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In this supplement, apart from the proofs, we also provide
intuitions behind our techniques. As in the main paper,
‖ · ‖ stands for `1 norm and B for the unit ball of `1 norm,
namely, B = {x ∈ Rd : ||x|| ≤ 1}.

A. Section 4: Intuition behind techniques
At the outset, the challenge is that data points are (highly)
perturbed versions of latent points and most/all data points
lie outside the latent polytope K. But, in principle, this can
be overcome by averaging large subsets of data. Indeed, a
standard statistical technique for the toy case of k = 1 is
that the single vertex of K is well estimated by the average
of all data points. An extension of this is used in traditional
Clustering: once the data points have been partitioned into
clusters, the mean is estimated by the average of the points
in the cluster. [Of course the algorithmically harder part
is to find the partition.] A starting observation for find-
ing the Latent k− polytope based on taking averages of
subsets of data points is: Let U be the set of

(
n
γn

)
aver-

ages of all γn−sized subsets of data. By Proximate Latent
points assumption (intuitively), there are approximations to
the k vertices of K among elements of U . Under the Sub-
Gaussian assumption, (intuitively), since all (γn− sized)
subset averages of data are close to corresponding subset
averages of latent points (which are all inK), we have the
following two properties:

(a) Each element of U is close to K and

(b) There are sets S1, S2, . . . , Sk, |S`| = γn, such that av-
erage of data in subset S` is close to the ` th vertex of K
for ` = 1, 2, . . . , k.

Property (a) implies that the convex hull of any k points of
U is approximately contained in K. Property (b) implies
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that there are k points in U whose convex hull approxi-
mately contains K. If these two statements had been true
exactly instead of approximately, the extreme points of U
would suffice. Namely, k points of U with the property
that all points of U are in the convex hull of these k points
would be the vertices of the latent polytope and we would
be done. Since (a) and (b) only hold approximately, the
central problem we tackle is an approximate analog of the
above reasoning. We formulate specific conditions (11) and
(12) of the Definition 4.4. of a candidate set which are the
quantitative versions of (a) and (b)

Before we describe the use of candidate set, a note on our
stochastic model, especially, the Sub-Gaussian assumption
(4) is in order. A simpler model of perturbations (of data
points from latent points) would have been an upper bound
on individual perturbations (rather than subset average per-
turbations). But we do not know of a hypothesis on individ-
ual perturbations which is realistic and still guarantees that
for EVERY γn−subset of data, the average is close to the
average of the corresponding subset of latent points. For
example, for LDA, the best absolute bound we can assume
on ||A·,j − P·,j || is that ||A·,j − P·,j || ≤ c∀j. This only
implies that for each R, |R| = γn and each v ∈ {−1, 1}d,

Prob(v · (A·,R − P·,R) ≥ λ) ≤ exp(−cλ2γn).

But, we have to union this over the
(
n
γn

)
≈

exp(γn ln(1/γ)) subsets and we do not get any non-trivial
bound unless λ >

√
ln(1/γ), which is too large for our

use. We circumvent this by requiring β ≥ c ln(1/γ)/ε4

(condition (8) of Theorem 4.1). We prove that (8) holds in
applications.

Also, another word of explanation for the remarks immedi-
ately preceding Definition 4.3 is in order. The vector valued
random variable

XR =

√
|R|
ν

(A·,R − P·,R) =
1

ν
√
|R|

∑
j∈R

(A·,j − P·,j)

is the sum of |R| independent random variables: (A·,j −
P·,j)/ν normalized (as in Central Limit Theorem) by√
|R|. For real-valued random variables, CLT gives us

sub-Gaussian tail bounds. By looking at all 1-d marginals,
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namely, 1

ν
√
|R|

∑
j∈R v · (A·,j − P·,j), we can first deduce

sub-Gaussian behavior of the normalized sum for a fixed
v and then take the union bound over all v ∈ {−1, 1}d
if we use (as we do here) `1 norm or over an ε-net for
other norms which puts an additive term +d in the expo-
nent. CLT does not give us finite sample bounds, but, by
definition of Sub-Gaussian norm of a vector valued random
variable (see Definition 5.22 of (Vershynin, 2010)), we get
(4) with β as the sub-Gaussian norm.

Now, with (a) and (b) in place, since, we are not worried
here about our algorithm taking exponential time (sample
complexity is our focus), we could:

• enumerate all collections R1, R2, . . . , Rk of k subsets
of data of cardinality γn each and

• if only we could check for each enumerated collection
R1, R2, . . . , Rk, whether,
Dist({M·,1,M·,2, . . . ,M·,k}, {A·,R1

, A·,R2
, . . . , A·,Rk})

was small enough, we would find the answer at some
point, when we enumerate S1, S2, . . . , Sk, if not
earlier. But, we do not know M·,`, and we know of no
such easy check.

So, the question is: Is there a (purely) data-determined
test characterizing R1, R2, . . . , Rk which satisfy:
Dist({M·,1,M·,2, . . . ,M·,k}, {A·,R1 , A·,R2 , . . . , A·,Rk})
being small ?

We do not know of a characterizing test. But we note that
we do not need a characterization. A (sufficient) condition
on R1, R2, . . . , Rk which implies
Dist({M·,1,M·,2, . . . ,M·,k}, {A·,R1

, A·,R2
, . . . , A·,Rk})

is small and which has properties (c) and (d) below will
do:

(c) If the condition is satisfied by R1, R2, . . . , Rk, then
Dist({M·,1,M·,2, . . . ,M·,k}, {A·,R1 , A·,R2 , . . . , A·,Rk})
is small.

(d) There exists some collection of k sets R1, R2, . . . , Rk
which satisfy the condition.

We can first ask what seems to be a simpler question: Given
one set R, |R| = γn, is there a data-determined sufficient
condition such that if R satisfies the condition, then it is
certified (not just with high probability, but deterministi-
cally) that A·,R is close to some vertex of K ? Actually, no
such condition is known.

What we do prove here is Theorem 4.6 (Vertex Set Cer-
tificate Theorem): If R1, R2, . . . , Rk satisfy the condition
that Dist({A·,R : |R| = γn} , {A·,R1

, A·,R2
, . . . , A·,Rk})

is small and Separation Condition (4) and (11)
and (12) are satisfied, that is sufficient for
Dist({M·,1,M·,2, . . . ,M·,k}, {A·,R1

, A·,R2
, . . . , A·,Rk})

to be small.

The reader may wonder if there is a simpler test for when a
given set {w1, w2, . . . , wk} is within small Hausdorff dis-
tance of the set of vertices ofK. We do not know for sure if
it is possible, but here we discuss why all of our conditions
(4), (11) and (12) seem necessary by giving examples to
show that if one of the conditions fails, then the conclusion
also fails.

First, Theorem 4.6 and Lemma A.1. together imply that
if the separation assumption (4), conditions (11) and (12)
of Definition 4.4 and condition (15) of Theorem 4.6 hold,
then, condition (16) of Theorem 4.6 gives us a test of when
we have approximation to the set of vertices of K.

Examples when (4) is violated are obvious. We give an ex-
ample when (11) alone is violated and the conclusion fails:
Take d = k and say K is a proper subset of the simplex
∆k = {x : x` ≥ 0,

∑
` x` = 1} satisfying (4). Take as U

an cε2−net of the convex hull of the k unit vectors and also
add to U the k unit vectors. (12) is satisfied by the ε2−net
property. (15) is satisfied if we take w` = to be the ` th unit
vector. But clearly, the conclusion (16) is not satisfied if K
is substantially smaller than ∆k.

An example where (12) alone is violated is the fol-
lowing: Take k = 3, d = 2 and K to be the
triangle with vertices (−1, 0), (1, 0), (0, 5ε) and U =
{(−1, 0), (1, 0), (−0.9, 0.5ε)} = {w1, w2, w3}, for ε a
small enough positive real. It is easy to see that (4) (11),
(15) are satisfied, but (12) is not and the conclusion (16) is
not.

A slightly tighter example is essentially the same as the one
above, but with U = {(−1, 0), (1, 0), (−0.25, 3.75ε)} =
{w1, w2, w3}. In this case (12) is violated, but a weaker
condition: Dist(Set of vertices of K,CH(U))≤ εν (note:
ν = 2) is satisfied. This shows that we need that each
vertex of K be well-approximated by a point of U , rather
than a point just in CH(U).

We formulate a sufficient condition (stated in (15)) for a
collection of k sets R1, R2, . . . , Rk to have the property
that the set {A·,R` , ` = 1, 2, . . . , k} is close in Hausdorff
distance to the set of the k vertices of K.

The main technical workhorse of the paper is Theorem 4.6
which proves (c) for this condition. The sufficient condition
in the notation of this discussion reads:

Dist(U,CH(A·,R1 , A·,R2 , . . . , A·,Rk) is small . (A.1)

Note that this condition is data-determined (though in ex-
ponential time). We also prove (d) for this condition in
Lemma (A.1) stated below.
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A.1. Proofs for Section 4

Proof: (Of Theorem 4.1) Theorem 4.1 follows directly
from Lemma 4.4, Lemma 4.5 and Theorem 4.6. Lemma
4.4 proves that Vertex Proximate Assumption (5) which is
a hypothesis of Theorem 4.1 implies the event (13) and the
Aggregate Subgaussian Assumption (6) (another hypothe-
sis of Theorem 4.1) implies the event (14). Under these
conditions, Lemma 4.5 proves that the collection U of

(
n
γn

)
averages of all γn sized subsets of data forms a “candi-
date set” as defined in Definition 4.4. Then, Theorem 4.6
(the Vertex Certificate Theorem) proves sufficient condi-
tion (15) which certifies a set of k points in U to be close to
the set of vertices of K. It is easy to check that condition

(15) can be checked by trying out all
(( nγn)
k

)
collections of k

points of U and for each solving convex programs to check
if each A·,R, |R| = γn is close enough to the convex hull
of the set of k points of U .

Proofs of Lemma 4.4 and Lemma 4.5 are in the main paper
and we do not discuss them here.

Lemma A.1 For the S1, S2, . . . , Sk in (13), we have

Dist({A·,R : |R| = γn}, CH(A·,S1
, A·,S2

, . . . , A·,Sk))

< ε2ν/4. (A.2)

Intuitive Description of the proof P·,R is in K, so is a
convex combination of the M·,` ’s. Using (13), we can
show that each P·,S` is close to M·,` and this will imply
that the same convex combination of the P·,S` will be close
to P·,R. By (14), each A·,S` is close to P·,S` and also A·,R
is close to P·,R. So the same convex combination of the
A·,S` . we prove, is close to A·,R using triangle inequality
on norms several times.

Proof: For any R, P·,R ∈ K and can be expressed
as a convex combination of M·,`. Suppose P·,R =∑k
`=1 α`M·,` is the convex combination. We will prove

that
∑
` α`A·,S` ≈ A·,R to establish (A.2). For all j ∈ S`,

by (13), ||P·,j −M·,`|| < ε2ν/12 which implies by con-
vexity of || · || that

||P·,S` −M·,`|| ≤
1

|S`|
∑
j∈S`

||P·,j −M·,`|| < ε2ν/12.

(A.3)
Now, using (14) and (A.3),

||
∑
`

α`A·,S` − P·,R|| = ||
∑
`

α`(A·,S` −M·,`)||

≤
∑
`

α`||A·,S` −M·,`||

≤
∑
`

α`||A·,S` − P·,S` ||+
∑
`

α`||P·,S` −M·,`||

< ε2ν/6,

where, the first inequality is by convexity of || · || and the
second by triangle inequality. This implies by (14):

||
∑
`

α`A·,S` −A·,R|| ≤ ||
∑
`

α`A·,S` − P·,R||

+ ||P·,R −A·,R||
< ε2ν/6 + ||P·,R −A·,R|| ≤ ε2ν/4,

completing the proof of (A.2).

Next, we prove Theorem 4.6. This theorem is the techni-
cal heart of the paper. A brief explanation of its role was
given in Remark 4.1. We will provide intuition (so marked)
before each stage of the proof.

Proof: (Of Theorem 4.6) The Theorem holds for any poly-
tope Q. But to avoid extra notation, we prove it (without
loss of generality) for the polytope K.

Intuition The first part of the proof (up to just before Claim
(A.1)) uses just the hypothesis that each vertex of Q is at
L1 distance at least εDiaL1

(Q) from the convex hull of the
other vertices which is satisfied by K from assumption (4)
to construct a separating hyperplane and then a region Q`
near vertex ` of K (which we may think of as a “region of
attraction” for that vertex). Formally:

Proof Assumption (4) says that the following two convex
sets are disjoint:

[M·,` + 2ενB] ∩ CH(M·,`′ : `′ 6= `) = ∅.

Thus, by the Separating Hyperplane Theorem from Convex
Geometry, there is a vector v(`) such that

∀`′ 6= ` , ∀x ∈ 2ενB , v(`) ·M·,` + v(`)x > v(`) ·M·,`′ .
(A.4)

After scaling by ||v(`)||∞, we may assume that ||v(`)||∞ =
1 and (A.4) is still satisfied.

There is a y, with v · y = −2εν and y ∈ 2ενB. [There is
an i with v(`)i = ±1. Define y ∈ Rd by yi = −2ενv

(`)
i and

yi′ = 0∀i′ 6= i.]

Now, we get from (A.4):

v(`) ·M·,` > v(`) ·M·,`′ + 2εν∀`′ 6= `. (A.5)

For ` = 1, 2, . . . , k, define a set Q` as follows (cf: Para-
graph 3 of Outline):

Q` =
(
CH(M) + (ε2ν/12)B

)
∩ {x : v(`) · x > v(`) ·M·,` − 5ε2ν/12}.

Claim A.1 Suppose w1, w2, . . . , wk ∈ U satisfy

Dist(U , CH(w1, w2, . . . , wk) < ε2ν/4.

Then we must have

∀` ∈ [k],∃`′ ∈ [k] : w`′ ∈ Q`.
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Intuition The claim is crucial; it argues that indeed if any
set of k points w1, w2, . . . , wk ∈ U satisfies the (quanti-
tative version of the) sufficient condition (A.1) stated for-
mally with w` = A·,R` , then, one of the k points must lie
in the “region of attraction” of each vertex of K. After the
claim is proved, we will prove in Lemma (A.2) that every
point in Q` is close to M·,` completing the proof of the
Theorem.

Proof: Suppose the hypothesis of the claim is satisfied, but
there is some Q`, which we assume wlg is Qk such that no
w` is in Qk. But, w1, w2, . . . , wk all belong to CH(M) +
ε2ν/(12)B (by (9)). Since w1, w2, . . . , wk /∈ Qk, we must
have (from the definition of Qk):

w` · v(k) ≤ v(k) ·M·,k − 5ε2ν/12 for ` = 1, 2, . . . , k.

Consequently,

∀y ∈ CH(w1, w2, . . . , wk)

v(k) · y ≤ v(k) ·M·,k − 5ε2ν/12. (A.6)

By (10), there is a point uk ∈ CH(U) such that

||M·,k − uk|| < ε2ν/6. (A.7)

By hypothesis of the current Claim that
Dist(U , CH(w1, w2, . . . , wk) < ε2ν/4, we have
using the convexity of the Dist function, there is a point
y ∈ CH(w1, w2, . . . , wk), with

||y − uk|| < ε2ν/4.

So, using (A.6),

v(k) ·uk < v(k) · y+ ε2ν/4 ≤ v(k) ·M·,k− ε2ν/6. (A.8)

But, ||uk − M·,k|| < ε2ν/6, which implies v(k) · uk >
v(k) · M·,k − ε2ν/6 contradicting (A.8) This proves the
claim.

Intuition Now, we go back to the proof of Theorem 4.6.
For the w1, w2, . . . , wk defined in (15), the hypothesis of
Claim (A.1) holds. So for each `, there is some `′ ∈ [k]
with w`′ ∈ Q`. Renumber and assume w` ∈ Q`.

Lemma (A.2) proves that any w` ∈ Q`, is close to M·,`.
This is done as follows: By definition of Q`, w` ∈ Q`
implies that w` is close to some point, say, w′` ∈ K. w′` is a
convex combination of M·,1,M·,2, . . . ,M·,k. If the convex
combination did not attach weight almost 1 to M·,`, then,
it attaches non-trivial total weight to the other M·,`′ . Then,
since the M·,`′ , `′ 6= ` are well-separated from M·,` in the
v(`) direction, (cf. (A.5)), namely, M·,`′ /∈ {x : v(`) · x ≥
v(`) · M·,` − 2εν}, we will have that w′` and hence also
w` is far from M·,` in the v(`) direction, contradicting the
definition of Q`.

Lemma A.2 w` ∈ Q` ∩ U implies

||M·,` − w`|| ≤ εν, for ` = 1, 2, . . . , k.

Proof: By (9), there is a w′` ∈ K such that ||w` − w′`|| ≤
ε2ν/12. Since w′` ∈ K, it can be written as a convex com-
bination of M·,1,M·,2, . . .M·,k, say,

w′` = α`M·,` + (1− α`)x,
where, x ∈ CH(M·,`′ , `

′ 6= `) ; α` ∈ [0, 1]. (A.9)

v(`) · x < v(`) ·M·,` − 2εν by (A.5) .

So,
v(`) · w′` < v(`) ·M·,` − (1− α`)2εν.

Since ||v(`)||∞ = 1,

v(`) · w` ≤ v(`) ·M·,` − (1− α`)2εν + ε2ν/12.

But since w` ∈ Q`, we have by the definition of Q`

v(`) · w` > v(`) ·M·,` − 5ε2ν/12.

Thus by the last two inequalities,

(1− α`) <
ε

4
.

So, since ν = max`,`′ ||M·,` −M·,`′ ||, by (A.9),

||w′` −M·,`|| = ||(1− α`)(x−M·,`)||
≤ (1− α`)Max`,`′ ||M·,` −M·,`′ || ≤ εν/4.

||w` −M·,`|| < ||w′` −M·,`||+ ε2ν/4 ≤ εν

proving Lemma (A.2) as well as Theorem 4.6.

Proof: (Of Corollary 4.3) By hypothesis of the Corollary
and Lemma 4.4, we have for all R, |R| = γn and all v ∈
{−1.1}d, and for all λ > 0:

Pr(v · (A·,R − P·,R) ≥ λ) ≤ c exp(−cβλ2),

from which (6) follows. The other hypotheses of Theorem
4.1 follow directly from the hypotheses of Corollary 4.3.
So Theorem 4.1 implies the corollary.

B. Proofs for Section 5
Proof: (Of Lemma 5.2): If x ∈ CH(M·,`′ : `′ 6= `),
then,

∑
i∈T` xi <

∑
i∈T`Mi,` − 2ε which implies, that

||x−M·,`|| ≥ 2ε as required.



Near-optimal sample complexity via Latent k−Polytopes

The proof above is technically straightforward. But note
that we did not require the T` to be disjoint. This allows
for example the case when k > d which is ruled out if one
assumes at the outset that the T` are disjoint (as is done in
the literature, for example, (Bansal et al., 2014) and (Arora
et al., 2018)). Also, we do not need another assumption
prevalent in the literature, namely, that there be one (or
more) individually high frequency words for each topic.

Intuition Next, we prove Lemma 5.3. It asserts that under
Dirichlet distribution, with small concentration parameter
(namely, α = 1/k, which is a standard value), there is sub-
stantial prior mass near the corners. I.e., there is substan-
tial probability that a document be nearly purely on a single
topic. This type of fact is well-known, for example, in (Tel-
garsky, 2013). We supply the short proof of the exact result
we need here for completeness. Note that in contrast, if we
had a uniform prior on the simplex ∆k, then, the mass near
the vertices can be (exponentially in k) small.

Proof: (Of Lemma 5.3): For a random variable x dis-
tributed according to Dir(k, 1/k), the marginal density of
x1 is given by

q(x1) =
1

Γ(1/k)Γ(2− (1/k))
x
(1/k)−1
1 (1− x1)1−(1/k).

We have

Pr(x1 ≥ 1− (ε2/12)) =

∫ 1

x1=1−ε2/12
q(x1)dx1

≥ c

k

∫ 1

1−ε2/12
(1− x1)1−(1/k) ≥ cε4

k
.

Next, we prove Lemma 5.4 which asserts that LDA satis-
fies the Sub-Gaussian assumption (6). For this, we will use
the fact that for any R, |R| = γn, and any {−1, 1} vector
v ∈ Rd,

∑
j∈R(v ·(A·,j−P·,j)) is a function of γnm inde-

pendent random variables (namely, the word choices for all
documents in R). We remark that we do not know a proof
of this type of concentration based only on viewing each
document as a vector-valued random variable with the ap-
propriate moment bounds, since, we can only upper bound
up to the m th moment of individual A·,j − P·,j .

Proof: (Of Lemma 5.4): Let

f(R, v) =
∑
i

∑
j∈R

vi(Aij − Pij). (B.10)

f(R, v) is a function of γnm independent random vari-
ables, namely, the words in the γn documents in R.We
note that changing any one word changes f(R, v) by 1/m

at most. So from the bounded difference inequality (McDi-
armid & Reed, 2006), we get that

Pr(f(R, v) ≥ εγn) ≤ 2 exp(−2ε2γnm).

(6) follows with β = m as claimed.

C. Proofs for Section 6
Now, we prove Theorem 6.1.

Lemma C.1 For any positive integer d ≥ 6, there is a fam-
ily L of subsets of [d] so that

∀L ∈ L, |L| = d

2

∀L 6= L′ ∈ L, |L ∩ L′| ≤ 3d

8

|L| ≥ (1.1)d.

Proof: We choose sets in L one by one. Each set we de-
cide to put into L rules out all other d/2-sets with intersec-
tion greater than 3d/8 with it, namely, each set rules out(
d/2
3d/8

) (
d/2
d/8

)
sets. It is as simple caculation using Striling

inequalities for the factorial function to see that

(1.1)d
(
d/2

3d/8

) (
d/2

d/8

)
<

(
d

d/2

)
,

which proves the Lemma.

For each L ∈ L, we define a vector v(L) ∈ Rd with
||v(L)||1 = 1 as follows:

v(L)i =

{
0 if i /∈ L
2
d if i ∈ L.

Lemma C.2 For each L ∈ L, we have

Dist1
(
v(L) , CH

(
v(L′) : L′ 6= L,L′ ∈ L

))
≥ 1

4
.

Proof: By Lemma (C.1) and the construction of v(L), we
have for every L′ 6= L,∑

i/∈L

v(L′) ≥ d

8

2

d
=

1

4
.

So,
∑
i/∈L xi = 1/4 is a separating hyperplane between the

convex sets: CH
(
v(L′) : L′ 6= L,L′ ∈ L

)
and v(L) +

1
4B1 proving the Lemma.

Proof: (Of Theorem 6.1): Let M be a family of d × k
matrices, where each M ∈ M is obtained by choosing a
k−subset of {v(L) : L ∈ L}. We note that

|M| ≥ 1

k!
(1.1)dk,
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the 1/k! accounting for the over-counting the k! permuta-
tions of the columns of M. Also, by Lemma (C.2), each
M ∈M satisfies Assumption 2.

Since each document has m words, there are at most dmn

possible sets of n documents. Under the hypothesis of the
Theorem, dmn < 0.5|M|. Since the learner is determinis-
tic, each input generates a unique output. Thus, there is at
least one M ∈M so that no input leads to an output of any
M′ with Dist(M,M′) ≤ ε.

Remark C.1 The reader may be momentarily puzzled
about such a class of specially structured M being in-
tractable. Note that for documents which are purely on a
topic with topic vector v(L), L ∈ L, indeed, they will have
no words at all from [d] \ L. But the reason we cannot
still decipher l or v(L) from the documents is the follow-
ing: there are n/k documents with a total of nm/k words
in them. Since Theorem 6.1 assumes that nm < 0.09dk,
the total number of words in all these documents is less
than 0.09d. So many words i ∈ L also never appear in
these documents. This is intuitively the reason for the in-
tractability.

D. Proofs for Section 7
Proof: (Of Theorem 7.1) First we prove that (4) holds. For
any S ⊆ [n], |S| = γn,

||A·,S − P·,S ||1

=
1

γn
Maxv∈{−1,+1}d

d∑
i=1

∑
j∈S

vi(Aij − Pij)︸ ︷︷ ︸
f(S,v)

.

We prove that with high probability each f(S, v) cannot
be too large and then take the union bound over the 2d v
’s. For a fixed v, we note that f(S, v) is the sum of γnd
independent random variables vi(Aij − Pij), where each
|vi(Aij−Pij)| ≤ 1 and Var(vi(Aij−Pij)) = Pij(1−Pij).
We use Freedman’s inequality to get that for any λ > 0,:

Pr (f(S, v) ≥ λ)

≤ exp

−λ2/(2(λ+
∑
i

∑
j∈S

Var(vi(Aij − Pij))))


≤ exp

(
− λ2

2(λ+ γnν)

)
,

since, for each j,
∑
i Pij =

∑
`W`,j

∑
iMi,` ≤ ν.

Pr (∃v : f(S, v) > ενγn)

≤ exp

(
d− ε2νγn

6

)
,

using the hypothesis of the Theorem. This proves 4 with
β = ν.

The proofs of (3) and (2) are identical to the case of LDA,
so we do not repeat them here.

Proof: (Of Theorem 7.2): As in proof of Theorem 6.1, we
construct a set of (1.1)d vectors v(L) with one difference:
each non-zero component of v(L) is set to 2ν/d (rather
than 2/d). We still have that each v(L) is at L1 distance at
least εν from the convex hull of the other v(L′) and so for
any k− subset of the v(L), the Separation Assumption 2 is
satisfied.

Now the argument about the number of possible data sets
is different. The expected number of 1’s in all columns of
A is νn and with very high probability, the actual number
is at most 2νn. There are 2νn

(
nd
2νn

)
possible data sets with

a total of at most 2νn 1’s.
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