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Abstract 
A growing body of research has shown that many 
classifiers are susceptible to adversarial exam-
ples – small strategic modifications to test inputs 
that lead to misclassification. In this work, we 
study general non-parametric methods, with a 
view towards understanding when they are ro-
bust to these modifications. We establish general 
conditions under which non-parametric methods 
are r-consistent – in the sense that they converge 
to optimally robust and accurate classifiers in the 
large sample limit. 

Concretely, our results show that when data is 
well-separated, nearest neighbors and kernel clas-
sifiers are r-consistent, while histograms are not. 
For general data distributions, we prove that pre-
processing by Adversarial Pruning (Yang et al., 
2019) – that makes data well-separated – followed 
by nearest neighbors or kernel classifiers also 
leads to r-consistency. 

1. Introduction 
Recent work has shown that many classifiers tend to be 
highly non-robust and that small strategic modifications to 
regular test inputs can cause them to misclassify (Szegedy 
et al., 2014; Goodfellow et al., 2014; Lowd & Meek, 2005). 
Motivated by the use of machine learning in safety-critical 
applications, this phenomenon has recently received con-
siderable interest; however, what exactly causes this phe-
nomenon – known in the literature as adversarial examples 
– still remains a mystery. 

Prior work has looked at three plausible reasons why ad-
versarial examples might exist. The first, of course, is the 
possibility that in real data distributions, different classes are 
very close together in space – which does not seem plausible 
in practice. Another possibility is that classification algo-
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rithms may require more data to be robust than to be merely 
accurate; some prior work (Schmidt et al., 2018; Wang et al., 
2018; Montasser et al., 2019) suggests that this might be true 
for certain classifiers or algorithms. Finally, others (Salman 
et al., 2019; Avdiukhin et al., 2019; Wang et al., 2018) have 
suggested that better training algorithms may give rise to 
more robust classifiers – and that in some cases, finding 
robust classifiers may even be computationally challenging. 

In this work, we consider this problem in the context of 
general non-parametric classifiers. Contrary to parametrics, 
non-parametric methods are a form of local classifiers, and 
include a large number of pattern recognition methods such 
as nearest neighbors, decision trees, random forests and 
kernel classifiers. There is a richly developed statistical 
theory of non-parametric methods (Devroye et al., 1996), 
which focuses on accuracy, and provides very general con-
ditions under which these methods converge to the Bayes 
optimal with growing number of samples. We, in contrast, 
analyze robustness properties of these methods, and ask 
instead when they converge to the classifier with the highest 
astuteness at a desired radius r. Recall that the astuteness of 
a classifier at radius r is the fraction of points from the dis-
tribution on which it is accurate and has the same prediction 
up to a distance r (Wang et al., 2018; Schmidt et al., 2018). 

We begin by looking at the very simple case when data from 
different classes is well-separated – by at least a distance 
2r. Although achieving astuteness in this case may appear 
trivial, we show that even in this highly favorable case, 
not all non-parametric methods provide robust classifiers – 
and this even holds for methods that converge to the Bayes 
optimal in the large sample limit. 

This raises the natural question – when do non-parametric 
methods produce astute classifiers? We next provide condi-
tions under which a non-parametric method converges to the 
most astute classifier in the large sample limit under well-
separated data. Our conditions are analogous to the classical 
conditions for convergence to the Bayes optimal (Devroye 
et al., 1996; Stone, 1977), but a little stronger. We show 
that nearest neighbors and kernel classifiers whose kernel 
functions decay fast enough, satisfy these conditions, and 
hence converge to astute classifiers in the large sample limit. 
In constrast, histogram classifiers, which do converge to the 
Bayes optimal in the large sample limit, may not converge 
to the most astute classifier. This indicates that there may 
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be some non-parametric methods, such as nearest neighbors 
and kernel classifiers, that are more naturally robust when 
trained on well-separated data, and some that are not. 

What happens when different classes in the data are not as 
well-separated? For this case, (Yang et al., 2019) proposes 
a method called Adversarial Pruning that preprocesses the 
training data by retaining the maximal set of points such 
that different classes are distance ≥ 2r apart, and then trains 
a non-parametric method on the pruned data. We next prove 
that if a non-parametric method has certain properties, then 
the classifier produced by Adversarial Pruning followed by 
the method does converges to the most astute classifier in the 
large sample limit. We show that again nearest neighbors 
and kernel classifiers whose kernel functions decay faster 
than inverse polynomials satisfy these properties. Our re-
sults thus complement and build upon the empirical results 
of (Yang et al., 2019) by providing a performance guarantee. 

What can we conclude about the cause for adversarial ex-
amples? Our results seem to indicate that at least for non-
parametrics, it is mostly the training algorithms that are 
responsible. With a few exceptions, decades of prior work 
in machine learning and pattern recognition has largely fo-
cussed on designing training methods that provide increas-
ingly accurate classifiers – perhaps to the detriment of other 
aspects such as robustness. In this context, our results serve 
to (a) provide a set of guidelines that can be used for design-
ing non-parametric methods that are robust and accurate on 
well-separated data and (b) demonstrate that when data is 
not well-separated, preprocessing through adversarial prun-
ing (Yang et al., 2019) may be used to ensure convergence 
to optimally astute solutions in the large sample limit. 

1.1. Related Work 

There is a large body of work on adversarial attacks (Carlini 
& Wagner, 2017; Liu et al., 2017; Papernot et al., 2017; 
2016a; Szegedy et al., 2014) and defenses (Hein & An-
driushchenko, 2017; Katz et al., 2017; Madry et al., 2018; 
Papernot et al., 2016b; Raghunathan et al., 2018; Sinha 
et al., 2018) in the parametric setting, specifically focusing 
on neural networks. On the other hand, adversarial exam-
ples for nonparametric classifiers have mostly been studied 
in a much more ad-hoc manner, and to our knowledge, there 
has been no theoretical investigation into general properties 
of algorithms that promote robustness in non-parametric 
classifiers. 

For nearest neighbors, there has been some prior work on ad-
versarial attacks (Amsaleg et al., 2017; Sitawarin & Wagner, 
2019; Wang et al., 2018; Yang et al., 2019) as well as de-
fenses. Wang et. al. (Wang et al., 2018) proposes a defense 
for 1-NN by pruning the input sample. However, their de-
fense learns a classifier whose robustness regions converge 
towards those of the Bayes optimal classifier, which itself 

may potentially have poor robustness properties. Yang et. al. 
(Yang et al., 2019) accounts for this problem by proposing 
the notion of the r-optimal classifier, and propose an algo-
rithm called Adversarial Pruning which can be interpreted 
as a finite sample approximation to the r-optimal. How-
ever, they do not provide formal performance guarantees for 
Adversarial Pruning, which we do. 

For Kernel methods, Hein and Andriushchenko (Hein & 
Andriushchenko, 2017) study lower bounds on the norm of 
the adversarial manipulation that is required for changing a 
classifiers output. They specifically study bounds for Kernel 
Classifiers, and propose an empirically based regularization 
idea that improves robustness. In this work, we improve 
the robustness properties of kernel classification through 
adversarial pruning, and show formal guarantees regarding 
convergence towards the r-optimal classifier. 

For decision trees and random forests, attacks and defenses 
have been provided by (Andriushchenko & Hein, 2019; 
Kantchelian et al., 2015; Chen et al., 2019). Again, most 
of the work here is empirical in nature, and convergence 
guarantees are not provided. 

Pruning has a long history of being applied for improving 
nearest neighbors (Gates, 1972; Gottlieb et al., 2014; Hart, 
1968; Kontorovich et al., 2017; Kontorovich & Weiss, 2015; 
Hanneke et al., 2019), but this has been entirely done in the 
context of generalization, without accounting for robustness. 
In their work, Yang et. al. empirically show that adversarial 
pruning can improve robustness for nearest neighbor classi-
fiers. However, they do not provide any formal guarantees 
for their algorithms. In this work, we prove formal guaran-
tees for adversarial pruning in the large sample limit, both 
for nearest neighbors as well as for more general weight 
functions. 

There is a long history of literature for understanding the 
consistency of Kernel classifiers (Steinwart, 2005; Stone, 
1977), but this has only been done for accuracy and general-
ization. In this work, we find different conditions are needed 
to ensure that a Kernel classifier converges in robustness in 
addition to accuracy. 

2. Preliminaries 
2.1. Setting 

We consider binary classification where instances are drawn 
from a totally bounded metric space X that is equipped 
with distance metric denoted by d, and the label space is 
{±1} = {−1, +1}. The classical goal of classification is 
to build a highly accurate classifier, which we define as 
follows. 

Definition 1. (Accuracy) Let D be a distribution over 
X × {±1}, and let f ∈ {±1}X be a classifier. Then the 
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accuracy of f over D, denoted A(f, D), is the fraction of 
examples (x, y) ∼ D for which f(x) = y. Thus 

A(f, D) = P(x,y)∼D[f(x) = y]. 

In this work, we consider robustness in addition to accuracy. 
Let B(x, r) denoted the closed ball of radius r centered at 
x. 
Definition 2. (Robustness) A classifier f ∈ {±1}X is said 
to be robust at x with radius r if f(x) = f(x0) for all 
x0 ∈ B(x, r). 

Our goal is to find non-parametric algorithms that output 
classifiers that are robust, in addition to being accurate. To 
account for both criteria, we combine them into a notion of 
astuteness (Wang et al., 2018; Schmidt et al., 2018). 
Definition 3. (Astuteness) A classifier f ∈ {±1}X is said 
to be astute at (x, y) with radius r if f is robust at x with 
radius r and f(x) = y. The astuteness of f over D, denoted 
Ar(f, D), is the fraction of examples (x, y) ∼ D for which 
f is astute at (x, y) with radius r. Thus 

Ar(f, D) = P(x,y)∼D[f(x 0) = y, ∀x 0 ∈ B(x, r)]. 

It is worth noting that A0(f, D) = A(f, D), since astuteness 
with radius 0 is simply the accuracy. For this reason, we will 
use A0(f, D) to denote accuracy from this point forwards. 

2.2. Notions of Consistency 

Traditionally, a classification algorithm is said to be consis-
tent if as the sample size grows to infinity, the accuracy of 
the classifier it learns converges towards the best possible 
accuracy on the underlying data distribution. We next in-
troduce and formalize an alternative form of consistency, 
called r-consistency, that applies to robust classifiers. 

We begin with a formal definition of the Bayes Optimal 
Classifier – the most accurate classifier on a distribution – 
and consistency. 
Definition 4. (Bayes Optimal Classifier) The Bayes Opti-
mal Classifier on a distribution D, denoted by g ∗, is defined 
as follows. Let η(x) = pD(+1|x). Then ( 

+1 η(x) ≥ 0.5 
g ∗ (x) = 

−1 η(x) < 0.5 

∗It can be shown that g achieves the highest accuracy over 
D over all classifiers. 
Definition 5. (Consistency) Let M be a classification algo-
rithm over X × {±1}. M is said to be consistent if for any 
D over X × {±1}, and any �, δ over (0, 1), there exists N 
such that for n ≥ N , with probability 1 − δ over S ∼ Dn , 
we have: 

∗ A(M(S), D) ≥ A(g , D) − �, 
∗where g is the Bayes optimal classifier for D. 

How can we incorporate robustness in addition to accuracy 
in this notion? A plausible way, as used in (Wang et al., 
2018), is that the classifier should converge towards being 
astute where the Bayes Optimal classifier is astute. However, 
the Bayes Optimal classifier is not necessarily the most 
astute classifier and may even have poor astuteness. To see 
this, consider the following example. 

Example 1 Consider D over X = [0, 1] such that DX is 
the uniform distribution and 

1 4πx 
p(y = 1|x) = + sin . 

2 r 

For any point x, there exists x1, x2 ∈ ([x − r, x + r] ∩ [0, 1]) 
1 1such that p(y = 1|x1) > and p(y = 1|x2) < .2 2 

∗Ar(g , r) = 0. However, the classifier that always predicts 
f(x) = +1 does better. It is robust everywhere, and since 

1 1P(x,y)∼D[y = +1] = , it follows that Ar(f, D) = .2 2 

This motivates the notion of the r-optimal classifier, intro-
duced by (Yang et al., 2019), which is the classifier with 
maximum astuteness. 

Definition 6. (r-optimal classifier) The r-optimal classi-
∗fier of a distribution G denoted by g is the classifier with r 

maximum astuteness. Thus 

∗ g = arg max Ar(f, D).r 
f∈{±1}X 

∗We let A∗(D) denote Ar(g , D).r r 

∗Observe that g is not necessarily unique. To account for r 
this, we use A∗(D) in our definition for r-consistency. r 

Definition 7. (r-consistent) Let M be a classification algo-
rithm over X × {±1}. M is said to be r-consistent if for 
any D, any �, δ ∈ (0, 1), and 0 < γ < r, there exists N 
such that for n ≥ N , with probability 1 − δ over S ∼ Dn , 

Ar−γ (M(S), D) ≥ A ∗ (D) − �.r 

if the above conditions hold for a specific distribution D, we 
say that M is r-consistent with respect to D. 

Observe that in addition to the usual � and δ, there is an 
extra parameter γ which measures the gap in the robustness 
radius. We may need this parameter as when classes are 
exactly 2r apart, we may not be able to find the exact robust 
boundary with only finite samples. 

Our analysis will be centered around understanding what 
kinds of algorithms M provide highly astute classifiers for 
a given radius r. We begin by first considering the special 
case of r-separated distributions. 
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Definition 8. (r-separated distributions) A distribution D 
is said to be r-separated if there exist subsets T +, T − ⊂ X 
such that 

1. P(x,y)∼D[x ∈ T y] = 1. 

2. ∀x1 ∈ T + , ∀x2 ∈ T − , d(x1, x2) > 2r. 

∗Observe that if D is r-separated, Ar(g , D) = 1.r 

2.3. Non-parametric Classifiers 

Many non-parametric algorithms classify points by averag-
ing labels over a local neighborhood from their training data. 
A very general form of this idea is encapsulated in weight 
functions – which is the general form we will use. 

Definition 9. (Devroye et al., 1996) A weight function W 
is a non-parametric classifier with the following properties. 

1. Given input S = 
{(x1, y1), (x2, y2, ), . . . , (xn, yn)} ∼ Dn , W 

S S Sconstructs functions w1 , w2 , . . . , w : X → [0, 1]nPn Ssuch that for all x ∈ X , 1 wi (x) = 1. The 
Sfunctions w are allowed to depend on x1, x2, . . . xni 

but must be independent of y1, y2, . . . , yn. 

2. W has output WS defined as ( Pn S+1 (x)yi > 01 wiWS (x) = Pn S−1 1 w (x)yi ≤ 0i 

SAs a result, wi (x) can be thought of as the weight that 
(xi, yi) has in classifying x. 

Weight functions encompass a fairly extensive set of com-
mon non-parametric classifiers, which is the motivation for 
considering them. We now define several common non-
parametric algorithms that can be construed as weight func-
tions. 

Definition 10. A histogram classifier, H , is a non-
parametric classification algorithm over Rd × {±1} that 
works as follows. For a distribution D over R × {±1}, H 
takes S = {(xi, yi) : 1 ≤ i ≤ n} ∼ Dn as input. Let ki 
be a sequence with limi→∞ ki = ∞ and limi→∞ 

ki = 0.i 
H constructs a set of hypercubes C = {c1, c2, . . . , cm} as 
follows: 

1. Initially C = {c}, where S ⊂ c. 

2. For c ∈ C, if c contains more than kn points of S, then 
partition c into 2d equally sized hypercubes, and insert 
them into C. 

3. Repeat step 2 until all cubes in C have at most kn 

points. 

For x ∈ R let c(x) denote the unique cell in C contain-
ing x. If c(x) doesn’t exist, then HS (x) = −1 by default. 
Otherwise, ( P 

+1 xi∈c(x) yi > 0 
HS (x) = P . 

−1 xi∈c(x) yi ≤ 0 

Histogram classifiers are weight functions in which all xi 

contained within the same cell as x are given the same 
Sweight wi (x) in predicting x, while all other xi are given 

weight 0. 

Definition 11. A kernel classifier is a weight function W 
over X ×{±1} constructed from function K : R+ ∪{0} → 
R+ and some sequence {hn} ⊂ R+ in the following manner. 
Given S = {(xi, yi)} ∼ Dn , we have 

d(x,xi)K( hn 
)

S wi (x) = P . 
n d(x,xj )K( )j=1 hn 

Then, as above, W has output ( Pn S+1 (x)yi > 01 wiWS (x) = Pn S−1 1 wi (x)yi ≤ 0 

Finally, we note that kn-nearest neighbors is also a weight 
S 1function; wi (x) = kn 

if xi is one of the kn closest neigh-
bors of x and 0 otherwise. 

3. Warm Up: r-separated distributions 
We begin by considering the case when the data distribution 
is r-separated; the more general case is considered in Sec-
tion 4. While classifying r-separated distributions robustly 
may appear almost trivial, learning an arbitrary classifier 
does not necessarily produce an astute result. To see this, 
consider the following example of a histogram classifier – 
which is known to be consistent. 

We let H denote the histogram classifier over R. 

Example 2 Consider the data distribution D = D+ ∪D− 

1where D+ is the uniform distribution over [0, ) and D− 
4 

is the uniform distribution over ( 12 , 1], p(+1|x) = 1 for 
x ∈ D+, and p(−1|x) = 1 for x ∈ D− . 

We make the following observations (refer to Figure 1). 

1. D is 0.1-separated, since the supports of D+ and D− 

have distance 0.25 > 0.2. 

2. If n is sufficiently large, H will construct the cell 
[0.25, 0.5), which will not be split because it will never 
contain any points. 

3. HS (x) = −1 for x ∈ [0.25, 0.5). 
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D+ D− 

0 0.25 0.5 1 

Figure 1. HS is astute in the green region, but not robust in the red 
region. 

4. HS is not astute at (x, 1) for x ∈ (0.15, 0.25). Thus 
A0.1(HS , D) = 0.8. 

Example 2 shows that histogram classifiers do not always 
learn astute classifiers even when run on r-separated distri-
butions. This motivates the question: which non-parametric 
classifiers do? 

We answer this question in the following theorem, which 
gives sufficient conditions for a weight function (definition 
9) to be r-consistent over an r-separated distribution. 
Theorem 12. Let D be a distribution over X × 
{±1}, and let W be a weight function. Let X be 
a random variable with distribution DX , and S = 
{(x1, y1), (x2, y2), . . . , (xn, yn)} ∼ Dn . Suppose that for 
any 0 < a < b, 

n� X �
Slim EX,S sup wi (x 0)I||xi −x0 ||>b = 0. 

n→∞ x0∈B(X,a) 1 

Then if D is r-separated, W is r-consistent with respect to 
D. 

First, we compare Theorem 12 to Stone’s theorem (Stone, 
1977), which gives sufficient conditions for a weight func-
tion to be consistent (i.e. converge in accuracy towards the 
Bayes optimal). For convenience, we include a statement of 
Stone’s theorem. 
Theorem 13. (Stone, 1977) Let W be weight function 
over X × {±1}. Suppose the following conditions 
hold for any distribution D over X × {±1}. Let X 
be a random variable with distribution DX , and S = 
{(x1, y1), (x2, y2), . . . , (xn, yn)} ∼ Dn . All expectations 
are taken over X and S. 

1. There is a constant c such that, for every nonnegative 
measurable function f satisfying E[f(X)] < ∞, 

nX 
SE[ wi (X)f(xi)] ≤ cE[f(x)]. 

1 

2. For all a > 0, 
nX 

Slim E[ wi (x)I||xi−X||>a] = 0, 
n→∞ 

1 

where I||xi −X||>a is an indicator variable. 

3. 
Slim E[ max wi (X)] = 0. 

n→∞ 1≤i≤n 

Then W is consistent. 

There are two main differences between Theorem 12 and 
Stone’s theorem. 

1. Conditions 1. and 3. of Stone’s theorem are no longer 
necessary. This is because r-separated distributions 
are well-separated and thus have simpler conditions 
for consistency. In fact, a slight modification of the 
arguments of (Stone, 1977) shows that for r-separated 
distributions, condition 2. alone is sufficient for consis-
tency. 

2. Condition 2. is strengthened. Instead of requiring the 
weight of xi’s outside of a given radius to go to 0 for 
X ∼ D, we require the same to uniformly hold over a 
ball centered at X . 

Theorem 12 provides a general condition that allows us to 
verify the r-consistency of non-parametric methods. We 
now show below that two common non-parametric algo-
rithms – kn-nearest neighbors and kernel classifiers with 
rapidly decaying kernel functions – satisfy the conditions of 
Theorem 12. 

Corollary 14. Let D be any r-separated distribution. Let 
kn be any sequence such that limn→∞ 

kn = 0, and let M n 
be the kn-nearest neighbors classifier on a sample S ∼ Dn . 
Then M is r-consistent with respect to D. 

Remarks: 

1. Because the data distribution is r-separated, kn = 1 
will be r-consistent. Also observe that for r-separated 
distributions, kn = 1 will converge towards the Bayes 
Optimal classifier. 

2. In general, M converges towards the Bayes Opti-
mal classifier provided that kn → ∞ in addition to 
kn/n → 0. This condition is not necessary for r-
consistency– because the distribution is r-separated. 

We next show that kernel classifiers are also r-consistent on 
r-separated data distributions, provided the kernel function 
decreases rapidly enough. 

Corollary 15. Let W be a kernel classifier over X ×{±1}
constructed from K and hn. Suppose the following proper-
ties hold for K and hn. 

K(cx)1. For any c > 1, limx→∞ K(x) = 0. 
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2. limn→∞ hn = 0. 

If D is an r-separated distribution over X × {±1}, then W 
is r-consistent with respect to D. 

Observe that Condition 1. is satisfied for any K(x) that 
decreases more rapidly than an inverse polynomial – and is 
hence satisfied by most popular kernels like the Gaussian 
kernel. Is the condition on K in Corollary 15 necessary? 
The following example illustrates that a kernel classifier 
with any arbitrary K is not necessarily r-consistent. This 
indicates that some sort of condition needs to be imposed 
on K to ensure r-consistency; finding a tight necessary 
condition however is left for future work. 

Example 3 Let X = [−1, 1] and let D be a distribution 
with pD(−1, −1) = 0.1 and pD(1, 1) = 0.9. Clearly, D 

− min(|x|,0.2)2is 0.3-separated. Let K(x) = e . Let hn be 
any sequence with limn→∞ hn = 0 and limn→∞ nhn = 
∞. Let W be the weight classifier with input S = 
{(x1, y1), (x2, y2), . . . , (xn, yn)} such that 

|x−xi|K( ) 
wi

S (x) = hn .Pn |x−xj |K( )j=1 hn 

W can be shown to satisfy all the conditions of Theorem 13 
(the proof is analogous to the case for a Gaussian Classifier), 
and is therefore consistent. However, W does not learn a 
robust classifier on D for r = 0.3. 

Consider x = −0.7. For any 
{(x1, y1), (x2, y2), . . . , (xn, yn)} ∼ Dn , all xi will either 
be −1 or 1. Therefore, since K(|x − (−1)|) = K(|x − 1|), 

S 1it follows that wi (x) = n for all 1 ≤ i ≤ n. Since xi = 1 
with probability 0.9, it follows that with high probability x 
will be classified as 1 which means that f , the output of W , 
is not robust at x = −1. Thus f has astuteness at most 0.9 
which means that W is not r-consistent for r = 0.3. 

4. General Distributions 
We next consider more general data distributions, where 
data from different classes may be close together in space, 
and may even overlap. Observe that unlike the r-separated 
case, here there may be no classifier with astuteness one. 
Thus, a natural question is: what does the optimally astute 
classifier look like, and how can we build non-parametric 
classifiers to this limit? 

4.1. The r-Optimal Classifier and Adversarial Pruning 

(Yang et al., 2019) propose a large-sample limit – called 
the r-optimal – and show that it is analogous to the Bayes 

Optimal classifier for robustness. More specifically, given a 
data distribution D, to find the r-optimal classifier, we solve 
the following optimization problem. 

Z 
max p(y = +1|x)dµD(x)+ 

S+1 ,S−1 x∈S+1Z 
p(y = −1|x)dµD(x) (1) 

x∈S−1 

subject to d(S+1, S−1) > 2r 

Then, the r-optimal classifier is defined as follows. 

Definition 16. (Yang et al., 2019) Fix r, D. Let S∗ and+1 
S∗ be any optimizers of (1). Then the r-optimal clas-−1 

∗ ∗sifier, g is any classifier such that g (x) = j whenever r r 
d(Sj 

∗ , x) ≤ r. 

(Yang et al., 2019) show that the r-optimal classifier 
achieves the optimal astuteness – out of all classifiers on 
the data distribution D; hence, it is a robustness analogue 
to the Bayes Optimal Classifier. Therefore, for general 
distributions, the goal in robust classification is to find non-
parametric algorithms that output classifiers that converge 

∗towards g .r 

To find robust classifiers, (Yang et al., 2019) propose Ad-
versarial Pruning – a defense method that preprocesses the 
training data by making it better separated. More specifi-
cally, Adversarial Pruning takes as input a training dataset 
S and a radius r, and finds the largest subset of the training 
set where differently labeled points are at least distance 2r 
apart. 

Definition 17. A set Sr ⊂ X × {±1} is said to be r-
separated if for all (x1, y1), (x2, y2) ∈ Sr, if y1 6= y2, 
then d(x1, x2) > 2r. To adversarially prune a set S is to 
return its largest r-separated subset. We let AdvP run(S, r) 
denote the result of adversarially pruning S. 

Once an r-separated subset Sr of the training set is 
found, a standard non-parametric method is trained on Sr. 
While (Yang et al., 2019) show good empirical performance 
of such algorithms, no formal guarantees are provided. We 
next formally characterize when adversarial pruning fol-
lowed by a non-parametric method results in a classifier that 
is provably r-consistent. 

Specifically, we consider analyzing the general algorithm 
provided in Algorithm 1. 

4.2. Convergence Guarantees 

We begin with some notation. For any weight function 
W and radius r > 0, we let RobustNonP ar(W, r) repre-
sent the weight function that outputs weights for S ∼ Dn 
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Algorithm 1 RobustNonPar 

Input: S ∼ Dn, weight function W , robustness radius r 
Sr ← AdvP run(S, r) 
Output: WSr 

according to RobustNonP ar(S, W, r). In particular, this 
can be used to convert any weight function algorithm into 
a new weight function which takes robustness into account. 
A natural question is, for which weight functions W is 
RobustNonP ar(W, r) r-consistent? Our next theorem pro-
vides sufficient conditions for this. 

Theorem 18. Let W be a weight function over X × {±1}, 
and let D be a distribution over X × {±1}. Fix r > 0. 
Let Sr = AdvP run(S, r). For convenience, relabel xi, yi 
so that Sr = {(x1, y1), (x2, y2), . . . , (xm, ym)}. Suppose 
that for any 0 < a < b, 

m m� 1 X X �
Srlim ES∼Dn sup w (x)I||xj −x||>b = 0.jn→∞ m x∈B(xi,a)i=1 j=1 

Then RobustNonP ar(W, r) is r-consistent with respect to 
D. 

Remark: There are two important differences between 
the conditions in Theorem 18 and Theorem 12. 

1. We replace S with Sr. 

2. The expectation over X ∼ DX is replaced with an 
average over {x1, x2, . . . , xm}. The intuition here is 
that we are replacing D with a uniform distribution 
over Sr. While D may not be r-separated, the uniform 
distribution over Sr is, and represents the region of 
points where our classifier is astute. 

A natural question is what satisfies the conditions in Theo-
rem 18. We next show that kn-nearest neighbors and kernel 
classifiers with rapidly decaying kernel functions continue 
to satisfy the conditions in Theorem 18; this means that 
these classifiers, when combined with Adversarial Pruning, 
will converge to r-optimal classifiers in the large sample 
limit. 

knCorollary 19. Let kn be a sequence with limn→∞ = 0,n 
and let M denote the kn-nearest neighbor algorithm. Then 
for any r > 0, RobustNonP ar(M, r) is r-consistent. 

Remark: Corollary 19 gives a formal guarantee in the 
large sample limit for the modified nearest-neighbor algo-
rithm proposed by (Yang et al., 2019). 

Corollary 20. Let W be a kernel classifier over X ×{±1}
constructed from K and hn. Suppose the following proper-
ties hold for K and hn. 

K(cx)1. For any c > 1, limx→∞ K(x) = 0. 

2. limn→∞ hn = 0. 

Then for any r > 0, RobustNonP ar(W, r) is r-consistent. 

Observe again that Condition 1. is satisfied by any K that 
decreases more rapidly than an inverse polynomial kernel; 
it is thus satisfied by most popular kernels, such as the 
Gaussian kernel. 

5. Validation 
Our theoretical results are, by nature, large sample; we next 
validate how well they apply to the finite sample case by 
trying them out on a simple example. In particular, we ask 
the following question: 

How does the robustness of non-parametric clas-
sifiers change with increasing sample size? 

This question is considered in the context of two simple 
non-parametric classifiers – one nearest neighbor (which 
is guaranteed to be r-consistent) and histograms (which is 
not). To be able to measure performance with increasing 
data size, we look at a simple synthetic dataset – the Half 
Moons. 

5.1. Experimental Setup 

Classifiers and Dataset. We consider two different clas-
sification algorithms – one nearest neighbor (NN) and a 
Histogram Classifier (HC). We use the Halfmoon dataset 
with two settings of the gaussian noise parameter σ, σ = 0 
(Noiseless) and σ = 0.08 (Noisy). For the Noiseless set-
ting, observe that the data is already 0.1-separated; for the 
Noisy setting, we use Adversarial Pruning (Algorithm 1) 
with parameter r = 0.1 for both classification methods. 

Performance Measure. We evaluate robustness with re-
spect to the ` ∞ metric, that is commonly used in the adver-
sarial examples literature. Specifically, for each classifier, 
we calculate the empirical astuteness, which is the fraction 
of test examples on which it is astute. 

Observe that computing the empirical astuteness of a clas-
sifier around an input x amounts to finding the adversarial 
example that is closest to x according to the ` ∞ norm. For 
the 1-nearest neighbor, we do this using the optimal attack 
algorithm proposed by Yang et. al. (Yang et al., 2019). For 
the histogram classifier, we use the optimal attack frame-
work proposed by (Yang et al., 2019), and show that the 
structure of the classifier can be exploited to solve the con-
vex program efficiently. Details are in Appendix C. 
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(a) Noiseless Histogram (b) Noisy Histogram (c) Histogram trained on 500 samples 

(d) Noiseless 1-NN (e) Noisy 1-NN (f) Histogram trained on 3000 samples 

Figure 2. Empirical accuracy/astuteness of different classifiers as a function of training sample size. Accuracy is shown in green, astuteness 
in purple. Left : Noiseless Setting. Right: Noisy Setting. Top Row: Histogram Classifier, Bottom Row: 1-Nearest Neighbor 

We use an attack radius of r = 0.1 for the Noiseless setting, 
and r = 0.09 for the Noisy setting. For all classification 
algorithms, we plot the empirical astuteness as a function 
of the training set size. As a baseline, we also plot their 
standard accuracy on the test set. 

5.2. Results 

The results are presented in Figure 2; the left two panels are 
for the Noiseless setting while the two center ones are for 
the Noisy setting. 

The results show that as predicted by our theory, for the 
Noiseless setting, the empirical astuteness of nearest neigh-
bors converges to 1 as the training set grows. For Histogram 
Classifiers, the astuteness converges to 0.5 – indicating that 
the classifier may grow less and less astute with higher 
sample size even for well-separated data. This is plausi-
bly because the cell size induced by the histogram grows 
smaller with growing training data; thus, the classifier that 
outputs the default label −1 in empty cells is incorrect on 
adversarial examples that are close to a point with +1 label, 
but belongs to a different, empty cell. The rightmost panels 
in Figure 2 provide a visual illustration of this process. 

For the Noisy setting, the empirical astuteness of adversar-
ial pruning followed by nearest neighbors converges to 0.8. 
For histograms with adversarial pruning, the astuteness con-
verges to 0.7, which is higher than the noiseless case but 

5.3. Discussion 

Our results show that even though our theory is asymp-
totic, our predictions continue to be relevant in finite sample 
regimes. In particular, on well-separated data, nearest neigh-
bors that we theoretically predict to be intrinsically robust 
is robust; histogram classifiers, which do not satisfy the con-
ditions in Theorem 12 are not. Our predictions continue to 
hold for data that is not well-separated. Nearest neighbors 
coupled with Adversarial Pruning continues to be robust 
with growing sample size, while histograms continue to be 
non-robust. Thus our theory is confirmed by practice. 

6. Conclusion 
In conclusion, we rigorously analyze when non-parametric 
methods provide classifiers that are robust in the large sam-
ple limit. We provide a general condition that characterizes 
when non-parametric methods are robust on well-separated 
data, and show that Adversarial Pruning of (Yang et al., 
2019) works on data that is not well-separated. 

Our results serve to provide a set of guidelines that can 
be used for designing non-parametric methods that are ro-
bust and accurate on well-separated data; additionally, we 
demonstrate that when data is not well-separated, prepro-
cessing by adversarial pruning (Yang et al., 2019) does lead 
to optimally astute solutions in the large sample limit. 

still clearly sub-optimal. 
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