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Abstract
We consider a variant of the classical online lin-
ear optimization problem in which at every step,
the online player receives a “hint” vector before
choosing the action for that round. Rather sur-
prisingly, it was shown that if the hint vector is
guaranteed to have a positive correlation with the
cost vector, then the online player can achieve
a regret of O(log T ), thus significantly improv-
ing over the O(

√
T ) regret in the general setting.

However, the result and analysis require the cor-
relation property at all time steps, thus raising the
natural question: can we design online learning
algorithms that are resilient to bad hints?
In this paper we develop algorithms and nearly
matching lower bounds for online learning with
imperfect directional hints. Our algorithms are
oblivious to the quality of the hints, and the regret
bounds interpolate between the always-correlated
hints case and the no-hints case. Our results also
generalize, simplify, and improve upon previous
results on optimistic regret bounds, which can be
viewed as an additive version of hints.

1. Introduction
In the standard online convex optimization model (Zinke-
vich, 2003), at each time step t, an algorithm first plays a
point xt in a convex set, and then the system responds with
a convex loss function. The loss incurred by the algorithm is
the function evaluated at the point xt. The performance of
an algorithm is measured using the concept of regret. The
regret of an algorithm is the difference between the total
loss it incurs and the loss of the best fixed point it could have
played (in hindsight); algorithms with sub-linear regret are
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hence desirable. The framework of online convex optimiza-
tion is quite powerful, general, and has been extensively
studied. Many important problems such as portfolio selec-
tion, learning from mixture of experts, matrix completion,
recommendation systems, and certain online combinato-
rial optimization problems can be cast in this framework.
For a detailed exposition, see the books by Hazan (2016)
and Shalev-Shwartz (2011).

An important special case of online convex optimization
is when the loss function is actually linear, i.e., the loss
function is given by a cost vector. In this case, algorithms
with regret O(

√
T ), where T is the number of steps, are

known (Zinkevich, 2003; Kalai & Vempala, 2005); further-
more, this bound is also optimal (Cesa-Bianchi & Lugosi,
2006). In fact, from a regret point of view, the linear case is
the hardest since if the loss function is strongly convex, then
there are algorithms achieving only O(log T ) regret (Hazan
et al., 2007). There has been some effort to better under-
stand the regret landscape of linear loss functions, especially
on how to circumvent the pessimistic Ω(

√
T ) barrier.

A particularly intriguing line of work was initiated by Hazan
& Megiddo (2007), who modeled a notion of predictability
in online learning settings. In their model, the algorithm
knows the first coordinate of the cost vector at all time
steps. Under this assumption, they showed a regret bound
of O(d2/α · log T ) when the convex set is the Euclidean
ball, where α is the magnitude of the first coordinate that
is known to the algorithm and d is the dimension of the
space. Their work was subsequently generalized and ex-
tended by Dekel et al. (2017), who considered a scenario
when the online algorithm is provided with a directional
hint at each step; this hint is assumed to be always weakly
but positively correlated with the cost vector. They showed
a regret bound of O(d/α · log T ), where α is the amount of
correlation present in the hint.

The biggest drawback in these previous works is that they
require the hints to be helpful at every time step. Clearly,
this is a stringent requirement that may easily fail to hold.
This is especially so if the hints are provided by, say, a
learning algorithm! In such a scenario, one can only expect
the hints to be good on average or have other probabilistic
guarantees of goodness. This means in particular that some
of the hints could potentially be very misleading. Since the
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algorithm is oblivious to the quality of each individual hint,
it is desirable to have an algorithm that is both consistent
and robust: utilize the good hints as well as possible to
minimize regret, while at the same time not be damaged too
much by bad hints. Specifically, the algorithm should never
incur worse than O(

√
T ) regret, as otherwise the algorithm

was better off not using any hints at all! This type of ML-
provided hints and their role in improving combinatorial
online algorithms have generated a lot of recent interest
for problems such as caching (Lykouris & Vassilvitskii,
2018; Rohatgi, 2020; Kumar et al., 2020), ski-rental (Kumar
et al., 2018), bipartite matching (Kumar et al., 2019), and
scheduling (Kumar et al., 2018; Lattanzi et al., 2020). This
serves as another motivation for our work.

Formulation. We consider the online convex optimiza-
tion problem with a linear loss function in the presence
of hints that can be imperfect. At each time step t, the
algorithm is provided with a hint vector ht. After the al-
gorithm plays a point xt, a cost vector ct is revealed and
the algorithm incurs a loss of 〈ct, xt〉. The hint vector ht
“typically” gives non-trivial information about ct. Formally,
given a parameter α, a hint ht is said to be good if it satisfies
〈ct, ht〉 ≥ α ‖ct‖2 and bad otherwise.

Our results. We design an algorithm that achieves
a regret bound that smoothly interpolates between the
two extreme cases when the hints ht are good at all
time steps and when hints are arbitrarily wrong. In
particular, for any α > 0, we obtain a regret of

O

(
(1 +

√
B)

α
log(1 + T −B)

)
,

whereB is the number of times steps when the hints are bad,
i.e., 〈ct, ht〉 < α ‖ct‖2. The dependence on B turns out to
be nearly optimal as we will show in Section 4. We also gen-
eralize these results when the underlying feasible space is
(q, µ)-uniformly convex and show matching lower bounds.
For the formal statements, see Theorems 3.1 and A.3.

Surprisingly, our algorithm simultaneously also yields im-
proved regret guarantees when the hint ht is viewed as an ad-
ditive estimate of the cost vector: a hint is good if ‖ct − ht‖
is small. This notion of hint was considered in Rakhlin &
Sridharan (2013); Hazan & Kale (2010); Mohri & Yang
(2016); Steinhardt & Liang (2014), who gave regret bounds

of the form O

(√∑T
t=1 ‖ct − ht‖2

)
. We achieve a regret

Õ

(√∑T
t=1(‖ct − ht‖2 − ‖ht‖2)

)
(see Corollary 3.7).

Even when restricted to the special case where the hints are
all good, our result improves upon the regret bound of Dekel
et al. (2017) in multiple ways. First, our regret bound is
dimension-free, i.e., better by a factor of the dimension of

the space. Second, our algorithm is significantly faster: their
work relied on expensive matrix calculations yielding O(d2)
computation per round, while our algorithm runs in O(d)
time, matching simple gradient descent. Third, our proofs
are simpler as we rely on loss functions that are easily seen
to be strongly convex (as opposed to proving exp-concavity).
Furthermore, for the case of q > 2, Dekel et al. (2017) only
obtained comparable regret bounds when all the hints are in
the same direction. We generalize this in two ways, allowing
different hints at each step and a small number of bad hints.

Finally, we consider the unconstrained variant of online
optimization, where the algorithm allowed to play any point
xt ∈ B, while achieving a regret that depends on ‖u‖ for all
u ∈ B. This setting is discussed in Section 5.

2. Preliminaries
Let B be a real Banach space with norm ‖ · ‖ and let B∗ be
its dual space with norm ‖ · ‖∗. Let ~c = c1, c2, . . . be cost
vectors in B∗ such that ‖ct‖∗ ≤ 1. In the classical online
learning setting, c1, c2, . . . arrive one by one and at time t,
an algorithm A responds with a vector xt ∈ B, before ct
arrives. The regret of the algorithm A for a vector u ∈ B is

RA(u,~c, T ) =
T∑

t=1

〈ct, xt − u〉,

where we use the 〈·, ·〉 notation to denote the application of
a dual vector in B∗ to a vector in B. (For instance if B is the
space Rd with ‖ · ‖ being the `2-norm, we have B = B∗ and
〈·, ·〉 will correspond to the standard inner product.)

We consider the case when there are hints available to an
algorithm. Let ~h = h1, h2, . . . be the hints, where each hint
ht ∈ B, ‖ht‖ ≤ 1, is available to the algorithm A at time t;
this hint is available before A responds with xt. The regret
definition is the same and is denotedRA(u,~c, T | ~h).

The hints need not be perfect. To capture this, let α > 0 be
a fixed threshold. We define GT,α to be the set of indices t
where the hint ht is good, i.e., has a large correlation with
ct. Similarly, we define BT,α to be the set of indices where
the hint is bad. Formally, we define:

GT,α = {t ≤ T : 〈ct, ht〉 ≥ α · ‖ct‖2∗}, and

BT,α = {t ≤ T : 〈ct, ht〉 < α · ‖ct‖2∗}.
Let BT = BT,0, i.e., the time steps when ht is negatively
correlated with ct. We will also use a compressed-sum
notation for indexed variables: a1:t =

∑t
i=1 ai.

Let K = {x ∈ B : ‖x‖ ≤ 1}. We consider two settings,
a constrained setting where we must choose xt ∈ K and
an unconstrained setting sans this restriction. In the former
case, we will be concerned only with boundingRA(u,~c, T )
for u ∈ K, while in the latter we will consider any u ∈ B.

Finally, we establish some notation about convex functions
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and spaces. For a convex function f , we use ∂f(x) ⊂ B∗
to denote the set of subgradients of f at x. We say that f is
µ-strongly convex with respect to the norm ‖·‖ if for all x, y
and g ∈ ∂f(x), we have f(y) ≥ f(x)+〈g, y−x〉+ µ

2 ‖x−
y‖2. We say that the Banach space B is µ-strongly convex
if the function 1

2‖x‖2 is µ-strongly convex with respect to
‖·‖ for some µ > 0. We note this notion is equivalent to
the definition of strong convexity of a space used in Dekel
et al. (2017); e.g., see the discussion after Definition 4.16
in Pisier (2016). Further, a Banach space is reflexive if the
natural injection i : B → B∗∗ given by 〈i(x), c〉 = 〈c, x〉
is an isomorphism of Banach spaces. Note that all finite-
dimensional Banach spaces are reflexive. Throughout this
paper, we assume that B is reflexive and µ-strongly convex.

A typical example is B = Rd with ‖ · ‖ equal to the standard
`2 norm. In this case B is reflexive and 1-strongly convex.

3. Constrained Learning with Imperfect Hints
We first consider the constrained setting of the problem in
which the online algorithm must choose a point xt ∈ K at all
time steps t ≤ T . To illustrate our main ideas, we first focus
on the case when the Banach space B is µ-strongly con-
vex. Our techniques also extend to general (q, µ)-uniformly
convex spaces and we present this extension in Appendix A.
Theorem 3.1. Consider the online linear optimization
problem over a Banach space with a µ-strongly convex
norm, where at every step we receive a hint vector ht
and need to output a point xt ∈ K. Then there is an
efficient algorithm that for any α > 0, achieves regret

O



√ ∑

t∈BT,α
‖ct‖2∗ +

rT
µα

log
(
1 +

∑

t∈GT,α
‖ct‖2∗

)

 ,

where rT =
√

1 +
∑
t∈BT |〈ct, ht〉|.

We remark about the order of quantifiers in the theorem.
The bound holds for any α > 0 and the algorithm itself is
oblivious to α. Thus, if we have B bad hints (i.e., |BT,α| =
B), then rT ≤

√
1 +B and the number of good steps is

T −B, so we obtain the upper bound of O(
√
1+B
α log(1 +

T −B)). Also, the bound is never larger than
√
T , because

if α is large, GT,α = ∅, and thus the first term is the only
one that remains, and it is ≤

√
T .

Outline of the algorithm. Our algorithm (denoted ALG)
can be best viewed as a procedure that interacts with an
“inner” online convex optimization subroutine, which we
denote by A. At every step, ALG receives a prediction xt
from A, which it modifies using the hint ht, and produces
xt. Then the algorithm receives ct, using which it produces
a function `t (which depends on ht, ct, and an additional
parameter rt that ALG maintains). This function, along with
relevant parameters, are passed toA. The key properties that

Algorithm 1 OLO with imperfect hints (Procedure ALG)
input Hints ht followed by cost vectors ct

Define λ0 = 1/µ and r0 = 1.
for t = 1 . . . T do

Get hint ht
Get xt from procedure A, and set

xt = xt +
(‖xt‖2 − 1)

2rt
ht

Play xt and receive cost ct ∈ B∗
if 〈ct, ht〉 < 0 then

Set rt+1 =
√
r2t + |〈ct, ht〉|

else
Set rt+1 = rt

end if
Define σt = |〈ct,ht〉|µ

rt
Define λt as the solution to:

λt =
‖ct‖2∗

σ1:t + µλ1:t
Send the loss function `ht,rt,ct(x), λt to procedure A
// (loss function defined in (1))

end for

Algorithm 2 FTRL with adaptive rate (Procedure A)
input Convex functions `t, parameters λt

At t = 1 return x1 = 0
for t = 2 . . . T do

Output xt := argmin‖x‖≤1 `1:t−1(x) + λ0:t−1

2 ‖x‖2
Receive loss `t and parameter λt

end for

we show are: (a) the regret of ALG can be related to the re-
gret of the procedureA, and (b) the functions `t are strongly
convex, and thus the regret of A can be bounded efficiently
using known techniques. The parameter rt encapsulates the
“confidence in hints” seen so far.

Algorithms 1 and 2 describe the procedures ALG and A.
Intuitively, given a prediction x̄t, we should be able to im-
prove the loss 〈ct, xt〉 by playing instead xt = x̄t − ht;
assuming the hint ht is positively correlated with ct. How-
ever, there are two immediate problems with this approach.
First, if ht is negatively correlated with ct then we have
actually increased the loss. Second, this addition operation
may cause xt to leave the set K, which is not allowed. We
address both concerns by setting xt = x̄t−δrt(xt)ht, where

δrt(xt) =
1− ‖x‖2

2rt
is a carefully chosen scale factor.

The surrogate loss function used in the algorithm is:

`ht,rt,ct(x) = 〈ct, x〉+
|〈ct, ht〉|

2rt
(‖x‖2 − 1). (1)

It is clear from the description that as the algorithm proceeds,
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rt is monotone increasing and hence rt ≥ 1 for all t. We
first demonstrate that Algorithm 1 always plays a feasible
point, i.e., xt ∈ K for all t.

Lemma 3.2. For any t, ‖xt‖ ≤ 1. In other words, the point
xt played by Algorithm 1 is always feasible.

Proof. From the description of A, ‖xt‖ ≤ 1. Thus since
rt ≥ 1 and by the triangle inequality, we have

‖xt‖ ≤ ‖xt‖+
(1− ‖xt‖2)

2
‖ht‖

≤ ‖xt‖+
(1− ‖xt‖2)

2

= ‖xt‖+
(1− ‖xt‖)(1 + ‖xt‖)

2
.

This is clearly ≤ 1, as ‖xt‖ ≤ 1.

We next establish some basic properties of the surrogate loss
function.

Lemma 3.3. Let `t denote `ht,rt,ct defined in (1). This
function satisfies:

1. If 〈ct, ht〉 ≥ 0, then `t(xt) = 〈ct, xt〉.
2. If 〈ct, ht〉 < 0, then

〈ct, xt〉 ≤ `t(xt) +
|〈ct, ht〉|

rt
.

3. For all u ∈ B with ‖u‖ ≤ 1, `t(u) ≤ 〈ct, u〉.
4. `t(x) is |〈ct,ht〉|µrt

-strongly convex.
5. `t(x) is 2 ‖ct‖∗-Lipschitz.

Proof. The first three properties are immediate from the
definitions of `t, xt and the fact that ‖xt‖ ≤ 1 and rt ≥
1. The fourth one follows from the fact that 1

2 ‖x‖
2 is µ-

strongly convex, and that adding a convex function to a
strongly convex function preserves strong convexity. The
last property is also a consequence of the fact that ‖x‖2 is
2-Lipschitz inside the unit ball (which follows from ‖x‖2 −
‖y‖2 = (‖x‖+ ‖y‖)(‖x‖ − ‖y‖) ) and since rt ≥ 1.

This implies the following lemma, which is crucial for our
argument. It relates the regret of ALG with the regret of
FTRL (procedure A). Recall the definition of BT from be-
fore (the time steps when the hints are negatively correlated
with the cost vector).

Lemma 3.4. Let u ∈ B satisfy ‖u‖ ≤ 1, and let `t be
shorthand for `ht,rt,ct as before. Then

RALG(u,~c, T ) ≤ RA(u, ~̀, T ) +
∑

t∈BT

|〈ct, ht〉|
rt

. (2)

Proof. By definition, RALG(u,~c, T ) =
∑
t〈ct, xt〉 −

〈ct, u〉 ≤
∑
t〈ct, xt〉 − `t(u), by Property 3 in Lemma 3.3.

Now using the first two properties, we have that when the
hints are positively correlated, i.e., 〈ct, ht〉 ≥ 0, we have
〈ct, xt〉 = `t(xt), and otherwise (i.e., t ∈ BT ) we have
〈ct, xt〉 ≤ `t(xt) + |〈ct,ht〉|

rt
. This completes the proof of

the lemma.

We bound the first term in (2) using known results for FTRL,
and the second term by the following simple lemma.

Lemma 3.5. From our definition of rt, we have
∑

t∈BT

|〈ct, ht〉|
rt

≤ 2

√∑

t∈BT
|〈ct, ht〉|.

Proof. From our algorithm, note that rt is pre-
cisely

√
1 +

∑
τ<t,τ∈BT |〈ct, ht〉|. Thus, since all

the terms |〈ct, ht〉| are ≤ 1, we can use the
fact that for all non-negative real numbers {zi}mi=1,

m∑

t=1

zt√
z1:t
≤ 2
√
z1:m,

to the numbers |〈ct, ht〉| for t ∈ BT . This implies the
lemma. (The fact above is standard in the analysis of FTRL;
for instance, see Lemma 4 of McMahan (2017).)

It remains to bound the regret of the FTRL procedure A.
We now use the general techniques presented in McMahan
(2017); Hazan et al. (2008) to do this.

Lemma 3.6. Suppose we run procedureA using our choice
of `t, λt, σt. Then for any α > 0 and ‖u‖ ≤ 1, the regret
RA(u, ~̀, T ) is at most

1
2µ + 4

(√∑
t∈BT,α‖ct‖

2
∗

µ +
rT log(1+µ

∑
t∈GT,α‖ct‖

2
∗)

αµ

)
,

where rT =
√

1 +
∑
t∈BT |〈ct, ht〉|.

Proof. Note that `t = `ht,rt,ct is σt-strongly convex as we
observed earlier, so that the function `1:t(x)+ λ0:t−1

2 ‖x‖2 is
σ1:t + µλ0:t−1-strongly convex. Then, using the analysis of
the FTRL procedure (Theorem 1 of McMahan (2017)), we
set gt to be an arbitrary subgradient of `t at x̄t and obtain:

RA(u, ~̀, T ) ≤ λ0:T
2
‖u‖2 +

1

2

∑

t

‖gt‖2∗
σ1:t + µλ0:t−1

Since `t is 2 ‖ct‖∗-Lipschitz (Lemma 3.3), we have that
‖gt‖2∗ ≤ 4 ‖ct‖∗, so the regret is:

≤ λ0
2

+ 2

(
λ1:T +

∑

t

‖ct‖2∗
σ1:t + µλ0:t−1

)
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Next, observe that since ‖ct‖∗ ≤ 1, we must have λt ≤
1
µ = λ0 for all t. Therefore the regret is

≤ 1

2µ
+ 2

(
T∑

t=1

λt +
‖ct‖2∗

σ1:t + µλ1:t

)
. (3)

Now, we can use our choice of λt to appeal to the result
of Hazan et al. (2008); see Lemma 3.1 of their paper. We
also reproduce a slightly more general version of this result
in Lemma B.10 for completeness. This lets us replace our
choice of λt with any other choice up to constants, yielding:

RA(u, ~̀, T ) ≤ 1

2µ
+ 4 ·min

λ∗t

{
T∑

t=1

λ∗t +
‖ct‖2∗

σ1:t + µλ∗0:t

}
.

Let us now show how to pick λ∗t that depend on the param-
eter α > 0, thus giving the bound in the lemma. Define
Qα =

∑
t∈BT,α ‖ct‖

2
∗, i.e., the total squared norm at time

steps where the desired correlation condition between the
hint and the cost vector is not met. Now set λ∗1 =

√
1 +Qα

and λ∗t = 0 for t > 1. ThenRA(u, ~̀, T ) is at most:

1

2µ
+ 4

(
√

1 +Qα +
T∑

t=1

‖ct‖2∗
σ1:t + µ

√
1 +Qα

)
.

We can separate the sum into t ∈ BT,α and indices outside
(i.e., in GT,α). This gives:

T∑

t=1

‖ct‖2∗
σ1:t + µ

√
1 +Qα

≤ Qα
µ
√

1 +Qα
+
∑

t∈Gt,α

‖ct‖2∗
1 + σ1:t

.

The first term is clearly ≤ √Qα/µ. To analyze the sec-
ond term, we use the fact that for any t ∈ GT,α, we have

σt ≥
αµ ‖ct‖2∗

rt
≥ αµ ‖ct‖2∗

rT
,

where in the last step we used the monotonicity of
rt. Thus by denoting the numbers {‖ct‖2∗}t∈GT,α by
w1, w2, . . . , wm (in order), we have

∑

t∈Gt,α

‖ct‖2∗
1 + σ1:t

≤ rT
αµ

∑

i∈[m]

wi
rT
αµ + w1:i

≤ rT
αµ

∫ w1:m+(rT /αµ)

rT /αµ

dz

z
.

Since rT
αµ ≥ 1

µ , we can bound this by rT
αµ log(1 + µw1:m).

Recalling the definition of rT , the proof follows.

Theorem 3.1 now follows immediately from Lemmas 3.4,
3.5, and 3.6.

Remark. The regret bound in Theorem 3.1 has two im-
portant terms. The first term depends on the sum of the
squared norm of the cost vectors over all the time indices
t ∈ BT,α when the hint vector was not strongly correlated
with the cost. As we show in Section 4, such a dependence
is unavoidable. The second term is

1

α
·
√

1 +
∑

t∈BT
|〈ct, ht〉| log

(
1 + µ

√ ∑

t∈GT,α
‖ct‖2∗

)

≤
√

1 + |BT |
α

log(1 + µ|GT,α|).

In the special case when all hints are α-correlated, we have
|BT | = |BT,α| = 0 and |GT,α| = T , which improves
upon regret bounds of Dekel et al. (2017) since we drop the
dependence on the dimension.

In Appendix A, we show that our algorithm directly extends
to the case when the underlying Banach space B is (q, µ)-
uniformly convex for q > 2 to yield a regret bound of
O
(
T
q−2
q−1

)
.

3.1. Recovering and improving optimistic bounds

In this section we relate our notion of hints in the constrained
setting to the idea of optimistic regret. For simplicity, we fo-
cus on the case that B is a Hilbert space and ‖·‖ is the Hilbert
space norm (or, for concreteness, that B = Rd and ‖·‖ is the
`2 norm). In this setting we can write B = B∗ and ‖ · ‖ =
‖ · ‖∗. Recall that prior optimistic algorithms (e.g., (Rakhlin
& Sridharan, 2013)) achieve regret bounds of the form:

R(u,~c, T ) = O



√√√√

T∑

t=1

‖ct − ht‖2

 .

Interestingly, in the unconstrained case, Cutkosky (2019)
achieves regret

Õ



√√√√max

(
1,

T∑

t=1

‖ct − ht‖2 − ‖ht‖2
)
 ,

which sacrifices a logarithmic factor to improve ‖ct − ht‖2
to ‖ct−ht‖2−‖ht‖2. However, their construction failed to
achieve such a result when there are constraints. Here, we
show that in fact our same algorithm with no modifications
obtains this refined optimistic bound when constrained to
the unit ball. Specifically, we have the following result:

Corollary 3.7. Let B be a Hilbert space. Then
Algorithm 1 guarantees regret on the unit ball K:

1

2
+
(

8 + 16 log
(

1 + T
))√

Z.

where Z = 1 +
∑T
t=1 max

(
‖ct − ht‖2 − ‖ht‖2, 0

)
.

Proof. Recall that in a Hilbert space, µ = 1 and q = p = 2.
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Then, looking at the regret bound of Theorem 3.1, we have

RALG(u,~c, T ) ≤ 1

2
+ 4

√ ∑

t∈BT,α
‖ct‖2

+ 2rT +
4rT
α

log
(

1 +
∑

t∈GT,α
‖ct‖2

)
,

where rT =
√

1 +
∑
t∈BT |〈ct, ht〉|.

Next, notice that for any t ∈ BT , we have

|〈ct, ht〉| = −〈ct, ht〉

≤ 1

2
‖ct‖2 − 〈ct, ht〉 ≤

1

2
(‖ct − ht‖2 − ‖ht‖2).

Therefore,

rT ≤

√√√√1 +
1

2

T∑

t=1

max(‖ct − ht‖2 − ‖ht‖2, 0).

Further, if we set α = 1
4 , then for any t ∈ BT,α, we have

‖ct‖2 ≤ ‖ct‖2 + ‖ct‖2 − 4〈ct, ht〉
= 2(‖ct − ht‖2 − ‖ht‖2).

Therefore,
∑

t∈BT,α
‖ct‖2 ≤

√√√√2
T∑

t=1

max (‖ct − ht‖2 − ‖ht‖2, 0).

Putting all this together and over-approximating constants,
we can conclude the proof.

4. Lower Bounds
We now show that the regret bounds achieved by our algo-
rithms are near-optimal. Recall that the regret bound had
two terms: one corresponding to hints that are negatively
correlated with ct, and one corresponding to hints that are
positively correlated, but not “correlated enough”. Our first
lower bound shows that even the second term is necessary.

4.1. Bad hints are uncorrelated

Assume that we are in Euclidean space with the standard `2
norm, where the algorithm needs to play a point in the unit
ball. We show the following:
Theorem 4.1. There exists a sequence of hint vectors
h1, h2, . . . and cost vectors c1, c2, . . . with the following
properties: (a) 〈ct, ht〉 ≥ 0 for all t, (b) for all but B time
steps, we have 〈ct, ht〉 = ‖ct‖ (i.e., hints are perfect), and
(c) any online learning algorithm that plays given the hints
incurs an expected regret of Ω(

√
B).

Proof. We consider the following example in two dimen-
sions, with orthogonal unit vectors e1 and e2. For the first

B time steps, suppose that ht = e2, and ct = ±e1, where
the sign is chosen uniformly at random at each step. Now,
let z = c1 + · · ·+cB . For the rest of the time steps, suppose
that ht = ct = z/ ‖z‖. In other words, we have the standard
one-dimensional “hard instance” in the first B steps (which
incurs an expected regret of

√
B), appended with time steps

where the hints are perfect.

Any online algorithm incurs an expected loss 0 on the first
B steps (and loss −(t−B) on the rest of the steps), while
we have the expected ‖z‖ =

√
B, and so playing the vector

−z/ ‖z‖ at all the time steps incurs a total loss of −(t −
B)−

√
B. Thus the expected regret is

√
B.

The proof above (as well as the ones that follow) exhibit
a distribution over instances for which any deterministic
algorithm incurs an expected regret of

√
B. Applying Yao’s

lemma (e.g., (Motwani & Raghavan, 1995)), the regret lower
bound therefore applies to randomized algorithms as well.

4.2. Bad hints are spread out over time

Theorem 4.1 is taking advantage of an adversarial distri-
bution of bad hints. By placing all the useless hints at the
beginning of the game, we force the algorithm to experience
high regret that it cannot recover from. It turns out such
overtly adversarial distributions are not necessary: even if
the bad hints are randomly distributed, the algorithm must
still suffer high regret. (We note that in this case, we no
longer have 〈ct, ht〉 ≥ 0 for all rounds.)

Theorem 4.2. Consider the one-dimensional problem with
domain being the unit interval [−1, 1]. Suppose ht = 1 for
all t and that each ct takes value p − 1 with probability
p and value p with probability 1 − p, for p = B/T and
B ≤ T/4. Then the expected number of bad hints is B and
the expected regret of any algorithm is at least

√
B/2.

Proof. Note that a hint is negatively correlated with the cost
if the cost is negative, which happens with probability p.
Thus the expected number of bad hints is pT = B. Now
at each step, we have E[ct] = 0. Thus, whatever xt the
algorithm plays, we have that E

[∑T
t=1 ctxt

]
= 0; thus, the

expected loss of the algorithm is 0. Finally, we have that the
vector z = c1:t has norm E[‖z‖] =

√
p(1− p)T ≥

√
B/2.

Therefore compared to the best vector in hindsight, namely
− z
‖z‖ , the expected regret is at least

√
B/2.

4.3. A lower bound for the `q norm

Next, we show that even when the hint is always Ω(1) cor-
related with the cost, our upper bound for general q (which
is T (q−2)/(q−1)) is optimal in the class of dimension-free
bounds.

Theorem 4.3. There exists a sequence of hints h1, h2, . . .
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and costs c1, c2, . . . in RT+1 such that (a) 〈ct, ht〉 ≥ Ω(1)
for all t, and (b) any online learning algorithm that plays

given the hints incurs an expected regret of Ω
(
T

(q−2)
(q−1)

)
.

Proof. Let e0, e1, e2, . . . , eT be orthogonal, unit length vec-
tors in our space, and suppose that at time t = 1, 2, 3, . . . ,
we have ct = e0 ± et, where the sign is chosen u.a.r. (to
keep all the vectors of ‖·‖ ≤ 1, we can normalize ct; this
does not change the analysis, so we skip this step).

Now, suppose the algorithm plays vectors x1, x2, . . . . We
have the total expected loss to be exactly

∑
t〈e0, xt〉, which

has magnitude at most T . Let us construct a vector u with
‖u‖q ≤ 1 that has a higher magnitude for the inner product.

Let us denote z = c1:t = Te0 +
∑T
t=1 σtet, for some signs

σt. Define u =
∑T
t=0 βtut, where:

β0 = 1− 3

2q
T−

1
q−1 ; βt = σtT

− 1
q−1 .

We have
∑T
t=1 β

q
t = T · T− q

q−1 = T−
1
q−1 . Next, we make

the simple observation that for any γ < 1/2, (1− 3γ
2q )q ≤

e−3γ/2 ≤ 1−γ. Using this, we have βq0 ≤ 1−T− 1
q−1 , and

thus ‖u‖q ≤ 1. Next, we have

〈z, u〉 =

(
1− 3

2q
T−

1
q−1

)
T + T · T− 1

q−1

= T +

(
1− 3

2q

)
T 1− 1

q−1 .

Thus, compared to the point −u, any algorithm has an ex-
pected regret T (q−2)/(q−1). This completes the proof.

Indeed, even if we allow a dependence on dimension, ob-
taining a log T regret is impossible for q > 2. We refer
to Appendix C for a regret lower bound (quite similar to
the above) even in two dimensions. In this case, the lower
bound interpolates between log T (which we achieve for
q = 2) and

√
T (which is achievable if we lose a factor

linear in the dimension).

5. Unconstrained Learning with Hints
We now consider the unconstrained setting where the online
algorithm is allowed to output any x ∈ B. In this section,
we show that the unconstrained setting is much simpler than
the constrained version of the problem.

Recall the definition of BT,α. For the unconstrained
setting, we work with a more relaxed notion of bad
hints. Let B∗T,α be the smallest set of indices such that∑
t∈[T ]\B∗T,α〈ct, ht〉 ≥ α ·

∑
t∈[T ]\B∗T,α ‖ct‖

2. We observe
that, by definition, for any α > 0, we have |B∗T,α| ≤ |BT,α|.
Our algorithm is essentially a black-box reduction to a stan-
dard parameter-free online linear optimization algorithm

without any hints and follows the framework of adding in-
dependent online learning algorithms (Cutkosky, 2019). In
fact, our algorithm is identical to the optimistic online learn-
ing algorithm of Cutkosky (2019). However, we are able to
obtain better regret guarantees by a tighter analysis.

Denote CT =
∑T
t=1 ‖ct‖2.

Lemma 5.1. Let A be a parameter-free online linear op-
timization algorithm that guarantees a regret bound of:

RA(u,~c, T ) ≤ f(‖u‖, CT , ε), ∀ε > 0,
for some function f(·, ·, ·) where f(0, ·, ε) ≤ ε and f is
monotone in all the three parameters. Then, there exists an
algorithm B for online learning with hints that guarantees
the regret bound:

RB(u,~c, T | ~h) ≤ min

{
f(‖u‖, CT , ε) + ε,

inf
0≤y≤‖u‖

{
2f(‖u‖, CT , ε)− y

T∑

t=1

〈ct, ht〉
}}

.

Proof. We design an algorithm B that utilizes the provided
online learning algorithm A in two distinct settings. First,
let xt ∈ B be the output of algorithm A in response to
loss vectors c1, . . . , ct−1 ∈ B∗. We also use algorithm A
in the scalar (i.e., R) setting by providing −〈ct, ht〉 as the
losses. Let yt be the output of algorithm A in response to
loss vectors −〈c1, h1〉, . . . ,−〈ct, ht〉.
On receiving hints h1, . . . , ht, and losses for the previous
time steps c1, . . . , ct−1, our algorithm B outputs

zt = xt − ytht.
Then for all u ∈ B, we have

RB(u,~c, T | ~h) =

T∑

t=1

〈ct, zt − u〉

=
T∑

t=1

〈ct, xt − u〉 −
T∑

t=1

yt〈ct, ht〉

= inf
y∈R

{ T∑

t=1

〈ct, xt − u〉+
T∑

t=1

〈ct, ht〉(y − yt)

−y
T∑

t=1

〈ct, ht〉
}

≤ inf
y∈R

{
f(‖u‖, CT , ε) + f(|y|,

T∑

t=1

〈ct, ht〉2, ε)

−y
T∑

t=1

〈ct, ht〉
}
,

using the regret bounds guaranteed by algorithm A. Setting
y = 0 is sufficient to obtain the first part of the regret
bound. To obtain the second part of the bound, we use
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〈ct, ht〉2 ≤ ‖ct‖2∗ and the monotonicity of f to obtain

RB(u,~c, T | ~h) ≤

inf
0≤y≤‖u‖

{
2f(‖u‖, CT , ε)− y

T∑

t=1

〈ct, ht〉
}
.

We are now ready to present our main result for uncon-
strained online learning with hints.

Theorem 5.2. For the unconstrained online linear opti-
mization problem with hints, for any α > 0, there exists an
algorithm B that guarantees for any u ∈ B and ε > 0, we
haveRB(u,~c, T | ~h) ≤

Õ


ε+

‖u‖ log
(

1 + T‖u‖
ε2

)(
1 +

√
|B∗T,α|

)

αµ


 .

Proof. An algorithm A that satisfies the properties of
Lemma 5.1 is provided by Cutkosky & Orabona (2018).
Their algorithm guarantees

f(‖u‖, CT , ε) = ε+ 8‖u‖ log

(
8‖u‖2(1 + 4CT )4.5

ε2
+ 1

)

+
4‖u‖√
µ

√
CT

(
2 + log

(
5‖u‖2(2 + 8CT )9

ε2
+ 1

))
.

Similar algorithms with differing constants and dependen-
cies on the ct are described in Jun & Orabona (2019);
Orabona & Pál (2016); Cutkosky & Sarlos (2019); McMa-
han & Orabona (2014); Foster et al. (2018; 2017); Kempka
et al. (2019); van der Hoeven (2019).

Applying Lemma 5.1 with this algorithm A, we get

RB(u,~c, T | ~h)

≤ inf
0≤y≤‖u‖

{
2f(‖u‖, CT , ε)− y

T∑

t=1

〈ct, ht〉
}

= inf
y≤‖u‖
y≥0

{
2ε+Q1 + ‖u‖Q2

√
CT − y

T∑

t=1

〈ct, ht〉
}
,

(4)

where we let Q1 = 16‖u‖ log
(

8‖u‖2(1+4CT )
4.5

ε2 + 1
)

and

Q2 = 8√
µ

√(
2 + log

(
5‖u‖2(2+8CT )9

ε2 + 1
))

for brevity.

However, by definition of B∗T,α, we have

T∑

t=1

〈ct, ht〉 =
∑

t∈[T ]\B∗T,α

〈ct, ht〉+
∑

t∈B∗T,α

〈ct, ht〉

≥ α
T∑

t=1

‖ct‖2 +
∑

t∈B∗T,α

(
〈ct, ht〉 − α‖ct‖2

)

≥ α
T∑

t=1

‖ct‖2 − 2|B∗T,α|.

Substituting back into (4) and using y = ‖u‖/
√
|B∗T,α|,

RB(u,~c, T | ~h) ≤ 2ε+Q1 + ‖u‖Q2

√
CT

− α‖u‖√
|B∗T,α|

CT + 2‖u‖
√
|B∗T,α|. (5)

However for any CT , we have

Q2

√
CT −

α√
|B∗T,α|

CT ≤
Q2

2

√
|B∗T,α|

4α
;

indeed, this follows since


Q2 − 2

α√
|B∗T,α|

√
CT




2

≥ 0.

And thus (5) yields thatRB(u,~c, T | ~h) is at most:

≤ 2ε+Q1 + ‖u‖
Q2

2

√
|B∗T,α|

4α
+ 2‖u‖

√
|B∗T,α|

= 2ε+ 16‖u‖ log

(
8‖u‖2(1 + 4CT )4.5

ε2
+ 1

)

+
64‖u‖

(
2 + log

(
5‖u‖2(2+8CT )

9

ε2 + 1
))√

|B∗T,α|
4αµ

+ 2‖u‖
√
|B∗T,α|

= Õ


ε+

‖u‖ log
(

1 + T‖u‖
ε2

)(
1 +

√
|B∗T,α|

)

αµ


 .

The bound of Theorem 5.2 is similar to our results in the
constrained setting, but now we have replaced BT,α with
the relaxed quantity B∗T,α. The unconstrained algorithms
requires the good hints to be good only on average, while
the constrained algorithm required each individual good hint
to be good. This is a significant relaxation: consider our
lower bound argument of Theorem 4.1, in which 〈ct, ht〉
is 0 for the first T2 rounds and 1 afterwards. A constrained
algorithm must suffer O(

√
T ) regret in this setting, but in

the unconstrained case the hints are 1
2 -correlated on average,

and so the algorithm will suffer only O(log T ) regret. It is
strictly easier to take advantage of hints in the unconstrained
setting than in the constrained setting.
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6. Conclusions
In this work we obtained an algorithm for online linear opti-
mization in the presence of imperfect hints. Our algorithm
generalizes previous results that used hints in online opti-
mization to get improved regret bounds, but were not robust
against hints that were not guaranteed to be good. By tol-
erating bad hints while getting optimal regret bounds, our
work thus makes it possible for the hints to be derived from
a learning oracle.
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