Supplement

A. Upper bound for the supremum of
Gaussian processes

Proof of Lemma 5.3. By the Gaussian concentration
theorem (Boucheron et al., 2013, Theorem 5.8), with
probability at least 1 —e™* we have

sup Gp <E sup Gp+

BeT~ BeT*
oV2z sup ||[2Ixn — (B — A)|(B — A)pl|.
BeT~
(A1)
< Ci672(T", de)+
oV2z sup 3||(B — A)pul| (A.2)
BeT™

where for the second inequality we used Talagrand’s
majorizing measure theorem (cf., e.g., (Vershynin, 2018,
Section 8.6)) and the fact that B, A have operator norm
at most one, where dg is the canonical metric of the
Gaussian process,

da(A,B)? =E[(G4 — GB)?].

If D = B — A is the difference and P commutes with
A and B,

Gp—Ga=€e"'[2Dp — $(A+B- 2A)Dy
—iD(A+B—-2P)ul+€¢"D(A-P)p.

By the triangle inequality and using that A, B, P, A
have operator norm at most one, dg(A, B) < 60| Dpl|+
o||D(A — P)pl|. This shows that

Y2 (T*,dg) < 6072 (T, dy) + ov2 (T, dz)

where di(A4,B) = |(B — A)y|| and d2(A,B) =
(A — B)(A = P)ul|. By Lemma 5.2, 3(T*,dy) <
C17A(T*,dy) and similarly for dy (note that ds is sim-
ilar to d; with p replaced by u' = (P — A)pu).

If supgep- d(B, A) < 6* for the metric d in (5.1), then
supger- [|[(B — A)p| < 6 and A(T*,d;) < 26*. Fur-
thermore if P is the convex projection of A onto the
convex hull of T with respect to the Hilbert metric d
n (5.1), then

A(T",dy) = sup do(B,B') <2||(P — A

B,B'eT*
<2d(P, A) < 2d(By, A) < 26*

for any Bo € T where we used that by definition of
the convex projection, d(P, A) < d(By, A). O

B. Upper bound for the supremum of
Quadratic processes

The following inequality, known as the Hanson-Wright
inequality, will be useful for the next Lemma. If ¢ ~
N(0,0%I,x,) is standard normal, then

P[[e7 Qe 0 trace Q| > 20*(| Q| v/a+]Qllop) | < 2677,

(B.1)
for any square matrix @ € R™ ™. We refer to
(Boucheron et al., 2013, Example 2.12) for a proof
for normally distributed & and (Rudelson & Vershynin,
2013; Hsu et al., 2012; Bellec, 2014; Adamczak, 2015)
for proofs of (B.1) in the sub-gaussian case.

Proof of Lemma 5.4. We apply Theorem 2.4 in (Adam-
czak, 2015) which implies that if W = efQpe —
trace[@p| where € ~ N(0, I,,x,) and @ p is a symmet-
ric matrix of size n x n for every B, then

P( sup Wp <E sup Wpg + Cigov/z sup E||Qpe||
BeT™ BeT* BeT*

+ Chozo® sup ||QB||OP) >1—2e""
BeT*

For the third term, Qp = 2(B — A) — (B — A)?/2
hence ||Qg|op < 6 because B, A both have operator
norm at most one. For the second term, since T*
is a family of ordered linear smoothers, there exists
extremal matrices By, B; € T such that By < B X B;
for all B € T*; we then have B — By = B; — By and

1Qpell < 3(B — A)ell <3||(B1 — Bo)ell + 3[|(Bo — Ae|

<3[[(B1 = A)e|| + 6[[(Bo — A)ell.
Hence E|Qpel| < E[lQpe]?)'/? < 30]|B1 — Allr +
60’||B0 - AHF S 90*.

We finally apply a generic chaining upper bound to
bound Esupgcr- Wp. For any fixed By € T we have
E[Wg,] = 0 hence Esupgep Wp = Esupgcr (Wp —
Wg,). For two matrices A, B € T* we have Wp—W4 =
eT(Qp — Qa)e — trace[Qp — Q4], and

e (Qp—Qa)e = T[(B—A)(2Lnxn— 3 (A+ B—24))e,

hence by the Hanson-Wright inequality (B.1), with
probability at least 1 — 27",

(Wp = Wa| <20°||(B = A)(2Lnxn — 5(A+ B = 24))||p(Va + x)

<80?||A — B|p(x + V).

Hence by the generic chaining bound given in Theorem
3.5 in (Dirksen, 2015), we get that

E sup |[Wp — Wpg,|
BeT*

<Co00® (T, || 7)) +72(T*, |- l7) + AT - 7))



For each a = 1,2 we have v, (7%, || - ||r) < Co1 A(T™, ||-

|lF) by Lemma 5.2. Since o||B — Al < ¢* for any
B e T*, we obtain A(T*,| - ||r) < 2§*/0. O

C. Proof of Theorem 3.2

Proof. Consider p € R™ with norm [|u||? = n(1—c/\/n)
for a numerical constant ¢ > 0 to be determined. Set
Ay = 0 and Ay = I, assume o2 = 1 for simplicity.
The loss of A; is ||u||? and the loss of As is ||e]|?.

A; has smaller MSE than A, since ||u||> < n. The
regret for selecting based on C, is thus Iq,(|e||* —

|]|?) where Iq, is the indicator of the event Cp(As) <
Cp(A1), this event is

Q= {Cp(A2) =2n < ||y|* = Cp(A2)}.

Consider now for some absolute constants A, B, the
events

Q4 = {1 < Tp/|ul <0}

and

Qp = {|(In — el 2uu")ell® = n = 3v/n}.

The first event 4 involves the standard normal
e"pu/||i|| and the second event 2z involves the ran-
dom variable ||(I,, — ||| ~2puT)e||* which has x? dis-
tribution with n — 1 degrees-of-freedom. The two
random variables are independent by properties of
e ~ N(0,1I,) so that Q4 and Qp are independent
and P(Q4 N Qp) =P(Q4)P(2p) > Caz > 0 for some
absolute constant.

Furthermore, on Q4 N Qp we have
lyll? = 2n = |ul? + lle))® + 2671 — 2n
> —cvn+3vn — 2|yl
> (—c+1)vn

so that Q4 N Qp C €y if, for instance, we choose
c=1/2.

Since ||y||? = [|u||* + 26T + ||e]|?, Q2 can be rewritten
0y = {2ev/it — 261 = 2(n — |ul®) — 2675 < [l — [1a]2}

Hence the regret is bounded from below on Q4 N Qp
as

(Nlell® = flull)
(2ev/n —2¢" p1)
2cv/n = /n.

Here, /n = ||u| = (R*)Y? up to an absolute multi-
plicative constant, so that the claim is proved. O

(1 Azy — pll® = |Ary — pll?)
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