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Abstract

In modern supervised learning, many deep neural networks
are able to interpolate the data: the empirical loss can be
driven to near zero on all samples simultaneously. In this
work, we explicitly exploit this interpolation property for the
design of a new optimization algorithm for deep learning,
which we term Adaptive Learning-rates for Interpolation
with Gradients (ALI-G). ALI-G retains the two main advan-
tages of Stochastic Gradient Descent (SGD), which are (i) a
low computational cost per iteration and (ii) good general-
ization performance in practice. At each iteration, ALI-G
exploits the interpolation property to compute an adaptive
learning-rate in closed form. In addition, ALI-G clips the
learning-rate to a maximal value, which we prove to be help-
ful for non-convex problems. Crucially, in contrast to the
learning-rate of SGD, the maximal learning-rate of ALI-G
does not require a decay schedule, which makes it consider-
ably easier to tune. We provide convergence guarantees of
ALI-G in various stochastic settings. Notably, we tackle the
realistic case where the interpolation property is satisfied
up to some tolerance. We provide experiments on a variety
of architectures and tasks: (i) learning a differentiable neu-
ral computer; (ii) training a wide residual network on the
SVHN data set; (iii) training a Bi-LSTM on the SNLI data
set; and (iv) training wide residual networks and densely
connected networks on the CIFAR data sets. ALI-G pro-
duces state-of-the-art results among adaptive methods, and
even yields comparable performance with SGD, which re-
quires manually tuned learning-rate schedules. Furthermore,
ALI-G is simple to implement in any standard deep learning
framework and can be used as a drop-in replacement in
existing code.

1. Introduction

Training a deep neural network is a challenging optimization
problem: it involves minimizing the average of many high-
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dimensional non-convex functions. In practice, the main
algorithms of choice are Stochastic Gradient Descent (SGD)
(Robbins & Monro, 1951) and adaptive gradient methods
such as AdaGrad (Duchi et al., 2011) or Adam (Kingma &
Ba, 2015). It has been observed that SGD tends to provide
better generalization performance than adaptive gradient
methods (Wilson et al., 2017). However, the downside of
SGD is that it requires the manual design of a learning-rate
schedule, which is widely regarded as an onerous and time
consuming task. In this work, we alleviate this issue with
the design of an adaptive learning-rate algorithm that needs
minimal tuning for good performance. Indeed, we postulate
that by using the same descent direction as SGD while auto-
matically adapting its learning-rate, the resulting algorithm
can offer similar generalization performance while requiring
considerably less tuning.

In this work, we build on the following two ideas. First,
an adaptive learning-rate can be computed for the non-
stochastic gradient direction when the minimum value of
the objective function is known (Polyak, 1969; Shor, 1985;
Brinnlund, 1995; Nedi¢ & Bertsekas, 2001a;b). And second,
one such minimum value is usually approximately known
for interpolating models: for instance, it is close to zero for a
model trained with the cross-entropy loss. By carefully com-
bining these two ideas, we create a stochastic algorithm that
(i) provably converges fast in convex or Restricted Secant
Inequality (RSI) settings, and (ii) obtains state-of-the-art
empirical results with neural networks. We refer to this
algorithm as Adaptive Learning-rates for Interpolation with
Gradients (ALI-G).

Procedurally, ALI-G is close to many existing algorithms,
such as Deep Frank-Wolfe (Berrada et al., 2019), APROX
(Asi & Duchi, 2019) and L4 (Rolinek & Martius, 2018).
And yet uniquely, thanks to its careful design and analy-
sis, the learning-rate of ALI-G effectively requires a single
hyper-parameter that does not need to be decayed. Since
ALI-G is easy to implement in any deep learning framework,
we believe that it can prove to be a practical and reliable
optimization tool for deep learning.

Contributions. We summarize the contributions of this
work as follows:
- We design an adaptive learning-rate algorithm that uses a

single hyper-parameter and does need any decaying sched-
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ule. In contrast, the closely related APROX (Asi & Duchi,
2019) and L4 (Rolinek & Martius, 2018) use respectively
two and four hyper-parameters for their learning-rate.

- We provide convergence rates of ALI-G in various stochas-
tic convex settings. Importantly, our theoretical results take
into account the error in the estimate of the minimum ob-
jective value. To the best of our knowledge, our work is
the first to establish convergence rates for interpolation with
approximate estimates.

- We prove that using a maximal learning-rate helps with
convergence for a class of non-convex problems.

- We demonstrate state-of-the-art results for ALI-G on learn-
ing a differentiable neural computer; training variants of
residual networks on the SVHN and CIFAR data sets; and
training a Bi-LSTM on the Stanford Natural Language In-
ference data set.

2. The Algorithm
2.1. Problem Setting

Loss Function. We consider a supervised learning task
where the model is parameterized by w € RP. Usually,
the objective function can be expressed as an expectation
over z € Z, arandom variable indexing the samples of the
training set:

F(w) £ o[l (w)], (1

where each /,, is the loss function associated with the sample
z. We assume that each ¢, is non-negative, which is the case
for the large majority of loss functions used in machine
learning. For instance, suppose that the model is a deep
neural network with weights w performing classification.
Then for each sample z, £.(w) can represent the cross-
entropy loss, which is always non-negative. Other non-
negative loss functions include the structured or multi-class
hinge loss, and the ¢; or /5 loss functions for regression.

Regularization. It is often desirable to employ a regular-
ization function ¢ in order to promote generalization. In this
work, we incorporate such regularization as a constraint on
the feasible domain: 2 = {w € RP : ¢(w) < r} for some
value of r. In the deep learning setting, this will allow us
to assume that the objective function can be driven close
to zero without unrealistic assumptions about the regular-
ization. Our framework can handle any constraint set {2 on
which Euclidean projections are computationally efficient.
This includes the feasible set induced by /5 regularization:
Q = {weRP: ||w|} <r}, for which the projection is
given by a simple rescaling of w. Finally, note that if we do
not wish to use any regularization, we define {2 = R? and
the corresponding projection is the identity.

Problem Formulation. The learning task can be ex-
pressed as the problem (P) of finding a feasible vector

of parameters w, € () that minimizes f:

w, € argmin f(w). (P)
weN

Also note that f, refers to the minimum value of f over Q:
I« £ MiNyen f(’lU)

Interpolation. We say that the problem (P) satisfies the
interpolation assumption if there exist a solution w, that
simultaneously minimizes all individual loss functions:

Vze Z, £,(wy) =0. ()

The condition (2) can be equivalently expressed as f, = 0.
We also point out that in some cases, it can be more realistic
torelax (2)toVz € Z, £,(w,) < ¢ for a small positive .

2.2. The Polyak Step-Size

Before outlining the ALI-G algorithm, we begin with a
brief description of the Polyak step-size, from which ALI-G
draws some fundamental ideas.

Setting. We assume that f, is known and we use non-
stochastic updates: at each iteration, the full objective f
and its derivative are evaluated. We denote by V f(w) the
first-order derivative of f at w (e.g. V f(w) can be a sub-
gradient or the gradient). In addition, || - || is the standard
Euclidean norm in R?, and Il (w) is the Euclidean projec-
tion of the vector w € R? on the set (2.

Polyak Step-Size. At time-step ¢, using the Polyak step-
size (Polyak, 1969; Shor, 1985; Brinnlund, 1995; Nedi¢ &
Bertsekas, 2001a;b) yields the following update:

wy1 = o (w; — %V f(w;)), where v, £ %3,

where we loosely define % = 0 for simplicity purposes.

| |
Loss function f

——— Linearization at w;
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Figure 1. Illustration of the Polyak step-size in 1D. In this case,
and further assuming that f, = 0, the algorithm coincides with
the Newton-Raphson method for finding roots of a function.

Interpretation. It can be shown that w,,; lies on the
intersection between the linearization of f at w; and the
horizontal plane z = f, (see Figure 1, more details in
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Proposition 1 in the supplementary material). Note that
since f, is the minimum of f, the Polyak step-size ~; is
necessarily non-negative.

Limitations. Equation (3) has two major short-comings
that prevent its applicability in a machine learning setting.
First, each update requires a full evaluation of f and its
derivative. Stochastic extensions have been proposed in
(Nedi¢ & Bertsekas, 2001a;b), but they still require frequent
evaluations of f. This is expensive in the large data setting,
and even computationally infeasible when using massive
data augmentation. Second, when applying this method to
the non-convex setting of deep neural networks, the method
sometimes fails to converge.

Therefore we would like to design an extension of the Polyak
step-size that (i) is inexpensive to compute in a stochastic
setting (e.g. with a computational cost that is independent
of the total number of training samples), and (ii) converges
in practice when used with deep neural networks. The next
section introduces the ALI-G algorithm, which achieves
these two goals in the interpolation setting.

2.3. The ALI-G Algorithm

We now present the ALI-G algorithm. For this, we suppose
that we are in an interpolation setting: the model is assumed
to be able to drive the loss function to near zero on all
samples simultaneously.

Algorithm. The main steps of the ALI-G algorithm are
provided in Algorithm 1. ALI-G iterates over three oper-
ations until convergence. First, it computes a stochastic
approximation of the learning objective and its derivative
(line 3). Second, it computes a step-size decay parameter
v+ based on the stochastic information (line 4). Third, it
updates the parameters by moving in the negative derivative
direction by an amount specified by the step-size and pro-
jecting the resulting vector on to the feasible region (line
5).

Algorithm 1 The ALI-G algorithm

Require: maximal learning-rate 7, initial feasible w, € €2,
small constant § > 0
:t=0
: while not converged do
Get £, (wy), VL, (w;) with z; drawn i.i.d.

L2y (we)

V2=, (we)|[*+3 77}
wyg1 = g (wy — VL, (wy))
t=t+1

: end while

1
2
3
4: v =min
5
6
7

Comparison with the Polyak Step-Size. There are three
main differences to the update in equation (3). First, each

update only uses the loss £,, and its derivative rather than
the full objective f and its derivative. Second, the learning-
rate 7, is clipped to 1, the maximal learning-rate hyper-
parameter. We emphasize that 1 remains constant through-
out the iterations, therefore it is a single hyper-parameter
and does not need a schedule like SGD learning-rate. Third,
the minimum f, has been replaced by the lower-bound of 0.
All these modifications will be justified in the next section.

The ALI-G* Variant. When ALI-G uses no maximal
learning-rate, we refer to the algorithm as ALI-G*, since it
is equivalent to use an infinite maximal learning-rate. Note
that ALI-G® requires no hyper-parameter for its step-size.

Momentum. In some of our experiments, we accelerate
ALI-G with Nesterov momentum. The update step at line
5 of algorithm 1 is then replaced by (i) a velocity update
vy = pvi—1 — %V, (wy) and (ii) a parameter update
Wi = HQ (’U)t + ILI/Ut).

3. Justification and Analysis
3.1. Stochasticity

By definition, the interpolation setting gives f, = 0, which
we used in ALI-G to simplify the formula of the learning-
rate ;. More subtly, the interpolation property also allows
the updates to rely on the stochastic estimate ¢, (w; ) rather
than the exact but expensive f(w;). Intuitively, this is pos-
sible because in the interpolation setting, we know the mini-
mum of the loss function for each individual training sample.
Recall that ALI-G®° is the variant of ALI-G that uses no
maximal learning-rate. The following result formalizes the
convergence guarantee of ALI-G* in the stochastic convex
setting.

Theorem 1 (Convex and Lipschitz). We assume that )
is a convex set, and that for every z € Z, {, is convex
and C-Lipschitz. Let w, be a solution of (P), and assume
that the interpolation property is approximately satisfied:
Vz € Z, L, (w,) < ¢, for some interpolation tolerance
€ > 0. Then ALI-G™ applied to f satisfies:

T
—w, 2 2
()] < e (5 )

t=0
“4)

E

In other words, by assuming interpolation, ALI-G prov-
ably converges while requiring only ¢, (w;) and V,, (w;)
(stochastic estimation per sample) to compute its learning-
rate. In contrast, the Polyak step-size would require f(w;)
and V f(w;) to compute the learning-rate (deterministic
computation over all training samples). This is because the
Polyak step-size exploits the knowledge of f, only, which
is weaker information than knowing the minimum of all
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individual loss functions ¢, (as ALI-G does in the interpola-
tion setting). This difference induces a major computational
advantage of ALI-G over the usual Polyak step-size.

We emphasize that in Theorem 1, our careful analysis ex-
plicitly shows the dependency of the convergence result on
the interpolation tolerance . It is reassuring to note that con-
vergence is exact when the interpolation property is exactly
satisfied (¢ = 0).

In the supplementary material, we also establish conver-
gence rates of O(1/T') for smooth convex functions, and
O(exp(—aT'/83)) for a-strongly convex and /-smooth
functions. Similar results can be proved when using a max-
imal learning-rate n: the convergence speed then remains
unchanged provided that 7 is large enough, and it is low-
ered when 7 is small. We refer the interested reader to the
supplementary for the formal results and their proofs.

Interpolation and Gradient Variance. In the literature,
most convergence results of SGD depend on the variance of
the gradient, which we denote by v here. The reader may
have noticed that our convergence results depends only the
interpolation tolerance ¢ rather than v. We briefly compare
how these two quantities help convergence in their own dis-
tinct ways. The gradient variance v globally characterizes
how much the gradient direction can differ across individual
samples z, at any point w of the parameter space. In particu-
lar, a low value for v implies that the loss functions ¢, agree
in the steepest descent direction at any point of the trajec-
tory wo, ..., wr. In contrast, the interpolation tolerance ¢
locally characterizes the behavior of all loss functions near
a global minimum w, only. More specifically, a low value
for € ensures that all loss functions ¢, agree in a common
minimizer w,. Thus these two mechanisms are distinct
ways of ensuring convergence of SGD. Importantly, a low
interpolation tolerance € does not necessarily imply a low
gradient variance v and vice-versa.

3.2. Maximal Learning-Rate

Non-Convexity. The Polyak step-size may fail to con-
verge when the objective is non-convex, as figure 2 illus-
trates: in this (non-convex) setting, gradient descent with
Polyak step-size oscillates between two symmetrical points
because its step-size is too large. A similar behavior can be
observed on the non-convex problem of training deep neural
networks.

In order to analyze the convergence of ALI-G in a non-
convex setting, we introduce the Restricted Secant Inequal-
ity (RSI) (Zhang & Yin, 2013):

Definition 1. Letr ¢ : RP — R be a lower-bounded differ-
entiable function achieving its minimum at w,.. We say that

—frwew? - |w)?
—— Linearizations of f

\ T \
wym—B3 T =3
WE=—F ¢ Wiy1=§

Figure 2. A simple example where the Polyak step-size oscillates
due to non-convexity. On this problem, ALI-G converges whenever

its maximal learning-rate is lower than 10.

¢ satisfies the RSI if there exists o > 0 such that:

Vw € R?, Vo(w) " (w — w,) > allw —w,|>. ()

The RSI does not require convexity and is a weaker assump-
tion in the sense that all strongly convex functions satisfy
the RSI (Zhang & Yin, 2013). In particular, the example in
figure 2 does satisfy the RSI (proof in the supplementary
material). In other words, the example above shows that the
Polyak step-size can fail to converge under the RST assump-
tion. In contrast, we prove that with an appropriate maximal
learning-rate, ALI-G converges (exponentially fast) on all
interpolating problems that satisfy the RSI:

Theorem 2. We assume that Q) = RP, and that for every
z € Z, 0, is B-smooth and satisfies the RSI with constant L.
Let w, be a solution of (P) such thatVz € Z, £,(w,) = 0.
Further assume that % <n< % Then if we apply ALI-G
with a maximal learning-rate of 1) to f, we have:

N[

Jwri1) = £ < §exp (F255T) flwg — w2, (6)

28

Note that the above theorem assumes perfect interpolation,
that is, the tolerance ¢ = 0. Nonetheless, it demonstrates
the importance of a maximal learning rate, which does not
need a manual decaying schedule. It is currently an open
question whether a similar result to theorem 2 can be proved
with some interpolation tolerance € > 0 on the value of all
£, (wWy).

Proximal Interpretation. Interestingly, using a maximal
learning-rate can be seen as a natural extension of SGD
when using a non-negative loss function:

Proposition 1. [Proximal Interpretation] Suppose that
Q = RP and let § = 0. We consider the update per-
formed by SGD: w;%? = w, —n, V., (w,); and the update
performed by ALI-G: wit¢ = w, — v, VL., (w,), where
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(wt)

. ‘,
vi = mm{m, n}. Then we have:

wi? = argmin { 5L |w — w, >+

weR
£ () + VL, (w) T (w —w)) |,
(7

ALI-G

with? = argmin { |w — w|+

max {£., (w;) + VL., (wy) " (w — wy), 0} }

In other words, at each iteration, ALI-G solves a proximal
problem in closed form in a similar way to SGD. In both
cases, the loss function /., is locally approximated by a
first-order Taylor expansion at w;. The difference is that
ALI-G also exploits the fact that £,, is non-negative. This
allows ALI-G to use a constant value for 7 in the interpola-
tion setting, while the learning-rate 7, of SGD needs to be
manually decayed.

4. Related Work

Interpolation in Deep Learning. As mentioned in the
introduction, recent works have successfully exploited the
interpolation assumption to prove convergence of SGD in
the context of deep learning (Ma et al., 2018; Vaswani et al.,
2019a; Zhou et al., 2019). Such works are complementary to
ours in the sense that they provide a convergence analysis of
an existing algorithm for deep learning. In a different line of
work, (Liu & Belkin, 2019) propose to exploit interpolation
to prove convergence of a new acceleration method for
deep learning. However, their experiments suggest that the
method still requires the use of a hand-designed learning-
rate schedule.

Adaptive Gradient Methods. Similarly to ALI-G, most
adaptive gradient methods also rely on tuning a single hyper-
parameter, thereby providing a more pragmatic alternative
to SGD that needs a specification of the full learning-rate
schedule. While the most popular ones are Adagrad (Duchi
et al., 2011), RMSPROP (Tieleman & Hinton, 2012), Adam
(Kingma & Ba, 2015) and AMSGrad (Reddi et al., 2018),
there have been many other variants (Zeiler, 2012; Orabona
& Pil, 2015; Défossez & Bach, 2017; Levy, 2017; Mukka-
mala & Hein, 2017; Zheng & Kwok, 2017; Bernstein et al.,
2018; Chen & Gu, 2018; Shazeer & Stern, 2018; Zaheer
et al., 2018; Chen et al., 2019; Loshchilov & Hutter, 2019;
Luo et al., 2019). However, as pointed out in (Wilson et al.,
2017), adaptive gradient methods tend to give poor gener-
alization in supervised learning. In our experiments, the
results provided by ALI-G are significantly better than those
obtained by the most popular adaptive gradient methods.
Recently, Liu et al. (2019) have proposed to “rectify” Adam
with a learning-rate warmup, which partly bridges the gap in

generalization performance between Adam and SGD. How-
ever, their method still requires a learning-rate schedule, and
thus remains difficult to tune on new tasks.

Adaptive Learning-Rate Algorithms. Vaswani et al.
(2019b) show that one can use line search in a stochastic
setting for interpolating models while guaranteeing con-
vergence. This work is complementary to ours, as it pro-
vides convergence results with weaker assumptions on the
loss function, but is less practically useful as it requires up
to four hyper-parameters, instead of one for ALI-G. Less
closely related methods, included second-order ones, adap-
tively compute the learning-rate without using the minimum
(Schaul et al., 2013; Martens & Grosse, 2015; Tan et al.,
2016; Zhang et al., 2017; Baydin et al., 2018; Wu et al.,
2018; Li & Orabona, 2019; Henriques et al., 2019), but
do not demonstrate competitive generalization performance
against SGD with a well-tuned hand-designed schedule.

L4 Algorithm. The L, algorithm (Rolinek & Martius,
2018) also uses a modified version of the Polyak step-size.
However, the L, algorithm computes an online estimate of
f» rather than relying on a fixed value. This requires three
hyper-parameters, which are in practice sensitive to noise
and crucial for empirical convergence of the method. In
addition, L4 does not come with convergence guarantees.
In contrast, by utilizing the interpolation property and a
maximal learning-rate, our method is able to (i) provide
reliable and accurate minimization with only a single hyper-
parameter, and (ii) offer guarantees of convergence in the
stochastic convex setting.

Frank-Wolfe Methods. The proximal interpretation in
Proposition 1 allows us to draw additional parallels to exist-
ing methods. In particular, the formula of the learning-rate
v¢ may remind the reader of the Frank-Wolfe algorithm
(Frank & Wolfe, 1956) in some of its variants (Locatello
et al., 2017), or other dual methods (Lacoste-Julien & Jaggi,
2013; Shalev-Shwartz & Zhang, 2016). This is because
such methods solve in closed form the dual of problem
(7), and problems in the form of (7) naturally appear in
dual coordinate ascent methods (Shalev-Shwartz & Zhang,
2016).

When no regularization is used, ALI-G and Deep Frank-
Wolfe (DFW) (Berrada et al., 2019) are procedurally iden-
tical algorithms. This is because in such a setting, one
iteration of DFW also amounts to solving (7) in closed-form
— more generally, DFW is designed to train deep neural net-
works by solving proximal linear support vector machine
problems approximately. However, we point out the two
fundamental advantages of ALI-G over DFW: (i) ALI-G
can handle arbitrary (lower-bounded) loss functions, while
DFW can only use convex piece-wise linear loss functions;
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and (ii) as seen previously, ALI-G provides convergence
guarantees in the convex setting.

SGD with Polyak’s Learning-Rate. (Oberman & Praz-
eres, 2019) extend the Polyak step-size to rely on a stochas-
tic estimation of the gradient V¢, (w;) only, instead of the
expensive deterministic gradient V f(w;). However, they
still require to evaluate f(w;), the objective function over
the entire training data set, in order to compute its learning-
rate, which makes the method impractical. In addition, since
they do not do exploit the interpolation setting nor the fact
that regularization can be expressed as a constraint, they
also require the knowledge of the optimal objective function
value f,. We also refer the interested reader to the recent
analysis of (Loizou et al., 2020), which appeared after this
work and provides a set of improved theoretical results.

APROX Algorithm. (Asi & Duchi, 2019) have recently
introduced the APROX algorithm, a family of proximal
stochastic optimization algorithms for convex problems. No-
tably, the APROX “truncated model” version is similar to
ALI-G. However, there are four clear advantages of our
work over (Asi & Duchi, 2019) in the interpolation setting,
in particular for training neural networks. First, our work
is the first to empirically demonstrate the applicability and
usefulness of the algorithm on varied modern deep learn-
ing tasks — most of our experiments use several orders of
magnitude more data and model parameters than the small-
scale convex problems of (Asi & Duchi, 2019). Second,
our analysis and insights allow us to make more aggressive
choices of learning rate than (Asi & Duchi, 2019). Indeed,
(Asi & Duchi, 2019) assume that the maximal learning-rate
is exponentially decaying, even in the interpolating convex
setting. In contrast, by avoiding the need for an exponen-
tial decay, the learning-rate of ALI-G requires only one
hyper-parameters instead of two for APROX. Third, our
analysis takes into account the interpolation tolerance € > 0
rather than unrealistically assuming the perfect case € = 0
(that would require infinite weights when using the cross-
entropy loss for instance). Fourth, our analysis proves fast
convergence in function space rather than iterate space.

S. Experiments

We empirically compare ALI-G to the optimization algo-
rithms most commonly used in deep learning. Our experi-
ments span a variety of architectures and tasks: (i) learning
a differentiable neural computer; (ii) training wide residual
networks on SVHN; (iii) training a Bi-LSTM on the Stan-
ford Natural Language Inference data set; and (iv) training
wide residual networks and densely connected networks on
the CIFAR data sets. Note that the tasks of training wide
residual networks on SVHN and CIFAR-100 are part of the
DeepOBS benchmark (Schneider et al., 2019), which aims

at standardizing baselines for deep learning optimizers. In
particular, these tasks are among the most difficult ones of
the benchmark because the SGD baseline benefits from a
manual schedule for the learning rate. Despite this, our set
of experiments demonstrate that ALI-G obtains competitive
performance with SGD. In addition, ALI-G significantly
outperforms adaptive gradient methods.

The code to reproduce our results is publicly available'. In
the TensorFlow (Abadi et al., 2015) experiment, we use
the official and publicly available implementation of L.
In the PyTorch (Paszke et al., 2017) experiments, we use
our implementation of L4, which we unit-test against the
official TensorFlow implementation. In addition, we em-
ploy the official implementation of DFW? and we re-use
their code for the experiments on SNLI and CIFAR. All
experiments are performed either on a 12-core CPU (differ-
entiable neural computer), on a single GPU (SVHN, SNLI,
CIFAR) or on up to 4 GPUs (ImageNet). We emphasize
that all methods approximately have the same cost per itera-
tion. Consequently, faster convergence in terms of number
of iterations or epochs translates into faster convergence in
terms of wall-clock time.

5.1. Differentiable Neural Computers

Setting. The Differentiable Neural Computer (DNC)
(Graves et al., 2016) is a recurrent neural network that aims
at performing computing tasks by learning from examples
rather than by executing an explicit program. In this case,
the DNC learns to repeatedly copy a fixed size string given
as input. Although this learning task is relatively simple,
the complex architecture of the DNC makes it an interesting
benchmark problem for optimization algorithms.

Methods. We use the official and publicly available im-
plementation of DNC*. We vary the initial learning rate as
powers of ten between 10~ and 10* for each method ex-
cept for LyAdam and LyMom. For LyAdam and LysMom,
since the main hyper-parameter « is designed to lie in (0, 1),
we vary it between 0.05 and 0.095 with a step of 0.1. The
gradient norm is clipped for all methods except for ALI-
G, LyAdam and L4Mom (as recommended by (Rolinek &
Martius, 2018)).

Results. We present the results in Figure 3. ALI-G pro-
vides accurate optimization for any 1 within [1071,106],
and is among the best performing methods by reaching
an objective function of 4.1078. On this task, RMSProp,
L4Adam and L4Mom also provide accurate and robust opti-

"https://github.com/oval-group/ali-g
https://github.com/martius—lab/
l4-optimizer
Shttps://github.com/oval-group/dfw
*https://github.com/deepmind/dnc
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Figure 3. Final objective function when training a Differentiable
Neural Computer for 10k steps (lower is better). The intensity of
each cell is log-proportional to the value of the objective function
(darker is better). ALI-G obtains good performance for a very
large range of n (107 < 5 < 10°).

mization. In contrast to ALI-G and the L, methods, the most
commonly used algorithms such as SGD, SGD with momen-
tum and Adam are very sensitive to their main learning-rate
hyper-parameter. Note that the difference between well-
performing methods is not significant here because these
reach the numerical precision limit of single-precision float
numbers.

5.2. Wide Residual Networks on SVHN

Setting. The SVHN data set contains 73k training sam-
ples, 26k testing samples and 531k additional easier samples.
From the 73k difficult training examples, we select 6k sam-
ples for validation; we use all remaining (both difficult and
easy) examples for training, for a total of 598k samples. We
train a wide residual network 16-4 following (Zagoruyko &
Komodakis, 2016).

Method. For SGD, we use the manual schedule for the
learning rate of (Zagoruyko & Komodakis, 2016). For
LyAdam and LsMom, we cross-validate the main learning-
rate hyper-parameter « to be in {0.0015, 0.015,0.15} (0.15
is the value recommended by (Rolinek & Martius, 2018)).
For other methods, the learning rate hyper-parameter is
tuned as a power of 10. The ¢y regularization is cross-
validated in {0.0001,0.0005} for all methods but ALI-G.
For ALI-G, the regularization is expressed as a constraint on
the ¢5-norm of the parameters, and its maximal value is set
to 50. SGD, ALI-G and BPGrad use a Nesterov momentum
of 0.9. All methods use a dropout rate of 0.4 and a fixed
budget of 160 epochs, following (Zagoruyko & Komodakis,
2016).

Test Accuracy on SVHN (%)

Adagrad 98.0 | Adam 97.9
AMSGrad 979 | BPGrad 98.1
DFW 98.1 | LyAdam 98.2
L4sMom 19.6 | ALI-G  98.1
SGD 98.3 | SGD! 98.4

Table 1. In red, SGD benefits from a hand-designed schedule for its
learning-rate. In black, adaptive methods, including ALI-G, have
a single hyper-parameter for their learning-rate. SGD' refers to
the performance reported by (Zagoruyko & Komodakis, 2016).

Results. The results are presented in Table 1. On this
relatively easy task, most methods achieve about 98% test
accuracy. Despite the cross-validation, LyMom does not
converge on this task. Even though SGD benefits from a
hand-designed schedule, ALI-G and other adaptive methods
obtain close performance to it.

5.3. Bi-LSTM on SNLI

Setting. We train a Bi-LSTM of 47M parameters on the
Stanford Natural Language Inference (SNLI) data set (Bow-
man et al., 2015). The SNLI data set consists in 570k pairs
of sentences, with each pair labeled as entailment, neutral or
contradiction. This large scale data set is commonly used as
a pre-training corpus for transfer learning to many other nat-
ural language tasks where labeled data is scarcer (Conneau
et al., 2017) — much like ImageNet is used for pre-training in
computer vision. We follow the protocol of (Berrada et al.,
2019); we also re-use their results for the baselines.

Method. For LjAdam and LsMom, the main hyper-
parameter « is cross-validated in {0.015,0.15} — compared
to the recommended value of 0.15, this helped convergence
and considerably improved performance. The SGD algo-
rithm benefits from a hand-designed schedule, where the
learning-rate is decreased by 5 when the validation accuracy
does not improve. Other methods use adaptive learning-
rates and do not require such schedule. The value of the
main hyper-parameter 7 is cross-validated as a power of ten
for the ALI-G algorithm and for previously reported adap-
tive methods. Following the implementation by (Conneau
et al., 2017), no ¢, regularization is used. The algorithms
are evaluated with the Cross-Entropy (CE) loss and the
multi-class hinge loss (SVM), except for DFW which is de-
signed for use with an SVM loss only. For all optimization
algorithms, the model is trained for 20 epochs, following
(Conneau et al., 2017).

Results. We present the results in Table 2. ALI-G* is
the only method that requires no hyper-parameter for its
learning-rate. Despite this, and the fact that SGD employs
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Test Accuracy on SNLI (%)

CE SVM ‘ CE SVM
Adagrad* 83.8 84.6 | Adam* 84.5 85.0
AMSGrad* 84.2 85.1 | BPGrad* 83.6 842
DFW* - 852 | LyAdam 833 825
Ls;Mom 83.7 832 | ALI-G>* 84.6 84.7
ALI-G 84.8 85.2
SGD* 847 852 ‘ SGD' 84.5 -

Table 2. In red, SGD benefits from a hand-designed schedule for
its learning-rate. In black, adaptive methods have a single hyper-
parameter for their learning-rate. In blue, ALI-G™ does not have
any hyper-parameter for its learning-rate. With an SVM loss, DFW
and ALI-G are procedurally identical algorithms — but in contrast
to DFW, ALI-G can also employ the CE loss. Methods in the
format X* re-use results from (Berrada et al., 2019). SGD' is
the result from (Conneau et al., 2017).

a learning-rate schedule that has been hand designed for
good validation performance, ALI-G® is still able to obtain
results that are competitive with SGD. Moreover, ALI-G,
which requires a single hyper-parameter for the learning-
rate, outperforms all other methods for both the SVM and
the CE loss functions.

5.4. Wide Residual Networks and Densely Connected
Networks on CIFAR

Setting. We follow the methodology of (Berrada et al.,
2019), and we reproduce their results. We test two architec-
tures: a Wide Residual Network (WRN) 40-4 (Zagoruyko &
Komodakis, 2016) and a bottleneck DenseNet (DN) 40-40
(Huang et al., 2017). We use 45k samples for training and
5k for validation. The images are centered and normalized
per channel. We apply standard data augmentation with
random horizontal flipping and random crops. AMSGrad
was selected in (Berrada et al., 2019) because it was the best
adaptive method on similar tasks, outperforming in partic-
ular Adam and Adagrad. In addition to the baselines from
(Berrada et al., 2019), we also provide the performance of
L,Adam, LyMom, AdamW (Loshchilov & Hutter, 2019)
and Yogi (Zaheer et al., 2018).

Method. All optimization methods employ the cross-
entropy loss, except for the DFW algorithm, which is de-
signed to use an SVM loss. For DN and WRN respec-
tively, SGD uses the manual learning rate schedules from
(Huang et al., 2017) and (Zagoruyko & Komodakis, 2016).
Following (Berrada et al., 2019), the batch-size is cross-
validated in {64, 128,256} for the DN architecture, and
{128,256, 512} for the WRN architecture. For LyAdam
and L4Mom, the learning-rate hyper-parameter « is cross-
validated in {0.015,0.15}. For AMSGrad, AdamW, Yogi,

DFW and ALI-G, the learning-rate hyper-parameter 7 is
cross-validated as a power of 10 (in practice ny € {0.1, 1} for
ALI-G). SGD, DFW and ALI-G use a Nesterov momentum
of 0.9. Following (Berrada et al., 2019), for all methods but
ALI-G and AdamW, the /5 regularization is cross-validated
in {0.0001, 0.0005} on the WRN architecture, and is set to
0.0001 for the DN architecture. For AdamW, the weight-
decay is cross-validated as a power of 10. For ALI-G, {5
regularization is expressed as a constraint on the norm on
the vector of parameters; its maximal value is set to 100 for
the WRN models, 80 for DN on CIFAR-10 and 75 for DN
on CIFAR-100. For all optimization algorithms, the WRN
model is trained for 200 epochs and the DN model for 300
epochs, following respectively (Zagoruyko & Komodakis,
2016) and (Huang et al., 2017).

Results. We present the results in Table 3. In this setting
again, ALI-G obtains competitive performance with manu-
ally decayed SGD. ALI-G largely outperforms AMSGrad,
AdamW and Yogi.

Test Accuracy on CIFAR (%)

CIFAR-10 CIFAR-100
WRN DN WRN DN
AMSGrad 908 917 687 694
AdamW 92.1 926 69.6 69.5
Yogi 912 921 687 69.6
DFW 942 946 760 732
L,Adam 90.5 90.8 61.7 60.5
L,;Mom 91.6 919 614 626
ALI-G 952 950 758 763
SGD 953 951 778 763
SGD' 95.4 - 78.8 -

Table 3. In red, SGD benefits from a hand-designed schedule for
its learning-rate. In black, adaptive methods, including ALI-G,
have a single hyper-parameter for their learning-rate. SGD'
refers to the result from (Zagoruyko & Komodakis, 2016). Each
reported result is an average over three independent runs, the
standard deviations are reported in Appendix (they are at most 0.3
for ALI-G and SGD,).

5.5. Comparing Training Performance on CIFAR-100

In this section, we empirically assess the performance of
ALI-G and its competitors in terms of training objective on
CIFAR-100. In order to have comparable objective func-
tions, the {5 regularization is deactivated. The learning-rate
is selected as a power of ten for best final objective value,
and the batch-size is set to its default value. For clarity,
we only display the performance of SGD, Adam, Adagrad
and ALI-G (DFW does not support the cross-entropy loss).
The L4 methods diverge in this setting. Here SGD uses a
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constant learning-rate to emphasize the need for adaptivity.
Therefore all methods use one hyper-parameter for their
learning-rate. All methods use a fixed budget of 200 epochs
for WRN-CIFAR-100 and 300 epochs for DN-CIFAR-100.
As can be seen, ALI-G provides better training performance
than the baseline algorithms on all tasks.

WRN-CIFAR100

DN-CIFAR100

i Adagrad 10° 7%,
Adam 107!~
o — SGD  107% —
- ——ALIG 1073 -
6 00 200 o 100 200 800

Figure 4. Objective function over the epochs on CIFAR-100
(smoothed with a moving average over 5 epochs). ALI-G reaches
a value that is an order of magnitude better than the baselines.

5.6. Training at Large Scale

We demonstrate the scalability of ALI-G by training a
ResNet-18 (He et al., 2016) on the ImageNet data set. In
order to satisfy the interpolation assumption, we employ a
loss function tailored for top-5 classification (Lapin et al.,
2016), and we do not use data augmentation. Our focus here
is on the training objective and accuracy. ALI-G uses the
following training setup: a batch-size of 1024 split over 4
GPUs, a /5 maximal norm of 400 for w, a maximal learning-
rate of 10 and no momentum. SGD uses the state-of-the-art
hyper-parameters and learning-rate schedule from (He et al.,
2016). As can be seen in figure 5, ALI-G reaches 99% top-5
accuracy in 12 epochs (faster than SGD), and minimizes the
objective function as well as SGD with its custom schedule.

Training Objective

Top-5 Accuracy (%)
1 ! ! L |

100 -

80 — —

60 SGD
—— ALI-G

40 [ [ r

0 30 60 90

Figure 5. Training a ResNet-18 on ImageNet. The final perfor-
mance of ALI-G is as good as that of SGD, even though SGD
benefits from a custom learning-rate schedule. In addition, ALI-G
reaches a high training accuracy faster than SGD.

6. Discussion

We have introduced ALI-G, an optimization algorithm that
automatically adapts the learning-rate in the interpolation
setting. ALI-G provides convergence guarantees in the
stochastic setting, including for a class of non-convex prob-
lems. By using the same descent direction as SGD, it of-
fers comparable generalization performance while requiring

significantly less tuning. In future work, it would be in-
teresting to extend ALI-G to the non-interpolating setting
by adapting the minimum f, online while requiring few
hyper-parameters.
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