
Learning and Sampling of Atomic Interventions from Observations

A. Missing Proofs for the Learning Algorithm
Lemma 4.6. Let Dx(V) be the Bayes net as defined

in Equation (4). Then Algorithm 1 takes Õ
(
n|Σ|2kd

αkε2

)
sam-

ples and Õ
(
n2|Σ|4kd

αkε2

)
time and returns a Bayes net D̂x(V)

such that dTV(Dx, D̂x) 6 ε with probability at least 3/4.

Proof. We run Algorithm 2 with the parameters
m = 20n|Σ|kd+k+2 log(n|Σ|kd+k)/(αkε2) and
t = 10 log(n|Σ|kd+k) to learn Dx as D̂x. We get
from Theorem 4.3 for the distributions Dx and D̂x:

KL(Dx, D̂x) 6
∑
i

∑
a

Dx(Z′i =a) KL(Dx(Vi | Z′i = a),

D̂x(Vi | Z′i = a)) (5)

Our strategy is to learn Dx(Vi | Z′i = a) by conditional
sampling from either P (V \ Z′i | Z′i = a) or P (V \ (Z′i ∪
{X}) | Z′i = a, X = x) as appropriate.

First consider the summands of Equation (5) where Vi ∈
S1. In this case Dx(Vi | Z′i) = P (Vi | Zi) and Z′i = Zi ⊆
Pa+(S1) where P is α-strongly positive w.r.t. the later set.
Hence at least mα/2 samples turn up with Zi = a from
Chernoff and union bounds except with 1/40 probability
for a large enough n. Conditioned on this, Theorem 4.4
gives E[KL(Dx(Vi | Z′i = a), D̂x(Vi | Z′i = a))] 6
2(|Σ|−1)/(mα) 6 ε2/(10n|Σ|kd+k) where D̂x is the add-
1 estimator on the conditional samples with Zi = a. Since
Dx(Z′i = a) 6 1 each summand is also upper-bounded by
ε2/(10n|Σ|kd+k).

Next we consider the summands (i,a) with Vi /∈ S1. For
these summands, if X /∈ Zi, we have Z′i = Zi, Dx(Vi |
Z′i) = P (Vi | Zi) and P (Z′i = a) > αkDx(Z′i = a)/|Σ|,
the last inequality by marginalization of Lemma 4.5 Part 3.
over V \ (Z′i ∪ {X}). If X ∈ Zi, we have Z′i = Zi \ {X},
Dx(Vi | Z′i) = P (Vi | Zi \ {X}, X = x) and P (Z′i =
a, X = x) > αkDx(Z′i = a)/|Σ|, the later inequality by
marginalization of Lemma 4.5 Part 2. over V\(Z′i∪{X}).
Let Ni,a be the number of samples with with Z′i = a if
X /∈ Zi and with Z′i ◦ X = a ◦ x if X ∈ Zi. Then
Ni,a ∼ Binomial(m, p) where p > αkDx(Z′i = a)/|Σ|.

We partition the summands (i,a) with Vi /∈ S1 into two
sets: heavy if Dx[Z′i = a] > ε2/(10n|Σ|kd+k+1) and
light otherwise. Consider the event “all heavy (i,a)s sat-
isfy Ni,a > mαkDx(Z′i = a)/(2|Σ|)”. It is easy to see
from from our definition of m and heaviness that this event
holds except with 1/40 probability from Chernoff and union
bounds for a large enough n. Hence for the rest of the ar-
gument, we condition on this event. In this case, all heavy
items satisfy Ni,a > t from our definition of m and t.

For the summands (i,a) with Vi /∈ S1, we get the follow-
ing.

– If (i,a) is heavy then from Theorem 4.4 E[Dx(Z′i =

a) KL(Dx(Vi | Z′i = a), D̂x(Vi | Z′i = a))] 6
Dx(Z′

i=a)(|Σ|−1)
Ni,a

6 ε2/(10n|Σ|kd+k), using the lower
bound of Ni,a from the previous paragraph.

– If a light (i,a) satisfy Ni,a > t, we get E[Dx(Z′i =

a) KL(Dx(Vi | Z′i = a), D̂x(Vi | Z′i = a))] 6
ε2

10n|Σ|kd+k+1

|Σ|−1
t 6 ε2/(10n|Σ|kd+k) from Theo-

rem 4.4.

– (i,a)s which do not satisfy Ni,a > t must be light
for which we define the conditional distribution to
be uniform. In this case, KL(Dx(Vi | Z′i =

a), D̂x(Vi | Z′i = a)) =
∑
σ∈ΣDx(Vi = σ | Z′i =

a) ln(|Σ|Dx(Vi | Z′i = a)) = ln |Σ| − H(Dx(Vi |
Z′i = a)) 6 ln |Σ|, where 0 6 H(·) 6 ln |Σ| is
the Shannon entropy function. Hence in this case also
E[Dx(Z′i = a) KL(Dx(Vi | Z′i = a), D̂x(Vi | Z′i =
a))] 6 ε2/(10n|Σ|kd+k).

Thus each of the n|Σ|kd+k summands in the r.h.s. of Equa-
tion (5) is at most ε2/(10n|Σ|kd+k) in expectation. We get
E[KL(Dx, D̂x)] 6 ε2/10. From Markov’s and Pinsker’s
inequalities, dTV(Dx, D̂x) 6 ε except 1/5 probability.

The total error probability is at most 1/4 so far. �

Next we improve the success probability of the above
learning algorithm. We repeat Algorithm 2 independently
O(log 1

δ ) times and use the following result to achieve
(1− δ) success probability.

Theorem A.1 (Theorem 2.9 in (Bhattacharyya et al., 2020)
restated). Fix any 0 < ε, δ < 1. Suppose we are given an
algorithm that learns an unknown Bayes net P over ΣN

on a graph G with indegree 6 ∆ as a Bayes net P̂ on G
such that dTV(P, P̂ ) 6 ε with probability at least 3/4 us-
ing m(ε) samples and t(ε) time. Then we can output a
distribution P ′ on G such that dTV(P, P ′) 6 ε with prob-
ability at least (1− δ) using O(m(ε/4) log 1

δ ) samples and
O(t(ε/4) log 1

δ + |Σ|2∆N2ε−2 log3 1
δ ) time.

We get the following final theorem for learning Px.

Theorem 2.3. [Evaluation and Generation7] For any in-
tervention x to X and parameter ε ∈ (0, 1), there is an

algorithm that takes m = Õ
(
|Σ|2kdn
αkε2

)
samples from P ,

and in O
(
mn|Σ|2kd

)
time, learns a distribution P̂ satisfy-

ing dTV(Px, P̂ ) 6 ε such that

– Evaluation: Given an assignment w to V \{X} com-
puting P̂ (w) takes O(n|Σ|(kd+ k)) time

7All our learning algorithms succeed with 1−δ probability and
the sample and the time complexity dependences are O(log 1

δ
)

and O(log3 1
δ
) respectively for any 0 < δ < 1.
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Algorithm 2 Learning Dx

Input: Samples from P , parameters m, t
Output: A Bayes net D̂x according to the factorization of Equation (4)
Get m samples from P
for every vertex Vi ∈ S1 do

for every fixing Zi = a, where Zi are the effective parents of Vi do
D̂x(Vi | Z′i = a) ← the add-1 empirical distribution (see Theorem 4.4) at node i in the subset of samples where
Zi = a

end for
end for
for every vertex Vi ∈ V \ S1 do

for every fixing Zi \ {X} = a, where Zi are the effective parents of Vi do
if X ∈ Zi then
Ni,a ← the number of samples with Zi \ {X} = a and X = x
if Ni,a > t then
D̂x(Vi | Zi\{X} = a)← the add-1 empirical distribution at node i in the subset of samples where Zi\X = a
and X = x

else
D̂x(Vi | Zi \ {X} = a)← the uniform distribution over Σ

end if
else
Ni,a ← the number of samples with Zi = a
if Ni,a > t then
D̂x(Vi | Zi = a)← the add-1 empirical distribution at node i in the subset of samples where Zi = a

else
D̂x(Vi | Zi = a)← the uniform distribution over Σ

end if
end if

end for
end for

– Generation: Obtaining an independent sample from
P̂ takes O(n|Σ|(kd+ k)) time .

Proof. We use Algorithm 2 with m = 20n|Σ|kd+k+2

log(n|Σ|kd+k)/(αkε2) and t = 10 log(n|Σ|kd+k), which
from Lemma 4.6, guarantees 3/4 success probability for
learning Dx within total variation distance at most ε. Then
we use Theorem A.1 to improve the success probability
to 1 − δ. The final time and sample complixities follow
from Theorem A.1.

This gives us a distribution D̂x over V, whose marginal
distribution on all variables but X , we use for evaluation
and sampling. Once we have learntDx, sampling and eval-
uation takes O(n|Σ|(kd+ k)) time. �

B. Lower Bound
For the lower bound we use a well-known packing argu-
ment based on Fano’s inequality which says if there is a
class of 2K distributions with pairwise KL distance at most
β then Ω(K/β) samples are needed to identify a uniformly

random distribution from the class. The KL distance is
known to satisfy certain chain rule which we use in the fol-
lowing proof (see eg. Lemma 6 in (Przytycki, 2011)). We
first recall Theorem 2.6.

Theorem 2.6. Fix integers d, k > 1 and a set Σ of size
> 2. For all sufficiently large n, there exists an ADMG G
with n nodes and in-degree d so that the following hold. G
contains a node X such that |Pa(X)| = d and |S1| = k
(where S1 is the c-component containing X). For any Z ∈
Pa(X) ∪ S1, there exists a causal Bayes net P on G over
Σ-valued variables such that:

(i) For the observational distribution P , the marginal
P |(Pa(X)∪S1)\{Z} is uniform but the marginal
P |Pa(X)∪S1

has mass at most α at some assignment.
(ii) There exists an intervention x onX such that learning

the distribution Px upto dTV-distance εwith probabil-
ity 9/10 requires Ω(n|Σ|d/αε2) samples from P .

Proof. We first show the lower bound where Z is a parent
of X , and d = 2. Later we show how to prove the full
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(a) With no control variables

X

Z

Y1 Y2
. . . Yn

W1
. . . Wd

(b) With control variables

Figure 4. ADMGs for Theorem 2.6

theorem.

Our ADMG on n+ 2 variables: Z,X, Y1, Y2, . . . , Yn con-
sists of n triangles with Z,X, Yj for every j where Z is
the source and Yj is the sink. Let Y = 〈Y1, Y2, . . . , Yn〉.
Please refer to Figure 4a.

Z is uniform over {0, 1}. X = Z̄ with probability α and
X = Z with probability 1 − α. Thus X,Z jointly sat-
isfy α-strong positivity. Each Yj | X,Z is one among the
following two conditional distributions:

D1 : Yj = Bern(1/2 + ε/
√
n) if X 6= Z,

Yj = Bern(1/2) if X = Z

D2 : Yj = Bern(1/2− ε/
√
n) if X 6= Z

Yj = Bern(1/2) if X = Z

We create a class Cε of causal models using a code C ⊂
{0, 1}n. This code has size 2Ω(n), and any two of them
c, d ∈ C satisfy the following: there are Θ(n) positions
where c is 1 and d is 0. Showing existence of such a code
is standard. Given a code as above, corresponding to every
c ∈ C, we create a product distribution Y | X,Z: the 1
positions of c use the distribution D1 and the 0 positions of
c use the distributionD2. Together with the distributions of
X,Z this defines a causal Bayes net Pc.

We first lower-bound the distance between the interven-
tional distributions for any two members Pc,Pd ∈ Cε. Let
S be the subset of indices from [n] of size Θ(n) where c is
1 and d is 0.

dTV(P cX=1(Y), P dX=1(Y)) > dTV(P cX=1(S), P dX=1(S))

With 1/2 probability, when Z = 1 every dimension of both
the distributions are Bern(1/2) and therefore have dTV =
0. We focus on the other case when every dimension of
P cX=1(S) follows D1 and P dX=1(S) follows D2.

dTV(P cX=1(S), P dX=1(S))

= 1/2 · dTV(Bern(1/2 + ε/
√
n)|S|,Bern(1/2− ε/

√
n)|S|)

> 1/2 · dTV(Bern(1/2 + ε/
√
n)|S|,Bern(1/2)|S|)

Claim B.1. dTV(Bern(1/2 + ε/
√
n)l,Bern(1/2)l) >

Θ(ε) for l = Θ(n), l 6 n, ε 6 1/4.

Proof.

dTV(Bern(1/2 + ε/
√
n)l,Bern(1/2)l)

=

l∑
i=0

(
l

i

)
|(1/2 + ε/

√
n)i(1/2− ε/

√
n)l−i − 1/2l|

>
l/2∑
i=0

(
l

i

)
2−l(1− (1 + 2ε/

√
n)i(1− 2ε/

√
n)l−i)

>
l/2∑
i=0

(
l

i

)
2−l(1− exp(2εi/

√
n) exp(−2ε(l − i)/

√
n))

>
l/2∑

i=l/2−
√
l

(
l

i

)
2−l(1− exp(−2ε(l − 2i)/

√
n))

>
l/2∑

i=l/2−
√
l

(
l

i

)
2−l2ε(l/2− i)/

√
n

=

√
l∑

j=0

(
l

l/2− j

)
2−l2εj/

√
n

The third line in the above uses the fact that in the range
0, 1, . . . , l/2; 1/2l is larger than the other term. The fourth
line uses ex > 1 + x and e−x > 1− x. The sixth line uses
1 − e−x > x/2 whenever x 6 1. The ratio

(
l
l/2

)
/
(

l
l/2−j

)
can be upper-bounded by exp(j2/(l/2 − j + 1)) = O(1)
for 0 6 j 6

√
l and

(
l
l/2

)
' 2l/

√
l, which gives Θ(ε) in

the last summation. �

Next we upper bound the KL distance of any two observa-
tional distributions from Cε. Considering the extreme case,
we only upper bound the pairs P c and P d whose all the co-
ordinates of Y are different: one is D1, other is D2. Note
that the distributions P c|X∪Z = P d|X∪Z := P (X,Z)
(say), which gives (by the chain rule):
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KL(P c, P d) =
∑
x,z

P (x, z)KL(P c|Y, P d|Y)

=
∑
x 6=z

P (x, z)KL(P c|Y, P d|Y)

(as when x = z both are Bern(1/2)n)

= αKL(P c|Y, P d|Y)

P c|Y and P d|Y are product distributions (in the extreme
case) whose each component pairs are distributed as either
Bern(1/2 + ε/

√
n),Bern(1/2 − ε/

√
n) or Bern(1/2 −

ε/
√
n),Bern(1/2+ε/

√
n). Using additive property of KL

we get KL(P c, P d) = Θ(αε2).

Therefore from Fano’s inequality, learning each interven-
tional distribution up to Θ(ε) distance with probability 2/3
requires Ω(n/αε2) samples.

We next improve the lower bound by |Σ|d factor where d
is the indegree. Please refer to Figure 4b. We pick |Σ|d
random models from Cε and use them as the conditional
distributions for Y | X,Z. Then we create d more con-
trol variables W = 〈W1, . . . ,Wd〉 which are uniformly
distributed over Σd and indicates which of the hard distri-
butions is followed by Y. Any algorithm that want to learn
the interventional distributionX = 1 for this model in dTV

distance ε have to learn a constant fraction of |Σ|d many
hard interventional distributions from Cε in dTV distance
O(ε) over the choices of W. We have already established
that for every fixing of W learning the interventional dis-
tributions with 2/3 probability requires Ω(n/αε2) samples.
From Chernoff’s bound, learning 9 · |Σ|d/10 many distri-
butions with 9/10 probability would require Ω(n|Σ|d/αε2)
samples.

We next show how to add hidden variables to the graph.
Instead of Z being a parent of X in Figure 4b, suppose that
Z is confounded with X . That is, there is a hidden variable
U that is a parent ofX as well asZ. Now, we can define the
same causal models that we analyzed earlier, with U taking
the place of the old Z, and the new Z copying the value of
U . The analysis remains unchanged, as Z is not affected by
an intervention on X . Also, the degree of X and the size
of the c-component can be made arbitrarily large by adding
dummy variables. �

C. Evaluation of Marginal Interventions
Here we discuss the problem of estimating Px|F, i.e., the
marginal interventional distribution of the intervention x to
X on a subset of the observables F ⊆ V. For ease of ex-
position, we can assume that the vertices of G are An+(F)
as other variables do not play a role in Px|F and hence can

be pruned out from the model; here An+(F) denotes the
set of all observable ancestors of F, including F. Tian and
Pearl (Tian & Pearl, 2002b) provided an algorithm for this
identification question when the ADMG satisfies Assump-
tion 2.1 (See Theorem 4 of (Tian & Pearl, 2002b)), a suffi-
cient condition for identifiability8. Later works (Shpitser &
Pearl, 2006; Huang & Valtorta, 2008) generalized this re-
sult of Tian and Pearl for more general interventions, thus
exhibiting a sufficient and necessary identifiability graphi-
cal condition for this problem.

We consider the following setting: Suppose P is an un-
known causal Bayes net over a known ADMG G on n ob-
servable variables V that satisfies (Assumption 2.1) and α-
strong positivity with respect to a variable X ∈ V (As-
sumption 2.2) and let F ⊆ V. Let d denote the maximum
in-degree of the graph G, k denote the size of its largest
c-component, and f = |F|. When the graph being referred
to is unclear, we will subscript notation (eg: PaH(V ) indi-
cates the observable parents of V in graph H) to indicate
the graph on which the operator is defined on.

We show finite sample bounds for estimating Px|F when
the underlying ADMG satisfies Assumption 2.1, thus mak-
ing results of (Tian & Pearl, 2002b) quantitative. Estimat-
ing such causal effects under the necessary and sufficient
graphical conditions of (Shpitser & Pearl, 2006; Tian &
Pearl, 2002b) in the finite sample regime is an important
and an interesting open question which we leave for future
work. As mentioned in Section 2, the required marginal
distribution Px|F can be estimated by taking O(|Σ|f/ε2)
samples from the generator P̂x, and we can use Theo-
rem 2.3 to obtain the generator distribution P̂x where we
requireO(|Σ|5kdn/αkε2) many samples from the observa-
tional distribution P . Hence we get Corollary 2.4.

The time complexity of the algorithm (of Corollary 2.4) de-
scribed above is exponential in f . To handle problems that
arise in practice for small F’s, it is of interest to develop ef-
ficient algorithms for estimatingPx|F. In such cases the ap-
proach discussed above is superfluous, as the sample com-
plexity depends linearly on n, the total number of variables
in the model, which could be unnecessarily large. Theo-
rem 2.5, restated below, shows a sample and time-efficient
algorithm when f is very small (e.g. constant).

Theorem 2.5. For any subset F ⊆ V with |F| = f , inter-
vention x to X and parameter ε ∈ (0, 1), there is an algo-

rithm that takes m = Õ

(
|Σ|2(f+k(d+1))2

αkε2

)
samples from P

and runs in O(m(f + k(d+ 1))|Σ|2(f+k(d+1))2) time and
returns an evaluator for a distribution P̃F on F such that

8Recall that (Tian & Pearl, 2002b) proved Assumption 2.1 is
necessary and sufficient for identifiability ofPx. However to iden-
tify Px|F, Assumption 2.1 was known to be only sufficient for
identifiability.
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dTV(Px|F, P̃F) 6 ε.

The rest of this section is dedicated towards proving Theo-
rem 2.5.

First let us discuss a high level idea of our algorithm for
Theorem 2.5. The idea to handle cases with small f is
to restrict our attention to the marginal distribution P (W)
over a small set of vertices W and then apply Theorem 3 of
(Tian & Pearl, 2002b) (Theorem 3.6 here) over W. How-
ever restriction to W could potentially modify the par-
ent/child or c-component relationships (or both) across the
vertices of W. Hence, to apply Theorem 3.6, the underly-
ing causal graph over the vertices of W should be obtained
via a formal approach in such a way that the topological
ordering and the conditional independence relations across
vertices of W are preserved. To do that we make use of
a well-known latent projection algorithm (Verma & Pearl,
1990) to reduce the given ADMG G (over observables V)
to a different ADMG H (over observables W). A similar
reduction using the latent projection (Verma & Pearl, 1990)
has also appeared in a slightly different context (Tikka &
Karvanen, 2018) – where the objective is to improve the
efficiency of the algorithm.

We carefully choose the set W and prune all the other vari-
ables V \W from the graph G, and then apply the latent
projection to obtain H such that:

(A) The required causal effect is identifiable in H;
(B) Theorem 2.3 can be applied by maintaining bounds on

in-degree and c-component size of this new graph H .

We will show that for W = F ∪ Pa+
G(S1) – both (A) and

(B) hold. We will prove (A) while we prove (B); although
(A) can easily be verified by pruning the vertices of V\W,
one by one, by using Corollary 16 of (Tikka & Karvanen,
2018). Before we prove (B) we will first describe the reduc-
tion procedure so that the essense of the argument becomes
clearer. Our reduction procedure is discussed next.

The reduction consists of two steps: The first step is to sim-
plify the given graphG to a much smaller graphG′ (defined
over observables W) by ignoring all the other variables of
G (i.e., ignoring V\W). By ignoring a certain variable we
mean that the variable is considered to be hidden. Although
the observable vertices of G′ is W, as desired, G′ is not
an ADMG9. Since ADMGs are, in general, easy to analyze
and parse through we then convert this general causal graph
G′ to an ADMG H using a known reduction technique –
and this is the second step. This reduction procedure, which
we call Reduction(G,W) is formally discussed next.

9Recall that an ADMG is a graph where the unobservables are
root nodes and have exactly two observable children – denoted by
bidirected edges.

C.1. Reduction: Pruning G to a simpler graph H

Reduction(G,W)

1. Let G′ be the graph obtained from G by considering
V \W as hidden variables.

2. Projection Algorithm (G′ to H) (Tian & Pearl,
2002a; Verma & Pearl, 1990). The projection algo-
rithm reduces the causal graph G′ to an ADMG H by
the following procedure:

(a) For each observable variable Vi ∈ V of G′, add
an observable variable Vi in H .

(b) For each pair of observable variables Vi, Vj ∈ V,
if there exists a directed edge from Vi to Vj inG′,
or if there exists a directed path from Vi to Vj that
contains only unobservable variables in G′, then
add a directed edge from Vi to Vj in H .

(c) For each pair of observable variables Vi, Vj ∈ V,
if there exists an unobservable variable U such
that there exist two directed paths in G′ from U
to Vi and from U to Vj such that both the paths
contain only unobservable variables, then add a
bidirected edge between Vi and Vj in H .

3. Return H

C.2. Properties of Reduction(G,W)

It is well-known that the projection algorithm (G′ to H)
(Tian & Pearl, 2002a; Verma & Pearl, 1990) preserves
some of the important properties such as topological or-
dering and conditional independence relations. Before we
discuss those, let us revisit the equivalent definitions of par-
ents and c-components for general causal graphs with hid-
den variables.

Definition C.1 (Effective Parents for general causal
graphs). Given a general causal graph G′ and a vertex
Vj ∈ V, the effective parents of Vj is the set of all ob-
servable vertices Vi such that either Vi is a parent of Vj or
there exists a directed path from Vi to Vj that contains only
unobservable variables in G′.

Definition C.2 (c-component for general causal graphs).
For a given general causal graph G′, two observable ver-
tices Vi and Vj are related by the c-component relation if
(i) there exists an unobservable variable U such that G′

contains two paths (a) from U to Vi; and (b) from U to Vj ,
where both the paths use only unobservable variables, or
(ii) there exists another vertex Vz ∈ V such that Vi and Vz
(and) Vj and Vz are related by the c-component relation.

The below lemma illustrates: “c-component that contains
X remains the same in G and H .”
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Lemma C.3. Let S1 denotes the c-component that contains
X in G, W = Y ∪ Pa+

G(S1) and H = Reduction(G,W).
Then, (i) the c-component that contains X in H is also
S1; (ii) H satisfies Assumption 2.1; (iii) Pa+

G(S1) and
Pa+

H(S1) are the same; (iv) H satisfies Assumption 2.2.

Proof. Let C denote the c-component of H that contains
X . Note that S1 ⊆ C since all those bidirected edges in
G that forms S1 are retained in H (because S1 ⊆ W).
Next we will prove that no other vertex of H share a bidi-
rected edge with S1 in H. Suppose for contradiction there
exists a vertex Wi ∈ W that share a bidirected edge with
some node Wj ∈ S1 in H . This implies, during the reduc-
tion, there exists two paths in G′ (U to Wi and U to Wj)
such that all the variables included in these two paths, other
than Wi and Wj , are unobservables in G′ which means all
those vertices belong to V \W, a contradiction to the fact
that Pa+

G(S1) is contained in W. This proves (i). Since
Pa+

G(S1) ⊆ W there can not exist a bidirected edge be-
tween X and a child of X in H which proves (ii).

Note that Pa+
G(S1) ⊆ Pa+

H(S1) – because W contains
Pa+

G(S1). Now suppose, for contradiction, Pa+
G(S1) ⊂

Pa+
H(S1). Then during the reduction step there must have

been an edge from an unobservable to S1 in G′, which can
not be true as W contains Pa+

G(S1) and none of those vari-
ables are treated as hidden variables in the reduction. This
proves (iii). Since S1 and Pa+(S1) remains unchanged
in both G and H , Assumption 2.2 still holds in H which
proves (iii). �

The projection algorithm (G′ to H) is known to preserve
the following set of properties.

– The c-components of H and G′ are identical and the
c-component factorization formula (Equation (20) in
Lemma 2 of (Tian & Pearl, 2002a)) holds even for the
general causal graph (See Section 5 of (Tian & Pearl,
2002a) for more details). They show this based on
a known previously known reduction from G′ to H
(Verma & Pearl, 1990). The proof is based on the fact
that for any subset S ⊆ V of observable variables, the
induced subgraphs G′[S] and H[S] require the same
set of conditional independence constraints.

– The effective parents (see Definition C.1) of every ob-
servable node in G′ is the same as the (observable)
parent set of the corresponding node in H .

– The observable vertices of G′ and H are the same.

– Also, the topological ordering of the observable nodes
of G′ and H are the same.

As is common in the causality literature we do not use any
other property of G′ besides the above in our analysis, and

hence it is sufficient to derive conclusions from this modi-
fied graph which contains only a small number of vertices.

C.2.1. PROOF OF THEOREM 2.5

We know from Lemma C.3 that whenever G satisfy As-
sumption 2.1, H = Reduction(G,W) with W = Y ∪
Pa+

G(S1) satisfy Assumption 2.1 as well. For such graphs
G and H , while both satisfy Assumption 2.1, it is well-
known that an equivalent statement of Theorem 3.6 directly
follows from the proof of Theorem 3 of (Tian & Pearl,
2002b) since their proof uses only the above mentioned
properties. We will also extensively use (i) of Lemma C.3.
This results in the following theorem.

Theorem C.4 (Theorem 3 of (Tian & Pearl, 2002b) with
respect to ADMG H = Reduction(G,W)). Let P be a
CBN over a causal graph G = (V, E→ ∪ E↔), X ∈ V
be a designated variable and Y ⊆ V \X. Let S1, . . . ,S`
are the c-components of G and without loss of generality
assume X ∈ S1. Suppose that G satisfies Assumption 2.1.
Let W = Y ∪ Pa+

G(S1) for Y ⊆ V \ {X}. Let H =
Reduction(G,W) and let S′1, . . . ,S

′
`′ be the c-components

of H where without loss of generality let S1 = S′1. Then
for any setting x to X and any assignment t to W \ {X}
the interventional distribution Px(t) is given by:

Px(t) = PtW\S′
1
(tS′

1\{X}) ·
`′∏
j=2

PtW\(S′
j
∪{X})◦x(tS′

j
)

=
∑
x̃∈Σ

QS′
1
(t ◦ x̃) ·

`′∏
j=2

QS′
j
(t ◦ x)

This proves part (A) discussed before. Next we prove part
(B): where we provide bounds on the in-degree and the car-
dinality of c-components of H .

Lemma C.5. Let S1 be the c-component of G that con-
tains X . Let W = Y ∪ Pa+

G(S1), H = Reduction(G,W)
and let the c-components of H are denoted by S′1, . . . ,S

′
`′

without loss of generality let S1 = S′1. Then:

1. The in-degree of H is at most f + k(d+ 1).

2. |S′i| 6 f + kd, for every i.

Proof. The fact that H contains at most f + k(d + 1)
vertices provides the bound on the in-degree. We know
from Lemma C.3 that S′1 is a c-component of H and the
remaining vertices of H is (Y ∪ Pa+

H(S′1)) \ S′1 which is
of size at most f + kd (since S1 = S′1 and Pa+

G(S1) =
PaH(S1)). �

We have now gathered the tools required to prove Theo-
rem 2.5.
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Proof of Theorem 2.5. Let W = Y ∪ Pa+
G(S1) and

let H = Reduction(G,W). The reduction H =
Reduction(G,W) can be performed using breadth first
search/depth first search which can be done in time lin-
ear in the size of the input graph. We obtained an
equivalent statement of Theorem 3.6 in Theorem C.4.
Also from Lemma C.3 we know that the model over the
causal graphH satisfies both Assumption 2.1 and Assump-
tion 2.2. Hence by substituting n by f + k(d + 1) – the
cardinality of observables of H; k by f + kd – the size of
the largest c-component of H; and d by f + k(d + 1) –
the in-degree of H , into Theorem 2.3 we obtain the desired
bounds on sample and time complexities. �


