
Low-Rank Bottleneck in Multi-head Attention Models

A. Notation

Embedding size d
Number of layers l
Number of heads h
Sequence length n

Vocab size v
Head size dp

B. Proofs

Proof of Theorem 2. For simplicity of notation, we drop the dependence on parameters d, h and dp for functions fW(·) and
gV(·) in the proof.

First let us rewrite the MultiHead and FixedMultiHead layers as follows. The MultiHead layer can be rewritten as

fW(X) = Wo · MultiHead(X) =
hX
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where Wi
o are d⇥ d/h matrices and Wi

v, Wi
k, and Wi

q are d/h⇥ d matrices. We denote the collection of all parameter
matrices as W.

Similarly, rewrite the fixed head size attention layer as

gV(X) = Vo · FixedMultiHead(X) =
hX
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where Vi
o 2 Rd⇥dp , and Vi

v,V
i
k,V

i
q 2 Rdp⇥d. Let V be the collection of all these matrices.

The outline of the proof is basically a case analysis: we divide possible values of W into three categories, and show in each
case that there exists a X such that fW(X) 6= gV(X). Here are the three cases:
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Case 1. In the first case, we can choose any v such that (
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Case 2. In cases where
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is at most rank d/h, it follows that all columns in Wi
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Now consider any v 2 Rd, and X = veT1 , where e1 = (1, 0, . . . , 0) 2 Rn. Define �(t) = exp(t)/(exp(t) + n� 1). Then,
we have
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Similarly, we can calculate
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Notice that all the columns of fW(X) and gV(X), from the second columns to the last ones, are the same. We now compare
the first columns:
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Recall that for any v 6= 0, Wi
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Case 3. Now consider any X =
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Therefore, the first column of gV(X) can be written as
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Similarly, the first column of fW(X) is
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Since U/
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Then, consider the difference fW(X):,1 � gV(X):,1. Recall that for any v, W1
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If we scale v2 = ↵ṽ2 with large enough ↵, the second term will dominate the first term and the first term will never be able
to cancel the second one. Thus, by choosing large enough ↵ > 0, we can make sure that the sum is nonzero.

Even in case where one of Up
dp
v1 and (W1

k)
T (W1

q)p
d/h

v1 is zero (say (W1
k)
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and use a similar scaling argument. By choosing large enough ↵ > 0 and v2 = ↵ṽ2, one can show that the difference
fW(X):,1 � gV(X):,1 is nonzero.

C. Experimental settings

For our experiments with the language modeling (LM1B dataset), we train 6 layer Transformer models. We use a batch size
of 4096 and train for 250k steps. We use a learning rate of 0.1 with a linear warm up for the first 10k steps. We decay the
learning rate with the square root of the number of steps. We train the baseline models, with the prevalent head size heuristic,
with the embedding dimension varying from 256 to 512. We fix the width of the feed forward layer in the Transformer to be
1024. In addition, we use weight decay of 0.01 and dropout with probability of 0.1 on all the layers.

For our experiments with BERT, we follow the same experimental settings as in (Devlin et al., 2018). We present the key
details here and refer the reader to (Devlin et al., 2018). We train with a batch size of 1024 for 450k steps with inputs of
sequence length n = 128 followed by 50k steps with inputs of sequence length 512. In contrast the BERT paper uses a batch
size of 512, and does the pre-training for 900K steps with 128 sequence length inputs and 100k steps with 512 sequence
length inputs. We train using ADAM with a learning rate of 1e-4, and a linear warmup and decay schedule as in BERT. We
use 5k warmup steps for the first stage, and a re-warmup of 3k steps for the second stage (You et al., 2019). Again, we use
weight decay of 0.01 and dropout with probability of 0.1 on all the layers.

For the language modeling task, training is performed on 4 TPUv2 chips for a couple of hours. For BERT models training is
performed on 16 TPUv3 chips in the first stage and 64 TPUv3 chips for the second stage. Pre-training with this configuration
takes between 2 to 3 days. We did not attempt to find the optimal hyper-parameters for the fixed head size architecture, and
use the same hyper-parameters as used for training the BERT models.
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# heads 8 12 16 20
# params 214M 252M 290M 327M

SQuAD - F1 90.35±0.14 90.48±0.09 90.92±0.14 90.89±0.08
SQuAD - EM 83.37±0.12 83.67±0.03 84.16±0.35 84.29±0.16

MNLI 84.4±0.2 84.4±0.2 84.7±0.1 85.1±0.4

(A) Increasing number of heads

Table 3: (A): 24 layer Transformer trained with a fixed head size of 128 and an embedding size of 768 shows an improvement
in the accuracy with the increasing number of heads.

D. Additional experimental results

Figure 4: Performance of the Transformers trained with the prevalent head size heuristic (baseline) compared with the fixed
head size (dp) models for a language modeling task (LM1B) on the test set. Unlike Fig.1, we vary both the embedding size
and the number of heads of the baseline models to keep their head size fixed to 32. We train the fixed head size models with
a fixed embedding size of 256 and a head size of 32, and vary the number of heads from 4 to 70, while matching the number
of parameters. The plot again clearly indicates the advantage of the fixed head size models. The main issue with the baseline
models is that fixing the head size to 32 forces the number of heads to be small when the embedding size is small. Reducing
the number of heads below certain threshold hurts the performance of the Transformer.


