
A. Proof of Proposition 1
Proof. Suppose X ∼ fX(x). Since the elements of X are
independent, the entropy of the random vector X equals the
sum of the entropy of each individual element
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Since by assumption each Xi is bounded in a compact in-
terval, we have log

(
e1/(xi−µi)

2

+ 1/f(xi)
)
> 1. It also

achieves its maximum and minimum values on this compact
interval which we denote as k and h, respectively. We then
have

h · Var[Xi] ≤ H(Xi) ≤ k · Var[Xi]

indicating that maximizing the entropy of X is equivalent to
maximizing

∑
i Var(Xi).

B. Additional Results

Method BIM CW FGM PGD

CNN 7.1 30.5 36.8 2.6
BNN 5.5 88.9 55.2 0.9

BNN-Off 4.8 - 40.0 2.1
M 88.2 73.0 93.0 55.2

M-V 89.5 67.4 94.0 70.0
M-S 97.1 75.4 96.3 94.0

M-V-S 97.8 78.8 97.2 95.8
M-S-Off 97.2 65.6 97.6 95.8

M-V-S-Off 97.5 61.9 97.4 94.5

Table 1. Adversarial accuracy on MNIST with various combina-
tions of diversity promotion against L∞ attacks.

(a) art attack

(b) art attack

Figure 1. White box attack accuracy after each epoch.

C. Synthetic Dataset
We consider the synthetic dataset constructed by (Tsipras
et al., 2018) In this dataset, adversarial examples are con-
structed analytically (without gradients) such that one fea-
ture is adversarially robust but all others are not.

Tsipras et al. prove that any classifier that achieves arbi-
trarily high standard accuracy on this dataset necessarily
has poor adversarial accuracy. See the original work for a
detailed discussion.

The dataset is constructed as a binary classification problem
over y with input features x such that

y ∼ {−1,+1}

x1 =

{
+y, w.p. p
−y, w.p. 1− p

x2, ..., xD ∼ N (ηy, 1) ,

for the standard dataset. Adversarial examples are con-
structed by sampling x2, ..., xD from a distribution that is
inversely correlated with the label y, i.e.

x2, ..., xD ∼ N (−ηy, 1) . (2)

To better match this toy dataset to our assumptions, we con-
struct the data (including adversarial examples) as described



and then orthonormally project the features into a new space.
We construct the orthonormal matrix by choosing the ones
vector for the first column and the remaining columns as
any orthogonal space and then normalizing. It is apparent
that the bounds given in (Tsipras et al., 2018) hold through
this process and that the importance of features in this new
space is more evenly distributed.

If we consider a linear classifier followed by a sigmoid acti-
vation, then in the original space, the adversarially-robust
weight matrix corresponds to a the standard basis vector in
the first dimension. Therefore, the ideal weight matrix in the
pojected space corresponds to the (normalized) ones vector.

Proof. If we let v be the robust classification weights, W
be the orthonormal transformation matrix, and u be the
transformed space, then

u = Wx

y = vTx

= vTWTWx

= vTWTu

vu = Wv.

And since v is the standard basis for the first dimension,
vu = w1, which was selected as the ones vector.

The choice ofW can be generalized to any invertible matrix.

In our experiment, we set p = 0.95 and η = 2√
D−1 . A

robust classifier, which only depends on x1, would achieve
95% standard and adversarial accuracy whereas a classifier
which depends on all covaraites can achieve arbitrarility
good accuracy but with low adversarial accuracy. (see Eq. 4
in (Tsipras et al., 2018)).

We train a simple model on this dataset and test the standard
and adversarial accuracies throughout the training proce-
dure.

Figure 2 illustrates the standard and adversarial accuracy
with respect to the adversarial upper bound for three dif-
ferent Bayesian networks: with no defense, with M =
100, V = 120, S = 10 (Case 1), and with M = 0, V =
0, S = 40 (Case 2). Points in the figure are collected at
different epochs to assess how the adversarial accuracy com-
pares to the upper bound throughout the training process.

As expected, the Bayesian network achieves strong standard
accuracy with poor adversarial accuracy and does not even
achieve the adversarial upper bound. Both models penal-
ized by our methods consistently achieve the upper bound
and influence the model so that it is less prone to achieving
arbitrary accuracy. Case 1 showcases good standard accu-
racy and strong adversarial accuracy, corresponding to the

theoretical upper bound, after a warm up period. Case 2
achieves the maximum adversarial accuracy possible. Addi-
tional details can be found in Fig. 3 and Fig. 4.

These two cases are representative of the behavior of a vari-
ety of different hyperparameter choices. We observe that our
penalties cause the model to either achieve and sustain max-
imum adversarial accuracy or increase adversarial accuracy
to a point before decaying to arbitrary standard accuracy.

We take this as encouragement that, since adversarial ex-
amples in this setting are constructed analytically (without
model gradients), this indicates that our method is capable
of creating general adversarial robustness and does not sim-
ply obfuscate gradients. The tendency towards the upper
bound is striking because we have not directly informed the
model about the adversarial problem — there is no adversar-
ial training we only require a diverse ensembling based on
inherent properties of Bayesian networks and some diversity
encouraging penalties.

Figure 3 provides additional context of the accuracies over
the training process. As expected, the undefended model
converges rapidly to a high standard accuracy but with ad-
versarial robustness well below the upper bound. In the first
case, once the model has achieved the robust, standard accu-
racy, the adversarial accuracy gradually increases before it
ultimately peaks and degrades. While this degradation is un-
fortunate, it is noteworthy that the adversarial accuracy stays
near the upper bound throughout the decay process. In the
other case, the model appears to undergo a phase change and
quickly converges to and maintains the maximum possible
adversarial accuracy.

Figure 2. Standard and adversarial accuracy for various models
compared to the upper bound. Note, some negative jitter was
introduced to Case 2 to enhance visualization.



Figure 3. Standard and adversarial accuracy evolution for the test
set with various models.

Figure 4. Standard and adversarial accuracy for various models
compared to the upper bound with increased plotting range. Note,
some negative jitter was introduced to Case 2 to enhance visualiza-
tion.


