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Appendix Organization
This appendix is organized as follows:

1. In Section A, we provide our results generalizing the
constrained hints algorithm of Section 3 to the general
q-uniform convex case, where q ≥ 2.

2. In Section B, we provide some background on the
FTRL framework and extend the literature on adaptive
FTRL to Banach spaces.

3. In Section C, we provide a lower bound for the q-
uniformly convex case showing that even if a regret
bound is allowed to be non-dimension free and all of
the hints are good, it is not possible to achieve logarith-
mic regret for general q > 2.

A. Constrained Online Learning in
q-Uniformly Convex Space

A.1. Preliminaries and notation

We first establish some notation about convex functions and
spaces. We say that f is (q, µ)-strongly convex with respect
to the norm ‖ · ‖ if for all x, y and g ∈ ∂f(x), we have
f(y) ≥ f(x) + 〈g, y − x〉 + µ

q ‖x − y‖q. We say that the
Banach space B is q-uniformly convex if the function 1

q‖x‖q
is (q, µ)-strongly convex for some µ. We note this notion is
equivalent to the definition of q-uniform convexity of a space
used in Dekel et al. (2017) (e.g., see the discussion after
Definition 4.16 in Pisier (2016)). Throughout this section,
we assume that B is reflexive and q-uniformly convex with
q ≥ 2. We define p such that 1

p + 1
q = 1.

We also slightly modify the definitions of GT,α and BT,α:

GT,α = {t ≤ T : 〈ct, ht〉 ≥ α · ‖ct‖p∗}, and
BT,α = {t ≤ T : 〈ct, ht〉 < α · ‖ct‖p∗}

A.2. General q ≥ 2 algorithm and analysis

Our approach for for this general (q, µ)-strongly convex
case is essentially the same as in the case when q = 2:
we use a base algorithm A to produce points x̄t, and then
we augment these points with the hint ht to play xt =
x̄t − δr(xt)ht. However, we require a slightly different
definition of δr, that generalizes the previous analysis for
q = 2:

δr(x) =
1

qr
(1− ‖x‖q).

We show that x− δr(x)ht ∈ K for all x ∈ K, just as we did
for the q = 2 case in the main text:

Lemma A.1. For any r ≥ 1, ‖x‖ ≤ 1, and ‖h‖ ≤ 1 we
have

‖x− δr(x)ht‖ ≤ 1.

Proof. We proceed by triangle inequality:

‖x− δr(x)ht‖ ≤ ‖x‖+ |δr(x)|‖h‖

≤ ‖x‖+
1− ‖x‖q

qr

≤ ‖x‖+
1− ‖x‖q

q

≤ sup
z∈[0,1]

z +
1− zq
q

.

Now observe that the derivative of z + 1−zq
q is 1 − zq−1,

which is positive for all z ∈ [0, 1] and q ≥ 1. Therefore, the
supremum occurs at z = 1, for which the value is 1.

Next, we introduce our expression for the surrogate loss `,
which is identical to its previous form:

`h,r,c(x) = 〈c, x〉 − |〈c, h〉|δr(x).

We can verify the following properties of the surrogate loss,
again using essentially the same arguments as for the q = 2
case:

Lemma A.2. Suppose B is q-uniformly convex for some
q ≥ 1. Let ‖h‖ ≤ 1, ‖c‖∗ ≤ 1, and r ≥ 1. If 〈c, h〉 ≥ 0,
then for all x and u in K, we have

〈c, x− δr(x)h− u〉 ≤ `h,r,c(x)− `h,r,c(u).

Next, even if 〈c, h〉 < 0, then for all x and u in K, we still
have

〈c, x− δr(x)h− u〉 ≤ `h,r,c(x)− `h,r,c(u) +
2|〈c, h〉|
qr

.

Finally, `h,r,c(x) is
(
q, |〈c,h〉|µr

)
-strongly convex and

2‖c‖∗-Lipschitz on K, regardless of the value of 〈c, h〉.

Proof. First, we notice that since ‖x‖ ≤ 1 and δ ≥ 0,
we must have `h,r,c(u) ≤ 〈c, u〉 regardless of the value of
〈c, h〉. Next, we consider two cases, either 〈c, h〉 ≥ 0 or
not.

In the former case, 〈c, h〉 = |〈c, h〉| so that by definition
`h,r,c(x) = 〈c, x − δr(x)h〉. Combined with `h,r,c(u) ≤
〈c, u〉, this implies the desired inequality.

In the latter case, `h,r,c(x) = 〈c, x + δr(x)h〉 = 〈c, x −
δr(x)h〉 + 2〈c, h〉δr(x). To conclude, notice that δr(x) ≤
1
qr because ‖x‖ ≤ 1, so that −2〈c, h〉δr(x) ≤ 2|〈c,h〉|

qr .
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Next, we address strong convexity. By definition of `h,r,c
and δr, we have

`h,r,c(x) = 〈c, x〉+
|〈c, h〉|
qr

(‖x‖q − 1).

Then since B is q-uniformly convex,
1

q
‖x‖q is (q, µ)-

strongly convex with respect to ‖ · ‖. Since adding a convex
function to a strongly convex function maintains the strong
convexity, the strong convexity of `h,r,c follows.

Finally, for Lipschitzness, notice that the the function z 7→
zq

q is 1-Lipschitz on [−1, 1] for all q ≥ 1. Therefore `h,r,c
is ‖c‖∗ + |〈c,h〉|

r -Lipschitz. Then since ‖h‖ ≤ 1 and r ≥ 1,
|〈c,h〉|
r ≤ ‖c‖∗ and so we are done.

Algorithm 3 Constrained Imperfect Hints in (q, µ)-
Uniformly Convex Space

Input: Strong convexity parameters q, µ, norm ‖ · ‖,
scalar η
Define λ0 = 2

µ1/pp1/p

Define x̄1 = 0
Define r1 = 1
for t = 1 . . . T do

Get hint ht
Set xt = x̄t − δrt(x̄t)
Play xt, receive cost ct
if 〈ct, ht〉 < 0 then

Set rt+1 =
(
rpt + |〈ct, ht〉| 1ηp

)1/p

else
Set rt+1 = rt

end if
Define `t(x) = `ht,rt,ct(x)

Define σt = |〈ct,ht〉|µ
rt

Define λt as the solution to:

λt =
2p

p

‖ct‖p∗
(σ1:t + µλ1:t)p/q

Set x̄t+1 = argmin‖x‖≤1 `1:t(x) + λ0:t

q ‖x‖q
end for

Theorem A.3. Suppose η ≥ 1. Recall that BT is set of
indices of the “bad hints” such that 〈ct, ht〉 < 0. Define

S =

∫ 1+
∑
t∈GT,α ‖ct‖

p
∗

1

z−p/q dz.

Then Algorithm 3 guarantees:

RA(u,~c, T ) ≤ 2

(µp)1/p
+

2p+1

p(αµ)p/q
S

+ 2 + 8
p1/p


 ∑

t∈BT,α
‖ct‖p∗




1/p

+ 2

(
η +

2pS

p(ηαµ)p/q

)(∑

t∈BT
|〈ct, ht〉|

)1/q

.

Before providing the proof of this Theorem, we take a mo-
ment to discuss settings for η and more concrete instan-
tiations of the bound. To gain intuition, we will ignore
constants and factors of p or q. Thus, the Theorem says:

RA(u,~c, T ) = O


 S

(αµ)p/q
+


 ∑

t∈BT,α
‖ct‖p∗




1/p

+

(
η +

S

(ηαµ)p/q

)(∑

t∈BT
|〈ct, ht〉|

)1/q



≤ O
(

S

(αµ)p/q
+ |BT,α|1/p

+

(
η +

S

(ηαµ)p/q

)
|BT |1/q

)
.

Next, let us bound S. Notice that since ‖ct‖∗ ≤ 1, we have

S =

∫ 1+
∑
t∈GT,α ‖ct‖

p
∗

1

z−p/q dz

≤
{

log(1 +
∑
t∈GT,α ‖ct‖

p
∗) if q = 2

q−1
q−2 (1 +

∑
t∈GT,α ‖ct‖

p
∗)

q−2
q−1 if q > 2

≤
{

log(1 + T ) if q = 2
q−1
q−2 (1 + T )

q−2
q−1 if q > 2.

In the special case that |BT | = 0, this recovers the results
of (Dekel et al., 2017) in the q ≥ 2 setting, but allowing for
varying hints. In general when |BT | 6= 0, one would like to
set η = O(S1/p/(µα)1/q) to obtain:

RA(u,~c, T ) = O

(
S

(αµ)p/q
+ |BT,α|1/p

+
S1/p

(µα)1/q
|BT |1/q

)
.

Although the final value of S is unknown at the beginning
of the game, we can use a doubling-trick based approach
to estimate it on-the-fly. Note that this approach however
does require fixing a value of α, which is not required by
our previous algorithms.

Proof of Theorem A.3. Notice that rt ≥ 1 for all t. Thus by
Lemma A.2, we have

T∑

t=1

〈ct, x̄t − δrt(x̄t)ht − u〉 ≤
T∑

t=1

`t(x̄t)− `t(u)

+
∑

t∈BT

2|〈ct, ht〉|
qrt

.
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First, we will control the last sum in this expression. Ob-
serve that by definition, and since η ≥ 1 and |〈ct, ht〉| ≤ 1
for all t, we have

rt =


1 +

1

ηp

∑

τ∈Bt−1

|〈cτ , hτ 〉|




1/p

≥ 1

η

(∑

τ∈Bt
|〈cτ , hτ 〉|

)1/p

.

Let BT = {t1, . . . , tN}. Then using Corollary B.13 we
have

∑

t∈BT

|〈ct, ht〉|
rt

≤ η
N∑

i=1

|〈cti , hti〉|(∑t
j=i |〈ctj , htj 〉|

)1/p

≤ ηq
(∑

t∈BT
|〈ct, ht〉|

)1/q

.

So putting this together we have

∑

t∈BT

2|〈ct, ht〉|
qrt

≤ 2η

(∑

t∈BT
|〈ct, ht〉|

)1/q

.

Now we turn to bounding
∑T
t=1 `t(x̄t) − `t(u). Observe

that by Lemma A.2, we have `t is (q, σt)-strongly convex.
Therefore, by Theorem B.9, we have
T∑

t=1

`t(x̄t)− `t(u) ≤ λ0:T ‖u‖q +
1

p

T∑

t=1

‖gt‖p∗
(σ1:t + µλ0:t−1)p/q

,

where gt ∈ ∂`t(x̄t). Then, again by Lemma A.2, `t is
2‖ct‖∗-Lipschitz, so that ‖gt‖∗ ≤ 2‖ct‖∗ ≤ 2. Using this
fact and ‖u‖ ≤ 1, we can write
T∑

t=1

`t(x̄t)− `t(u) ≤ λ0:T +
2p

p

T∑

t=1

‖ct‖p∗
(σ1:t + µλ0:t−1)p/q

.

Next, by Corollary B.11, we have
T∑

t=1

`t(x̄t)− `t(u) ≤ 2 inf
{λ?t }

λ?1:T +
2p

p

T∑

t=1

‖ct‖p∗
(σ1:t + µλ?1:t)

p/q

+
2

(µp)1/p
.

We upper bound the infimum of λ∗t by considering only
settings where λ∗t = 0 for t > 1 and λ∗1 ≥ α. Further, we
split the sum in the second term into two parts: the indices
in BT,α those in GT,α. For the indices in BT,α, we ignore
the influence of the σt. For those in GT,α, we use the bound
λ∗1 ≥ α. This yields:

≤ 2 inf
λ≥α

λ+
2p

pλp/q

∑

t∈BT,α
‖ct‖p∗

+
2

p1/p
+

2p+1

p

∑

t∈GT,α

‖ct‖p∗
(µα+ σ1:t)p/q

.

Now by Lemma B.14, we obtain:

inf
λ≥1

λ+
2p

pλp/q

∑

t∈BT,α
‖ct‖p∗ ≤ 1 + 4

p1/p


 ∑

t∈BT,α
‖ct‖p∗




1/p

.

Next, we observe that since rt is non-decreasing, we have
σt ≥ |〈ct,ht〉|µ

rT
. Further, for any t ∈ GT,α, we have by

definition 〈ct, ht〉 ≥ α‖ct‖p∗ so that σt ≥ αµ‖ct‖p∗
rT

, all of
which implies:

∑

t∈GT,α

‖ct‖p∗
(µα+ σ1:t)p/q

≤ 1

(αµ)p/q

∑

t∈GT,α

‖ct‖p∗rp/qT

(1 +
∑
τ∈Gt,α ‖cτ‖

p
∗)p/q

.

Now invoke Lemma B.12 with h(z) = z−p/q to bound:

∑

t∈GT,α

‖ct‖p∗
(1 +

∑
τ /∈Bt ‖cτ‖

p
∗)p/q

≤
∫ 1+

∑
t∈GT,α ‖ct‖

p
∗

1

z−p/q dz

= S.

Next, recall that we have

r
p/q
T =


1 +

1

ηp

∑

τ∈BT−1

|〈cτ , hτ 〉|




1/q

≤ 1 +
1

ηp/q

( ∑

τ∈BT
|〈cτ , hτ 〉|

)1/q

,

so that we have

2p+1

p

∑

t∈GT,α

‖ct‖p∗
(µα+ σ1:t)p/q

≤ 2p+1

p(αµ)p/q
Sr

p/q
T

≤ 2p+1

p(αµ)p/q
S +

2p+1S

ηp/qp(αµ)p/q

(∑

t∈BT
|〈ct, ht〉|

)1/q

.

Putting everything we have together so far, we obtain the
proof.
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B. Follow-the-Regularized-Leader in Banach
Spaces

In this section, we provide some formal definitions and facts
in Banach spaces, and generalize prior work on adaptive
FTRL algorithms (McMahan, 2017) to the more general
q-strongly convex spaces.

Definition B.1. Given a convex function f : B → R, the
Fenchel conjugate f? : B∗ → R is defined by f∗(θ) =
supx〈θ, x〉 − f(x).

Definition B.2. A Banach space B is reflexive if the map i :
B 7→ B∗∗ defined by 〈i(x), α〉 = 〈α, x〉 is an isomorphism
of Banach spaces. When B is reflexive, we will identify B∗∗
with B using this isomorphism.

By the Fenchel–Moreau theorem, f∗∗ = f whenever f :
B → R is convex and lower-semicontinuous and B is a
reflexive Banach space.

Proposition B.3. Let B be a reflexive Banach space. Sup-
pose f : B→ R is a lower-semicontinuous convex function.

1. f∗(α) = 〈α, a〉 − f(a) if and only if α ∈ ∂f(a).

2. α ∈ ∂f(a) if and only if a ∈ ∂f∗(α).

Proof. 1. Let h(x) be the function defined by h(x) =
f(x) − 〈α, x〉. Notice that 0 ∈ ∂h(a) if and only if
a is a minimizer of h, so that 0 ∈ h(a) if and only if
f∗(α) = −h(a). Further, 0 ∈ ∂h(a) if and only if
α ∈ ∂f(a). The statement follows.

2. Since f∗∗ = f , this follows from part 1.

Definition B.4. A convex function f is (q, σ)-strongly con-
vex with respect to a norm ‖ ·‖ if for all x, y and g ∈ ∂f(x),
f(y) ≥ f(x) + 〈g, y − x〉+ σ

q ‖x− y‖q .
Definition B.5. A convex function f is (q, σ)-strongly
smooth with respect to a norm ‖ · ‖ if for all x, y and
g ∈ ∂f(x), f(y) ≤ f(x) + 〈g, y − x〉+ σ

q ‖x− y‖q .
Proposition B.6. Suppose B is a reflexive Banach space.
Let 1

p + 1
q = 1. If f : B→ R is (q, σq)-strongly convex with

respect to a norm ‖·‖, then f∗ : B→ R is (p, σ−p)-strongly
smooth with respect to the dual norm ‖ · ‖?,.

Proof. Let α, β ∈ B∗ and let b ∈ ∂f∗(β). Define

D∗ = f∗(α)− f∗(β)− 〈α− β, b〉.

It suffices to proveD∗ ≤ 1
pσp ‖α−β‖

p
?. By Proposition B.3,

we have β ∈ ∂f(b). Let a ∈ ∂f∗(α) so that α ∈ ∂f(a). In
particular, this implies:

f(a)− f(b)− 〈β, a− b〉 ≥ σq

q
‖a− b‖q.

We also have:

f∗(α) = 〈α, a〉 − f(a)

f∗(β) = 〈β, b〉 − f(b).

Then

D∗ = 〈α, a〉 − f(a)− 〈β, b〉+ f(b)− 〈α− β, b〉
= 〈α, a− b〉+ f(b)− f(a)

= 〈α− β, a− b〉+ f(b)− f(a) + 〈β, a− b〉

≤ 〈α− β, a− b〉 − σq

q
‖a− b‖q

≤ ‖α− β‖?‖a− b‖ −
σq

q
‖a− b‖q

≤ sup
r
‖α− β‖?r −

σq

q
rq

=
1

pσp
‖α− β‖p?.

Next, we prove an analog of McMahan (2017) Lemma
16. The proof is identical, but we use the more general
Proposition B.3 and B.6 to verify that it continues to hold in
our more general setting.

Lemma B.7. Suppose φ1 : B → R is (q, σq) strongly
convex with respect to B’s norm ‖·‖ and let x1 = argminφ1.
Let φ2(x) = φ1(x) + 〈β, x〉 for some β ∈ B∗. Then if
x2 = argminφ2, we have

φ2(x1)− φ2(x2) ≤ 1

pσp
‖β‖p?.

Proof. By definition,

−φ∗1(0) = inf φ1(x) = φ1(x1)

−φ∗‘ (−β) = − sup〈−β, x〉 − φ1(x) = inf φ2(x) = φ2(x2).

Now by Proposition B.3 we have x1 ∈ ∂φ∗1(0) and by
Proposition B.6, φ∗1 is (p, σ−p)-strongly smooth. Therefore:

φ∗1(−β) ≤ φ∗1(0)− 〈β, x1〉+
1

pσp
‖β‖p?.

Then putting all this together we have

φ2(x1)− φ2(x2) = φ1(x1) + 〈β, x1〉 − φ2(x2)

= φ1 ∗ (−β)− φ∗1(0) + 〈β, x1〉

≤ 1

pσp
‖β‖p?.

Finally, we have an analog of McMahan (2017) Lemma 7:
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Lemma B.8. Let φ1 : B→ R be a proper convex function
such that x1 = argminφ1(x) exists. Let ψ be a convex
function such that φ2(x) = φ1(x) + ψx is (q, σq)-strongly
convex with respect to the norm ‖ · ‖. Then for any β ∈
∂ψ(x1) and any x2, we have

φ2(x1)− φ2(x2) ≤ 1

pσp
‖β‖p?.

Proof. It clearly suffices to prove the result for x2 =
argminφ2(x). Consider the function φ′1(x) = φ2(x) −
〈β, x〉. Since β ∈ ∂ψ(x1), we have 0 ∈ ∂φ′1(x1) so that
x1 = argminφ′1(x). Further, we clearly have φ2(x) =
φ′1(x) + 〈β, x〉. Therefore by Lemma B.7, we have

φ2(x1)− φ2(x2) ≤ 1

pσp
‖β‖p?.

Now we are ready to state the bound on FTRL, which is an
analog of McMahan (2017) Theorem 1 in the more general
q ≥ 2 case.

Theorem B.9. Suppose `1, . . . , `T are convex functions
from W → R where W ⊂ B. Suppose `t is (q, σt)-
strongly convex with respect to ‖ · ‖. Suppose 1

q‖ · ‖q is
(q, µ)-strongly convex with respect to ‖ · ‖. Given arbitrary
numbers λ0, . . . , λT−1 > 0, Define:

rt(x) =
λt
q
‖x‖q

xt+1 = argmin
x

`1:t(x) + r0:t(x).

Let gt ∈ ∂`t(xt). Then we have

T∑

t=1

`t(xt)− `t(u) ≤
T−1∑

t=1

λt‖u‖q

+
1

p

T∑

t=1

‖gt‖p?
(σ1:t + µλ0:t−1)p/q

.

Proof. The proof is a nearly immediate consequence of the
“Strong FTRL Lemma”, (McMahan, 2017) Lemma 5. This
result tells us that:

T∑

t=1

`t(xt)− `t(u) ≤
T−1∑

t=1

λt‖u‖q

+

T∑

t=1

`1:t(xt) + r1:t−1(xt)− `1:t(xt+1)− r1:t(xt+1).

Notice that xt = argmin `1:t−1(x) + r1:t−1(x). Then ob-
serve that rt(xt+1) ≥ 0 so that

`1:t(xt) + r1:t−1(xt)− `1:t(xt+1)− r1:t(xt+1)

≤ `1:t(xt) + r1:t−1(xt)− `1:t(xt+1)− r1:t−1(xt+1)

Finally, we have `1:t(x) + r1:t−1(x) is (q, σ1:t + µλ1:t−1)-
strongly convex with respect to ‖ · ‖. Therefore apply-
ing Lemma B.8 with φ1(x) = `1:t−1(x) + r1:t−1(x) and
ψt(x) = ∂(`t(xt) + r1:t−1(xt)) yields the desired re-
sult.

Next, we need a generalization of Hazan et al. (2008),
Lemma 3.1:

Lemma B.10. Suppose λ1, . . . , λT is such that

λt =
Gt

(σ1:t + µλ1:t)a
,

for all t for some positive numbers G1, . . . , GT , σ1, . . . , σT
and a and µ. Then:

T∑

t=1

λt +
Gt

(σ1:t + µλ1:t)a
≤ 2 inf

{λ?t }

T∑

t=1

λ?t +
Gt

(σ1:t + µλ?1:t)
a
.

Proof. The proof is essentially the same as the proof of
Lemma 3.1 in Hazan et al. (2008). We proceed by induction.
For the base step, consider two cases, either λ1 ≤ λ?1 or not.
If λ1 ≤ λ?1, then we have

λ1 +
G1

(σ1 + µλ1)a
= 2λ1 ≤ 2λ?1 ≤ 2λ?1 + 2

G1

(σ1 + µλ?1)a
.

For the other case, when λ1 > λ?1 we have

λ1 +
G1

(σ1 + µλ1)a
= 2

G1

(σ1 + µλ1)a

≤ 2
G1

(σ1 + µλ?1)a

≤ 2λ?1 + 2
G1

(σ1 + µλ?1)a
.

Now the induction step proceeds in almost exactly the same
manner as the base step. Suppose we have

τ∑

t=1

λt +
Gt

(σ1:t + µλ1:t)a
≤ 2 inf

{λ?t }

τ∑

t=1

λ?t +
Gt

(σ1:t + µλ?1:t)
a
.

Then consider two cases, either λ1:τ+1 ≤ λ?1:τ+1 or not. In
the first case, we have

τ+1∑

t=1

λt +
Gt

(σ1:t + λ1:t)a
= 2λ1:τ+1

≤ 2λ?τ+1

≤ 2
τ+1∑

t=1

λ?t +
Gt

(σ1:t + µλ?1:t)
a
.
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In the other case when λ1:τ+1 > λ?1:τ+1, we have

τ+1∑

t=1

λt +
Gt

(σ1:t + µλ1:t)a
= 2

τ+1∑

t=1

Gt
(σ1:t + µλ1:t)a

≤ 2
τ+1∑

t=1

Gt
(σ1:t + µλ?1:t)

a

≤ 2

τ+1∑

t=1

λ?t +
Gt

(σ1:t + µλ?1:t)
a
.

Finally, a simple corollary of Lemma B.10:
Corollary B.11. Suppose λ0, λ1, . . . , λT is such that λ0 =

(M/µ)
1
a+1 and

λt =
Gt

(σ1:t + µλ1:t)a
,

for t ≥ 1 for some positive numbers G1, . . . , GT ,
σ1, . . . , σT and a. Then if Gt ≤M for all t, we have:

λ0 +
T∑

t=1

λt +
Gt

(σ1:t + µλ0:t−1)a

≤ λ0 + 2 inf
{λ?t }

T∑

t=1

λ?t +
Gt

(σ1:t + µλ?1:t)
a
.

Proof. The proof is immediate from Lemma B.10, so long
as we can establish that λt ≤ λ0 for all t. To see this, note
that Gt ≤M , so

Gt
(σ1:t + µλ1:t)a

≤ M

(σ1:t + µλ1:t)a

≤ M

µλat

From this we have λa+1
t ≤ M

µ , so that λt ≤ (M/µ)
1
a+1 =

λ0 as desired.

We also need the following technical Lemma from Li &
Orabona (2019):
Lemma B.12. Suppose a0, . . . , aT are non-negative num-
bers and h : [0,∞) → [0,∞) is any non-increasing inte-
grable function. Then:

T∑

t=1

ath(a0:t) ≤
∫ a0:T

a0

h(t) dt.

As special cases of this Lemma, we have:
Corollary B.13. For any p > 1,

T∑

t=1

at
(a1:t)1/p

≤ q(a1:T )1/q.

Proof. Set a0 = 0 and h(z) = 1
z1/p

in Lemma B.12.
Hence,

T∑

t=1

at
(a1:t)1/p

≤
∫ a1:T

0

dz

z1/p
= q(a1:T )1/q.

Finally, we need another technical Lemma:

Lemma B.14. For all positive real numbers z, A and B
and 1

p + 1
q = 1,

inf
λ≥z

Aλ+
B

λp/q
≤ Az + p1/pq1/qA1/qB1/p

≤ Az + 2A1/qB1/p.

Proof. Differentiating to solve for the optimal uncon-
strained λ, we have

A− pB

qλp/q+1
= 0.

Notice that 1 + p/q = p. Then solving for λ yields:

λ? =
(pB)1/p

(qA)1/p
.

Let us set λ = z + λ? ≥ 1. Substituting, we have:

Aλ+
B

λp/q
≤ Az +Aλ? +

B

λ
p/q
?

= Az +
p1/pB1/pA1/q

q1/p
+
q1/qA1/qB1/p

p1/q

= Az + p1/pq1/qA1/qB1/p.

Finally, notice from Young’s inequality that p1/pq1/q ≤
p
p + q

q = 2.

C. Lower bounds for dimension-dependent
regret

We now show that a lower bound in the Lq setting even if we
allow a dependence on the dimension. Once again, at every
step, the hints are Ω(1) correlated with the corresponding
cost vectors. In what follows, let q > 2 be any real number.

Theorem C.1. There exists a sequence of hint vectors
h1, h2, . . . and cost vectors c1, c2, . . . in R2 such that (a)
〈ct, ht〉 ≥ Ω(1) for all t, and (b) any online learning algo-
rithm that plays given the hints incurs an expected regret of

Ω
(
T

(q−2)
2(q−1)

)
.
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Proof. Again, let e1, e2 be an orthonormal basis for R2,
and let ht = e1 for all t. Let ct = e1 ± e2, where the
choice of sign is uniformly random (if ct are needed to be
in the unit ball, we can normalize the vectors; we skip this
step as the analysis is identical). Thus for any t, we have
〈ct, ht〉 = 1 ≥ Ω(1) ‖ct‖, for a constant depending only on
q (and always ≥ 1/2).

Now consider any algorithm that plays {xt} within the unit
Lq ball. The expected loss is

∑
t〈e1, xt〉. This is clearly at

most T in magnitude. Now, let us consider the best vector in
hindsight. Let z = c1:T , as before. We have z = Te1+we2,
for some w of expected magnitude

√
T . We can compute

the vector in the Lq ball with the “best” inner product with

z. One good choice turns out to be

u =

(
1− 3

2q
· T−

q
2(q−1)

)
e1 + sign(w) · T− 1

2(q−1) e2.

The fact that ‖u‖q ≤ 1 follows using the inequality (1 −
3γ
2q )q ≤ e−3γ/2 ≤ 1− γ for any γ < 1/2.

For this choice, using the expected magnitude of w,

E[〈z, u〉] = T − 3

2q
· T 1− q

2(q−1) + T
1
2− 1

2(q−1)

= T +

(
1− 3

2q

)
T

(q−2)
2(q−1) .

Thus for any q > 2, the regret is Ω(T
(q−2)
2(q−1) ), as desired.


