confounder X1, thus violating the assumption.

Figure 4 shows the root mean squared error (RMSE) for
the one-step ahead estimation of treatment responses for pa-
tients in the test set. We notice that the Time Series Decon-
founder gives unbiased estimates of treatment responses, i.e.
close to the estimates obtained using the simulated (oracle)
confounders. The method is robust to model misspecifica-
tion, performing similarly when DZ = 1 (simulated size of
hidden confounders) and when DZ = 5 (misspecified size
of inferred confounders). When there are no hidden con-
founders (γ = 0), the extra information from ˆ̄Zt does not
harm the estimations (although they have higher variance).

When the sequential single strong ignorability assumption
(Assumption 3) is invalidated, namely when the single cause
confounder X1 is removed from the observational dataset,

we obtain biased estimates of the treatment responses. The
performance in this case, however, is comparable to the
performance when there is no control for the unobserved
confounders.

In Appendix E, we consider an experimental set-up with
a different simulated size for the hidden confounders (true
DZ = 3) and show results when the size of the hidden
confounders is underestimated in the Time Series Decon-
founder. We also include additional results on a simulated
setting with static hidden confounders.

Source of gain: To understand the source of gain in the
Time Series Deconfounder, consider why the outcome mod-
els fail in the scenarios when there are hidden confounders.
MSMs and R-MSNs make the implicit assumption that the
treatment assignments depend only on the observed history.
The existence of any multi-cause confounders not captured
by the history results in biased estimates of both the propen-
sity weights and of the outcomes. On the other hand, the
construction in our factor model rules out the existence of
any multi-cause confounders which are not captured by Zt.
By augmenting the data available to the outcome models
with the substitute confounders, we eliminate these biases.

7. Experiments on MIMIC III
Using the Medical Information Mart for Intensive Care
(MIMIC III) (Johnson et al., 2016) database consisting of
electronic health records from patients in the ICU, we show
how the Time Series Deconfounder can be applied on a real
dataset. From MIMIC III we extracted a dataset with 6256
patients for which there are three treatment options at each
timestep: antibiotics, vasopressors, and mechanical venti-
lator (all of which can be applied simultaneously). These
treatments are common in the ICU and are often used to treat
patients with sepsis (Schmidt et al., 2016; Scheeren et al.,
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Table 1. Average RMSE ×102 and standard error in the results for predicting the effect of antibiotics, vassopressors and mechanical
ventilator on three patient covariates. The results are for 10 runs.

White blood cell count Blood pressure Oxygen saturation
Outcome model MSM R-MSN MSM R-MSN MSM R-MSN

Confounded 3.90± 0.00 2.91± 0.05 12.04± 0.00 10.29± 0.05 2.92± 0.00 1.74± 0.03
Deconfounded (DZ = 1) 3.55± 0.05 2.62± 0.07 11.69± 0.14 9.35± 0.11 2.42± 0.02 1.24± 0.05
Deconfounded (DZ = 5) 3.56± 0.04 2.41± 0.04 11.63± 0.10 9.45± 0.10 2.43± 0.02 1.21± 0.07

Deconfounded (DZ = 10) 3.58± 0.03 2.48± 0.06 11.66± 0.14 9.20± 0.12 2.42± 0.01 1.17± 0.06
Deconfounded (DZ = 20) 3.54± 0.04 2.55± 0.05 11.57± 0.12 9.63± 0.14 2.40± 0.01 1.28± 0.08

2019). For each patient, we extracted 25 patient covariates
consisting of lab tests and vital signs measured over time
that affect the assignment of treatments. We used daily ag-
gregates of the patient covariates and treatments and patient
trajectories of up to 50 timesteps. We estimate the effects of
antibiotics, vasopressors, and mechanical ventilator on the
following patient covariates: white blood cell count, blood
pressure, and oxygen saturation.

Hidden confounding is present in the dataset as patient co-
morbidities and several lab tests were not included. How-
ever, since this is a real dataset, it is not possible to evaluate
the extent of hidden confounding or to estimate the true
(Oracle) treatment responses.

Table 1 illustrates the RMSE when estimating one-step
ahead treatment responses by using the MSM and R-MSN
outcome models directly on the extracted dataset (Con-
founded) and after applying the Time Series Deconfounder
and augmenting the dataset with the substitutes for the hid-
den confounders of different dimensionality DZ (Decon-
founded). We notice that in all cases, the Time Series Decon-
founder enables us to obtain a lower error when estimating
the effect of antibiotics, vasopressors, and mechanical venti-
lator on the patients’ white blood cell count, blood pressure,
and oxygen saturation. By modeling the dependencies in the
assigned treatments for each patient, the factor model part
of the Time Series Deconfounder was able to infer latent
variables that account for the unobserved information about
the patient states. Using these substitutes for the hidden con-
founders in the outcome models resulted in better estimates
of the treatment responses. While these results on real data
require further validation from doctors (which is outside
the scope of this paper), they indicate the potential of the
method to be applied in real medical scenarios.

In Appendix E, we include results for an additional experi-
mental set-up where we remove several patient covariates
from the dataset and we show how the Time Series Decon-
founder can be used to account for this bias. Moreover, in
Appendix F, we provide further discussion and directions
for future work.

8. Conclusion
The availability of observational data consisting of longi-
tudinal information about patients prompted the develop-
ment of methods for modeling the effects of treatments on
the disease progression in patients. All existing methods
for estimating the individualized effects of time-dependent
treatment from observational data make the untestable as-
sumption that there are no hidden confounders. In the lon-
gitudinal setting, this assumption is even more problematic
than in the static setting. As the state of the patient changes
over time and the complexity of the treatment assignments
and responses increases, it becomes much easier to miss
important confounding information.

In this paper, we proposed the Time Series Deconfounder, a
method that takes advantage of the patterns in the multiple
treatment assignments over time to infer latent variables
that can be used as substitutes for the hidden confounders.
Moreover, we developed a deep learning architecture based
on an RNN with multitask output and variational dropout for
building a factor model over time and computing the latent
variables in practice. Through experimental results on both
synthetic and real datasets, we show the effectiveness of the
Time Series Deconfounder in removing the bias from the
estimation of treatment responses over time in the presence
of multi-cause hidden confounders.
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