1. Additional Experiments
1.1. Graph Regression of Molecular Properties on QM9

The QM9 chemical database is a collection of ~135k small organic molecules, associated to continuous labels describing
several geometric, energetic, electronic, and thermodynamic properties.! Each molecule in the dataset is represented as
a graph {A,;, X;}, where atoms are associated to nodes, and edges represent chemical bonds. The atomic number of
each atom (one-hot encoded; C, N, F, O) is taken as node feature and the type of bond (one-hot encoded; single, double,
triple, aromatic) can be used as edge attribute. In this experiment, we ignore the edge attributes in order to use all pooling
algorithms without modifications.

The purpose of this experiment is to compare the trainable pooling methods also on a graph regression task, but it must be
intended as a proof of concept. In fact, the graphs in this dataset are extremely small (the average number of nodes is 8)
and, therefore, a pooling operation is arguably not necessary. We consider a GNN with architecture MP(32)-pool-MP(32)-
GlobalAvgPool-Dense, where pool is implemented by Top-K, Diffpool, or MinCutPool. The network is trained to predict
a given chemical property from the input molecular graphs. Performance is evaluated with a 10-fold cross-validation, using
10% of the training set for validation in each split. The GNNs are trained for 50 epochs, using Adam with learning rate
Se-4, batch size 32, and ReLLU activations. We use the mean squared error (MSE) as supervised loss.

The MSE obtained on the prediction of each property for different pooling methods is reported in Tab. 1. As expected,
the flat baseline with no pooling operation (MP(32)-MP(32)-GlobalAvgPool-Dense) yields a lower error in most cases.
Contrarily to the graph classification and the AE task, Top-K achieves better results than Diffpool in average. Once again,
MinCutPool significantly outperforms the other methods on each regression task and, in one case, also the flat baseline.

Property Top-K Diffpool MinCutPool \ Flat baseline
mu 0.600+0.085 0.651+0.026 0.538-+0.012 0.559+0.007
alpha 0.197+0.087 0.114+0.001 0.078+0.007 0.065+0.006
homo 0.698+0.102 0.712+0.015 0.526+40.021 0.435+0.013
lumo 0.601+0.050 0.646+0.013 0.540+0.005 0.515+0.007
gap 0.630+0.044 0.698+0.004 0.584+0.007 0.552+0.008
2 0.452+0.087 0.440+0.024 0.261+0.006 0.204+0.006
zpve 0.402+0.032 0.410+0.004 0.328+0.005 0.284+0.005
u0_atom 0.308+0.055 0.245+0.006 0.193+0.002 0.163+0.001
cv 0.291+0.118 0.337+0.018 0.148+0.004 0.127+0.002

Table 1. MSE on the graph regression task. The best results with a statistical significance of p < 0.05 are highlighted: the best overall
are in bold, the best among pooling methods are underlined.

2. Experimental Details

All GNN architectures in this work have been implemented with the Spektral library.” The
code to reproduce all experiments is available at https://github.com/FilippoMB/
Spectral-Clustering-with-Graph—-Neural-Networks—-for-Graph-Pooling. For the WL ker-
nel, we used the implementation provided in the GraKeL library.> The pooling strategy based on Graclus, is taken from
the ChebyNets repository.*

2.1. Clustering on Citation Networks

Diffpool and MinCutPoolare configured with 16 hidden neurons with linear activations in the MLP and MP layer, respec-
tively used to compute the cluster assignment matrix S. The MP layer used to compute the propagated node features X (*)
uses an ELU activation in both architectures. The learning rate for Adam is 5e-4, and the models are trained for 10000
iterations. The details of the citation networks dataset are reported in Tab. 2.

"http://quantum-machine.org/datasets/
https://graphneural .network
Shttps://ysig.github.io/GraKeL/dev/
4https ://github.com/mdeff/cnn_graph

https://github.com/FilippoMB/Spectral-Clustering-with-Graph-Neural-Networks-for-Graph-Pooling
https://github.com/FilippoMB/Spectral-Clustering-with-Graph-Neural-Networks-for-Graph-Pooling
http://quantum-machine.org/datasets/
https://graphneural.network
https://ysig.github.io/GraKeL/dev/
https://github.com/mdeff/cnn_graph

Table 2. Details of the citation networks datasets

Dataset Nodes Edges Node features Node classes

Cora 2708 5429 1433 7
Citeseer 3327 9228 3703 6
Pubmed 19717 88651 500 3

2.2. Graph Classification

We train the GNN architectures with Adam, an L, penalty loss with weight le-4, and 16 hidden units (H) both in the
MLP of MinCutPool and in the internal MP of Diffpool. Mutagenicity, Proteins, DD, COLLAB, and Reddit-2k are datasets
representing real-world graphs and are taken from the repository of benchmark datasets for graph kernels.’> Bench-easy
and Bench-hard® are datasets where the node features X and the adjacency matrix A are completely uninformative if
considered alone. Hence, algorithms that account only for the node features or the graph structure will fail to classify
the graphs. Since Bench-easy and Bench-hard come with a train/validation/test split, the 10-fold split is not necessary to
evaluate the performance. The statistics of all the datasets are reported in Tab. 3.

Table 3. Summary of statistics of the graph classification datasets

Dataset samples classes avg. nodes avg.edges node attr. node labels
Bench-easy 1800 3 147.82 922.66 - yes
Bench-hard 1800 3 148.32 572.32 - yes
Mutagenicity 4337 2 30.32 30.77 - yes
Proteins 1113 2 39.06 72.82 1 no
DD 1178 2 284.32 715.66 - yes
COLLAB 5000 3 74.49 2457.78 - no
Reddit-2K 2000 2 429.63 497.75 - no

3. Architectures Schemata

Fig. 1 depicts the GNN architecture used in the clustering and segmentation tasks; Fig. 2 depicts the GNN architecture
used in the graph classification task; Fig. 3 depicts the GNN architecture used in the graph regression task; Fig. 4 depicts
the graph autoencoder used in the graph signal reconstruction task.

‘https://1lsll-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
6https ://github.com/FilippoMB/Benchmark_dataset_for_graph_classification

 https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
 https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification

—>» MP —»Pool >

Figure 1. Architecture for clustering/segmentation.

MP

Global

Pool » MP —»Pool —>»{ MP [—>} Pool

Dense
(softmax)

—>» MP —»{Pool —» MP —»

Figure 2. Architecture for graph classification.

Global Dense
pool > (linear)

Figure 3. Architecture for graph regression.

MP

MP » Pool >»Unpool» MP » MP >

MP
(linear)

Figure 4. Architecture for the autoencoder.

X rec

