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Abstract

A fundamental task in kernel methods is to pick
nodes and weights, so as to approximate a given
function from an RKHS by the weighted sum of
kernel translates located at the nodes. This is the
crux of kernel quadrature or kernel interpolation
from discrete samples. Furthermore, RKHSs of-
fer a convenient mathematical and computational
framework, connecting the discrete and continu-
ous worlds. We introduce and analyse continuous
volume sampling (VS), the continuous counter-
part – for choosing node locations – of a discrete
distribution introduced in (Deshpande & Vem-
pala, 2006). Our contribution is theoretical: we
prove almost optimal bounds for interpolation and
quadrature under VS. While similar bounds al-
ready exist for some specific RKHSs using ad-hoc
node constructions, VS offers bounds that apply
to any Mercer kernel and depend only on the spec-
trum of the associated integration operator. We
emphasize that, unlike previous randomized ap-
proaches that rely on regularized leverage scores
or determinantal point processes, evaluating the
pdf of VS only requires pointwise evaluations
of the kernel. VS is thus naturally amenable to
MCMC samplers.

1. Introduction
Kernel approximation is a recurrent task in machine learning
(Hastie, Tibshirani, and Friedman, 2009)[Chapter 5], signal
processing (Unser, 2000) or numerical quadrature (Larkin,
1972). Expressed in its general form, we are given a repro-
ducing kernel Hilbert space F (RKHS; Berlinet & Thomas-
Agnan, 2011) of functions over X , with a symmetric kernel
k : X ×X → R+, and an element µ : X → R of F . We
ask for conditions on a design x = (x1, . . . , xN ) ∈ XN ,
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and on the corresponding weights w1, . . . , wN , such that
the RKHS norm ∥∥∥∥∥µ−

N∑
i=1

wik(xi, .)

∥∥∥∥∥
F

(1)

is small. In other words, µ should be well reconstructed in
F by the weighted sum.

Measuring the error in RKHS norm has a computational ad-
vantage. Indeed, minimizing (1) boils down to minimizing a
quadratic form; and given a design x such that DetK(x) =
Det(k(xi, xj)) > 0, Equation (1) has a unique set of mini-
mizing weights. The minimizer corresponds to the weights
ŵ = K(x)−1µ(x), where µ(x) ∈ RN contains the evalu-
ation of µ at the N design nodes xi. Whenever the weights
are chosen to be ŵ, the sum in (1) takes the same values as
µ at the nodes xi, and the optimal value of (1) is thus called
interpolation error; otherwise we speak of approximation
error. Note that when the kernel k is bounded, guarantees in
RKHS norm translate to guarantees in the supremum norm.

In this work, we propose and analyze the interpolation based
on a random design drawn from a distribution called contin-
uous volume sampling, which favors designs x with a large
value of DetK(x). After introducing this new distribution,
we prove non-asymptotic guarantees on the interpolation er-
ror which depend on the spectrum of the kernel k. Previous
kernel-based randomized designs, both i.i.d. (Bach, 2017)
and repulsive (Belhadji et al., 2019), can be hard to compute
in practice since they require access to the Mercer decompo-
sition of k. We show here that continuous volume sampling
enjoys similar error bounds as well as some additional inter-
pretable geometric properties, while having a joint density
that can be evaluated as soon as one can evaluate the RKHS
kernel k. In particular, this opens the possibility of Markov
chain Monte Carlo samplers (Rezaei & Gharan, 2019).

Volume sampling was originally introduced on a finite do-
main (Deshpande et al., 2006), where it has been used in
matrix subsampling for linear regression and low-rank ap-
proximations (Derezinski & Warmuth, 2017; Belhadji et al.,
2018). Like (Belhadji et al., 2019), our work connects the
discrete problem of subsampling columns from a matrix
and the continuous problem of interpolating functions in an
RKHS.

The rest of the article is organized as follows. Section 2
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reviews kernel-based interpolation. In Section 3, we define
continuous volume sampling and relate it to projection deter-
minantal point processes, as used by (Belhadji et al., 2019).
Section 4 contains our main results while Section 5 contains
sketches of all proofs with pointers to the supplementary
material for missing details. Section 6 numerically illus-
trates our main result. We conclude in Section 7, discussing
some consequences beyond kernel interpolation.

Notation and assumptions. We assume that X is
equipped with a Borel measure dω, and that the support
of dω is X . Let L2(dω) be the Hilbert space of square
integrable, real-valued functions on X , with inner product
〈·, ·〉dω , and associated norm ‖.‖dω .

Assumption A
∫
X
k(x, x)dω(x) < +∞.

Under Assumption A, define the integral operator

Σf(·) =

∫
X
k(·, y)f(y)dω(y), f ∈ L2(dω). (2)

By construction, Σ is self-adjoint, positive semi-definite,
and trace-class (Simon, 2005). For m ∈ N*, with N∗ =
N r {0}, denote by em the m-th eigenfunction of Σ, nor-
malized so that ‖em‖dω = 1, and σm the corresponding
eigenvalue. Assumption A implies that the embedding op-
erator IF : F −→ L2(dω) is compact; moreover, since dω
is of full support in X , IF is injective (Steinwart & Christ-
mann, 2008). This implies a Mercer-type decomposition of
k,

k(x, y) =
∑
m∈N∗

σmem(x)em(y), (3)

where the convergence is pointwise (Steinwart & Scovel,
2012). The eigenvalues (σm) are assumed to be non-
increasing. Moreover, form ∈ N∗, we write eFm =

√
σmem.

Since IF is injective, (eFm)m∈N∗ is an orthonormal ba-
sis of F (Steinwart & Scovel, 2012). Unless explicitly
stated, we assume that F is dense in L2(dω), so that
(em)m∈N∗ is an orthonormal basis of L2(dω). For more
intuition, under these assumptions, f ∈ F if and only if∑
m σ
−1
m 〈f, em〉2L2(dω)

converges; and we denote for r ≥ 0

‖Σ−rf‖2F =
∑
m〈f, eFm〉2F/σ2r

m . For x ∈ XN , we define
K(x) := k(xi, xj)i,j∈[N ]. If DetK(x) > 0, the subspace
T (x) = Span k(xi, .)i∈[N ] is of dimension N ; we denote
by ΠT (x) the 〈., .〉F -orthogonal projection on T (x). Fi-
nally, for N ∈ N*, we will often sum over the sets

UmN = {U ⊂ N*, |U | = N, m /∈ U}, (4)

UN = {U ⊂ N*, |U | = N}. (5)

Finally, define the approximation error

E(µ;x,w) = ‖µ−
∑
i∈[N ]

wik(xi, .)‖F , (6)

where [N ] = {1, . . . , N}. If DetK(x) > 0, let ŵ =
K(x)−1µ(x) and define the interpolation error

E(µ;x) = ‖µ−
∑
i∈[N ]

ŵik(xi, .)‖F (7)

= ‖µ−ΠT (x)µ‖F . (8)

2. Related Work
This section reviews some results on kernel interpolation
to better situate our contributions. The literature on this
topic is prolific and cannot be covered in details here. In
particular, we start by reviewing results on optimal kernel
quadrature, a particular case of kernel interpolation.

2.1. Interpolation for optimal kernel quadrature

Given g ∈ L2(dω), kernel quadrature deals with approxi-
mating the integrals∫

X
fg dω ≈

∑
i∈[N ]

wif(xi), f ∈ F , (9)

where the weights wi do not depend on f . In principle, it is
easy to control the integration error, i.e., the absolute value
of the difference between the l.h.s. and r.h.s. of (9). Indeed,∣∣∣∣∣∣
∫
X
fg dω −

∑
i∈[N ]

wif(xi)

∣∣∣∣∣∣ ≤ ‖f‖F E(µg;x,w), (10)

where µg =

∫
X
g(x)k(x, .)dω(x)= Σg is the so-called

embedding1 of g in the RKHS F .

An upper bound on the approximation error of µg implies
an upper bound on the integration error that is uniform over
any bounded subset of F . This observation sparked intense
research on the kernel approximation of embeddings µg.
Among kernel approximation results, we pay a particular
attention to interpolation, i.e., approximation with optimal
weights. In the sequel, we call optimal kernel quadrature
the quadrature based on optimal weights ŵ minimizing (1)
for a given set of nodes.

(Bojanov, 1981) proved that, for g ≡ 1, the interpolation
of µg using the uniform grid over X = [0, 1] has an error
in O(N−2s) if F is the periodic Sobolev space of order s,
and that any set of nodes leads to that rate at least. A similar
rate was proved for g not constant (Novak et al., 2015) even
though it is only asymptotically optimal in that case.

In the quasi-Monte Carlo (QMC) literature, several designs
were investigated forX = [0, 1]d, g ≡ 1 andF that may not

1When g is constant, µg is classically called the mean-element
of the measure dω (Smola et al., 2007).
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even be a Hilbert space; see (Dick & Pillichshammer, 2010).
In this context, the term QMC quadrature rule means a
low discrepancy sequence, loosely speaking a “well-spread”
set of nodes, along with uniform weights wi = 1/N . If
F is a Korobov space of order s ≥ 1, the Halton se-
quence of nodes (Halton, 1964) leads to E(µg;x, (1/N))2

in O(log(N)2dN−2) and higher-order digital nets con-
verge faster as O(log(N)2sdN−2s) (Dick & Pillichsham-
mer, 2014)[Theorem 5].

These rates are naturally inherited if the uniform weights
are replaced by the respective optimal weights ŵ, as ob-
served by (Briol et al., 2019). In particular, (Briol et al.,
2019) emphasize that the bound for higher-order digital nets
attains the optimal rate in this RKHS. For optimal kernel
quadrature based on Halton sequences, this inheritance ar-
gument does not explain the fast O(log(N)2sdN−2s) rates
observed empirically by (Oettershagen, 2017).

Beside the hypercube, optimal kernel quadrature has been
considered on the hypersphere equipped with the uniform
measure (Ehler et al., 2019), or on Rd equipped with the
Gaussian measure (Karvonen & Särkkä, 2019). In these
works, the design construction is adhoc for the space X
and g is usually assumed to be constant. Another approach
is offered by optimization algorithms that we review in
Section 2.3. Before that, we clarify the subtle difference
between optimal kernel quadrature and kernel interpolation.

2.2. Kernel interpolation beyond embeddings

Besides the approximation of the embeddings µg discussed
in Section 2.1, theoretical guarantees for the kernel interpo-
lation of a general µ ∈ F are sought per se. The Shannon
reconstruction formula for bandlimited signals (Shannon,
1948) is implicitly an interpolation formula by the sinc ker-
nel. The RKHS approach for sampling in signal process-
ing was introduced in (Yao, 1967) for the Hilbert space of
bandlimited signals; see also (Nashed & Walter, 1991) for
generalizations. Remarkably, in those RKHSs, every µ ∈ F
is an embedding µg for some g ∈ L2(dω): k is a projection
kernel of infinite rank. In general, for a trace-class ker-
nel, the subspace spanned by the embeddings µg is strictly
included in F . More precisely, every µg satisfies

‖Σ−1/2µg‖F = ‖Σ1/2g‖F = ‖g‖L2(dω) < +∞.

This condition is more restrictive than what is required for a
generic µ to belong to F , i.e., ‖µ‖F < +∞, so that kernel
interpolation is more general than optimal kernel quadrature.
The proposed approach will permit to deal with any µ ∈ F .

Scattered data approximation (Wendland, 2004) is another
field where quantitative error bounds for kernel interpolation
on X ⊂ Rd are investigated; see (Schaback & Wendland,
2006) for a modern review. In a few words, these bounds
typically depend on quantities such as the fill-in distance

ϕ(x) = supy∈X mini∈[N ] ‖y − xi‖2, so that the interpola-
tion error converges to zero asN →∞ if ϕ(x) goes to zero.
Any node set can be considered, as long as ϕ(x) is small.
Using these techniques, (Oates & Girolami, 2016) proposed
another application of kernel interpolation: the construction
of functional control variates in Monte Carlo integration.
Finally, note that the application of these techniques is re-
stricted to compact domains: the fill-in distance is infinite if
X is not compact, even for “well-spread” sets of nodes.

2.3. Optimization algorithms

Optimization approaches offer a variety of algorithms for
the design of the interpolation nodes. (De Marchi, 2003)
and (De Marchi et al., 2005) proposed greedily maximizing
the so-called power function

p(x;x) =
[
k(x, x)− kx(x)ᵀK(x)−1kx(x)

]1/2
, (11)

where kx(x) = (k(x, xi))i∈[N ]. This algorithm leads to an
interpolation error that goes to zero with N for a kernel of
class C2 (De Marchi et al., 2005). Later, (Santin & Haas-
donk, 2017) proved better convergence rates for smoother
kernels. Again, these results assume that the domain X
is compact. Other greedy algorithms were proposed in
the context of Bayesian quadrature (BQ) such as Sequen-
tial BQ (Huszár & Duvenaud, 2012), or Frank-Wolfe BQ
(Briol et al., 2015). These algorithms sequentially mini-
mize E(µg;x), for a fixed g ∈ L2(dω). The nodes are thus
adapted to one particular µg by construction. In general,
each step of these greedy algorithms requires to solve a
non-convex problem with many local minima (Oettersha-
gen, 2017)[Chapter 5]. In practice, costly approximations
must be employed such as local search in a random grid
(Lacoste-Julien et al., 2015).

An alternative approach, that is very related to our contribu-
tion and has raised a lot of recent interest, is to observe that
the squared power function (11) can be upper bounded by
the inverse of DetK(x) (Schaback, 2005; Tanaka, 2019).
Designs that maximize DetK(x) are called Fekete points;
see e.g. (Bos & Maier, 2002; Bos & De Marchi, 2011).
(Tanaka, 2019) proposed to approximate DetK(x) using
the Mercer decomposition of k, followed by a rounding of
the solution of a D-experimental design problem, yet with-
out a theoretical analysis of the interpolation error. (Karvo-
nen et al., 2019) proved that for the uni-dimensional Gaus-
sian kernel, the approximate objective function of (Tanaka,
2019) is actually convex. Moreover, (Karvonen et al., 2019)
analyze their interpolation error; see also Section 4.2. Fi-
nally, we emphasize that these algorithms require the knowl-
edge of a Mercer-type decomposition of k so that they can-
not be implemented for any kernel; moreover, the approxi-
mate objective function may be non-convex in general.
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2.4. Random designs

In this section, we survey random node designs with
uniform-in-g approximation guarantees for the embeddings
µg in the RKHS norm. (Bach, 2017) studied the quadrature
resulting from sampling i.i.d. nodes (xj) from some pro-
posal distribution q. He proved that when the proposal is
chosen to be

q∗λ(x) ∝
∑
m∈N*

σm
σm + λ

em(x)2, (12)

with λ > 0, and the number of points N satisfies N ≥
5dλ log(16dλ/δ) with dλ = Tr Σ(Σ + λI)−1, then with
probability larger than 1− δ,

sup
‖g‖dω≤1

inf
‖w‖2≤ 4

N

∥∥∥µg − ∑
j∈[N ]

wj
qλ(xj)1/2

k(xj , .)
∥∥∥2
F
≤ 4λ.

(13)

The bound in (13) gives a control on the approximation
error of µg by the subspace spanned by the k(xj , .), and
this control is uniform over g in the unit ball of L2(dω).
Note that for a fixed value of λ, the upper bound in (13)
guarantees that the approximation error is smaller than 4λ.
It does not however guarantee that the error goes to zero
as N increases since it appears that λ should decrease as
N increases. This coupling of N and λ combined with
the condition N ≥ dλ log dλ makes it intricate to derive a
convergence rate from (13). Moreover, the optimal density
q∗λ is only implicitly available in general through the limit
in (12), which makes sampling and pointwise evaluation
difficult in practice.

(Belhadji et al., 2019) proposed a related kernel-based
quadrature, but using nodes sampled from a repulsive joint
distribution called a projection determinantal point process
(DPP); see (Hough et al., 2006) and our Section 3. In particu-
lar, the repulsion is characterized by the first eigenfunctions
(en)n∈[N ] of the integration operator Σ. The weights ŵ are
chosen again by minimizing the residual error (1), which
gives the uniform bound

E sup
‖g‖dω≤1

E(µg;x)2 ≤ 2(N2rN + o(N2rN )), (14)

where rN =
∑

m≥N+1

σm. This result can be improved by

further restricting g to be an eigenfunction of Σ, leading to

E sup
g∈{en; n≥1}

E(µg;x)2 ≤ 2(NrN + o(NrN )). (15)

Now for smooth kernels, such as the Gaussian kernel or the
Sobolev kernel with a large regularity parameter, the upper
bounds in (14) and (15) do converge to 0 as N goes to +∞.
Furthermore, sampling from the recommended projection
DPP can be implemented easily, although it still requires

the knowledge of the Mercer decomposition of k, unlike the
method that we introduce here in Section 3.

Since the bounds in (14) and (15) are uniform-in-g, they
also concern interpolation. One downside of the analysis
in (Belhadji et al., 2019) is that these upper bounds are
rather pessimistic: experimental results suggest faster rates
inO(σN ). If one could prove these rates, then kernel quadra-
ture or interpolation using DPPs would reach known lower
bounds, which we now quickly survey.

2.5. Lower bounds

When investigating upper bounds for kernel interpolation
errors, it is useful to remember existing lower bounds, so
as to evaluate the tightness of one’s results. In particular,
N -widths theory (Pinkus, 2012) implies lower bounds for
kernel interpolation errors, which once again show the im-
portance of the spectrum of Σ.

The N -width of S = {µg = Σg, ‖g‖L2(dω) ≤ 1} with
respect to the couple (L2(dω),F) (Pinkus, 2012, Chapter
1.7) is defined as the square root of

dN (S)2 = inf
Y⊂F

dimY=N

sup
‖g‖dω≤1

inf
y∈Y
‖Σg − y‖2F .

In interpolation, we do use a subspace Y ⊂ F spanned by
N independent functions k(xi, .), so that

sup
‖g‖dω≤1

E(Σg;x)2 ≥ dN (S)2. (16)

Applying (Pinkus, 2012, Theorem 2.2, Chapter 4) to the
adjoint of the embedding operator IF (Steinwart & Scovel,
2012)[Lemma 2.2], it comes dN (S)2 = σN+1. One may
object that some QMC sequences seem to breach this lower
bound. For example, in the Korobov space (d = 2, s ≥ 1),
σN+1 = O(log(N)2sN−2s) (Bach, 2017), while the inter-
polation of µg with g ≡ 1 using a Fibonacci lattice leads
to an error in O(log(N)N−2s) = o(σN+1) (Bilyk et al.,
2012)[Theorem 4]. But this is the rate for one particular µg ,
and it cannot be achieved uniformly in g.

3. Volume Sampling and DPPs
In this section, we introduce a repulsive distribution that
we call continuous volume sampling (VS) and compare it
to projection determinantal point processes (DPPs; (Hough
et al., 2006)). Both continuous VS and projection DPPs are
parametrized using a reference measure dω and a repulsion
kernel K : X ×X → R+.

3.1. Continuous volume sampling

Definition 1 (Continuous volume sampling) Let N ∈
N∗ and x = {x1, . . . , xN} ⊂ X . We say that x follows the
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volume sampling distribution if (x1, . . . , xN ) is a random
variable of XN , the law of which is absolutely continuous
with respect to ⊗i∈[N ]dω(xi), and the density writes

fVS(x1, . . . , xN ) ∝ DetK(x). (17)

Two remarks are in order. First, under Assumption A,
the density fVS in (17) indeed integrates to 1. Indeed,
Hadamard’s inequality yields

∫
XN

DetK(x)⊗dω(xi) ≤
∫
XN

∏
i∈[N ]

k(xi, xi)⊗ dω(xi)

=

(∫
X
k(x, x)dω(x)

)N
< +∞.

Second, the determinant in (17) is invariant to permutations,
so that continuous volume sampling can indeed be seen as
defining a random set x = {x1, . . . , xN}.

In the following, we denote, for any symmetric and continu-
ous kernel k̃ satisfying Assumption A,

ZN (k̃) :=

∫
XN

Det K̃(x)⊗ dω(xi). (18)

3.2. Continuous volume sampling as a mixture of DPPs

Definition 1 could be mistaken with the definition of a deter-
minantal point process (DPP; Macchi, 1975). However, the
cardinality of a DPP sample is a sum of Bernoulli random
variables (Hough et al., 2006), while volume sampling is
supported on subsets of X with cardinality exactly equal
to N . This property is convenient for approximation tasks
where the number of nodes N is fixed. While it is not a DPP,
volume sampling is actually a mixture of DPPs.

Proposition 2 For U ⊂ N∗ define the projection kernel

KU (x, y) =
∑
u∈U

eu(x)eu(y). (19)

For N ∈ N∗, we have

fVS(x1, . . . , xN ) ∝
∑
U∈ UN

∏
u∈U

σu Det(KU (xi, xj))(i,j),

(20)
and the normalization constant is equal to

ZN (k) = N!
∑
U∈UN

∏
u∈U

σu. (21)

The proof of this proposition is given in Appendix 2.1. Ob-
serve that for every U ⊂ UN ,

(x1, . . . , xN ) 7→ 1

N !
Det(KU (xi, xj))(i,j)∈[N ]×[N ], (22)

defines a well-normalized probability distribution on XN ,
called the projection DPP associated to the marginal kernel
KU (Hough et al., 2006). Among all DPPs, only projection
DPPs have a deterministic cardinality, equal to the rank of
KU (Hough et al., 2006). Interestingly, the largest weight
in the mixture (20) corresponds to the projection DPP of
marginal kernel K[N ] proposed in (Belhadji et al., 2019) for
kernel quadrature. The following lemma gives an upper
bound on this maximal weight using the eigenvalues of Σ.

Lemma 3 For N ∈ N*, define

δN =
∏
n∈[N ]

σn

/ ∑
U∈ UN

∏
u∈U

σu. (23)

Then for all N ∈ N*, δN ≤ σN/rN .

In particular, if the spectrum of k decreases polynomially,
then δN = O(1/N), so that as N grows, volume sam-
pling becomes more different from the projection DPP of
(Belhadji et al., 2019). In contrast, if the spectrum decays
exponentially, then δN = O(1).

3.3. Sampling algorithms

A projection DPP can be sampled exactly as long as one
can evaluate the corresponding projection kernel K (Hough
et al., 2006). For kernel quadrature (Belhadji et al., 2019),
evaluating K requires the knowledge of the Mercer decom-
position of the RKHS kernel k. The algorithm of (Hough
et al., 2006) implements the chain rule for projection DPPs,
and each conditional is sampled using rejection sampling.
This suggests using the mixture in Proposition 2 to sam-
ple from the volume sampling distribution. Again, such an
algorithm requires explicit knowledge of the Mercer decom-
position of the kernel or at least a decomposition onto an
orthonormal basis of F as in (Karvonen et al., 2019). This
is a strong requirement that is undesirable in practice.

The fact that the joint pdf (17) only requires evaluating k
pointwise suggests that volume sampling is fully kernelized,
in the sense that a sampling algorithm should be able to
bypass the need for a kernel decomposition, thus making
the method very widely applicable. One could proceed by
rejection sampling. Yet the acceptance ratio would likely
scale poorly with N . A workaround would be to use an
MCMC sampler similar to what was proposed in (Rezaei
& Gharan, 2019). This MCMC algorithm is based on
a Gibbs sampler chain: given a state x = {x1, . . . , xN},
remove a node xn chosen uniformly at random and add a
node y with a probability proportional to DetK(x′) where
x′ = {x1, . . . , xn−1, y, xn+1, . . . , xN}, and the initial state
of the Markov chain follow a distribution of density p0
defined on XN with respect to

∏
n∈[N ]

dω(xn).

For this Markov chain, the authors were able to derive



Kernel Interpolation With Continuous Volume Sampling

bounds for the mixing time:

τP0
(η) = min{t| ‖Pt − PVS‖TV ≤ η},

where ‖.‖TV is the total variation distance, Pt is the dis-
tribution of the Markov chain after t steps and PVS is the
distribution of the continuous volume sampling.

The author proposed the initialization of the Markov chain
by a sequential algorithm and proved that the mixing time
scales as O(N5 log(N)). They also proved bounds on the
expected number of rejections, which shows the feasibility
of the implementation of the Gibbs steps. This sequential al-
gorithm can be implemented in fully kernelized way without
the need for the Mercer decomposition of k.

We leave investigating the efficiency of such an MCMC
approach to volume sampling for future work.

4. Main Results
In this section, we give a theoretical analysis of kernel inter-
polation on nodes that follow the continuous volume sam-
pling distribution. We state our main result in Section 4.1,
an uniform-in-g upper bound of EVS ‖µg − ΠT (x)µg‖2F .
We give an upper bound for a general µ ∈ F in Section 4.2.

4.1. The interpolation error for embeddings µg

The main theorem of this article decomposes the expected
error for an embedding µg in terms of the expected errors
εm(N) for eigenfunctions of the kernel.

Theorem 4 Let g =
∑
m∈N*

gmem satisfy ‖g‖dω ≤ 1. Then

under Assumption A,

EVS ‖µg −ΠT (x)µg‖2F =
∑
m∈N∗

g2mεm(N), (24)

where εm(N) = σm

( ∑
U∈ UN

∏
u∈U

σu

)−1 ∑
U∈ Um

N

∏
u∈U

σu.

In particular, the sequence (εm(N))m∈N* is non-increasing
and

sup
‖g‖dω≤1

EVS ‖µg −ΠT (x)µg‖2F ≤ sup
m∈N∗

εm(N) = ε1(N).

(25)
Moreover,

ε1(N) ≤ σN (1 + βN ) , (26)

where βN = min
M∈[2:N ]

[(N −M + 1)σN ]
−1 ∑

m≥M

σm.

In other words, under continuous volume sampling,
ε1(N) is a uniform upper bound on the expected
squared interpolation error of any embedding µg such

that ‖g‖dω ≤ 1. We shall see in Section 5.1 that
εm(N) = EVS ‖µem − ΠT (x) µem‖2F .

Now, for N0 ∈ N*, a simple counting argument yields,
for m ≥ N0, εm(N) ≤ σN0 . Actually, for m ≥ N0,
‖µem‖2F ≤ σN0 , independently of the nodes.

Inequality (26) is less trivial and makes continuous volume
sampling distribution worth of interest: the upper bound
goes to 0 as N → +∞, below the initial error σN0 . More-
over, the convergence rate is O(σN ), matching the lower
bound of Section 2.5 if the sequence (βN )N∈N* is bounded.
In the following proposition, we prove that it is the case as
soon as the spectrum decreases polynomially (e.g., Sobolev
spaces of finite smoothness) or exponentially (e.g., the Gaus-
sian kernel).

Proposition 5 If σm = m−2s with s > 1/2 then

∀N ∈ N*, βN ≤
(

1 +
1

2s− 1

)(
1 +

1

2s− 1

)2s−1

.

(27)
If σm = αm, with α ∈ [0, 1[, then

∀N ∈ N*, βN ≤
α

1− α
. (28)

In both cases, the proof uses the fact that

βN ≤ [(N −MN + 1)σN ]−1
∑

m≥MN

σm, (29)

for a well designed sequence MN . For example, if
σm = m−2s, we take MN = dN/ce with c > 1; if
σm = αm we take MN = N . We give a detailed proof in
the supplementary.

For a general kernel, if an asymptotic equivalent of σN is
known (Widom, 1963; 1964), it should be possible to give
an explicit construction of MN . Indeed,

βN ≤
σMN

σN
+ [(N −MN + 1)σN ]−1

∑
m≥N+1

σm, (30)

and MN should be chosen to control both terms in the RHS.
Figure 1 illustrates the upper bound of Theorem 4 and the
constant of Proposition 5 in case of the periodic Sobolev
space of order s = 3. We observe that EVS E(µem ;x)2

respects the upper bound: it starts from the initial error level
σm and decreases according to the upper bound for N ≥ m.

4.2. The interpolation error of any element of F

Theorem 4 dealt with the interpolation of an embedding µg
of some function g ∈ L2(dω). We now give a bound on the
interpolation error for any µ ∈ F . We need the following
assumption, which is relatively weak; see Proposition 5 and
the discussion that follows.
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Assumption B There exists B > 0 such that βN ≤ B.

Theorem 6 Let µ ∈ F . Assume that ‖Σ−rµ‖F < +∞ for
some r ∈ [0, 1/2]. Then, under Assumption B,

EVS E(µ;x)2 ≤ (2 +B)σ2r
N ‖Σ−rµ‖2F = O(σ2r

N ).

In other words, the expected interpolation error depends
on the smoothness parameter r. For r = 1/2, we exactly
recover the rate of Theorem 4. In contrast, for r < 1/2, the
rate O(σ2r

N ) is slower. For r = 0, our bound is constant
with N . Note that assuming more smoothness (r > 1/2)
does not seem to improve the rate O(σN ).

Let us comment on this bound in two classical cases. First,
consider the uni-dimensional Sobolev space of order s. As-
sumption B is satisfied by Proposition 5 and the squared
error scales as O(N−4sr). Moreover, for this family of
RKHSs, ‖Σ−r.‖F can be seen as the norm in the Sobolev
space of order (2r + 1)s, and we recover a result in (Sch-
aback & Wendland, 2006)[Theorem 7.8] for quasi-uniform
designs. By using the norm in the RKHS F of rougher func-
tions, we upper bound the interpolation error of µ belonging
to the smoother RKHS Σr F . Second, we emphasize again
that our result is agnostic to the choice of the kernel, as long
as Assumption B holds. In particular, Theorem 6 applies
to the Gaussian kernel: the rate is slower O(σ2r

N ) yet still
exponential. Finally, recall that for f ∈ F

|f(x)|2 = |〈f, k(x, .)〉F |2 ≤ ‖f‖2Fk(x, x), (31)

so that, bounds on the RKHS norm imply bounds on the
uniform norm if the kernel k is bounded. Therefore, for
r ∈ [0, 1/2], our result improves on the rate O(N2σ2r

N ) of
approximate Fekete points (Karvonen et al., 2019).

4.3. Asymptotic unbiasedness of kernel quadrature

As explained in Section 2.1, kernel interpolation is widely
used for the design of quadratures. In that setting, one more
advantage of continuous volume sampling is the consistency
of its estimator. This is the purpose of the following result.

Theorem 7 Let f ∈ F , and g ∈ L2(dω). Then

BN (f, g) , EVS

(∫
X
fg dω −

∑
i∈N

ŵif(xi)

)
.

=
∑
n∈N*

〈f, en〉dω〈g, en〉dω
(
1− EVS τ

F
n (x)

)
.

Moreover, BN (f, g)→ 0 as N → +∞.

Compared to the upper bound on the integration error given
by (10), the bias term in Theorem 7 takes into account the in-
teraction between f and g. For example, if for all n ∈ N*,
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Figure 1. The value of EVS E(µem ;x)2 for m ∈ {1, 2, 3, 4, 5}
for the periodic Sobolev space (s = 3, d = 1) compared to the
theoretical upper bound (UB) of Theorem 4.

〈f, en〉dω〈g, en〉dω = 0, the quadrature is unbiased for ev-
ery N . Theorem 7 is a generalization of a known property
of regression estimators based on volume sampling in the
discrete setting (Ben-Tal & Teboulle, 1990; Derezinski &
Warmuth, 2017).

5. Sketch of the Proofs
The proof of Theorem 4 decomposes into three steps. First,
in Section 5.1, we write E(µg;x)2 as a function of the
square of the interpolation errors E(µem ;x)2 of the embed-
dings µem . Then, in Section 5.2, we give closed formulas
for EVS E(µem ;x)2 in terms of the eigenvalues of Σ. Fi-
nally, the inequality (26) is proved using an upper bound on
the ratio of symmetric polynomials (Guruswami & Sinop,
2012). The details are given in Appendix 2.4.3. Finally,
the proofs of Theorem 6 and Theorem 7 are straightfor-
ward consequences of Theorem 4. The details are given in
Appendix 2.9 and Appendix 2.10.

5.1. Decomposing the interpolation error

Let x ∈ XN such that DetK(x) > 0. For m1,m2 ∈ N∗,
let the cross-leverage score between m1 and m2 associated
to x be

τFm1,m2
(x) = eFm1

(x)ᵀK(x)−1eFm2
(x). (32)

Whenm1 = m2 = m, we speak of them-th leverage score2

associated to x, and simply write τFm(x). By Lemma S6,
the m-th leverage score is related to the interpolation error
of the m-th eigenfunction eFm. Indeed,

‖eFm −ΠT (x)e
F
m‖2F = 1− τFm(x) ∈ [0, 1]. (33)

2Our definition is consistent with the leverage scores used
in matrix subsampling (Drineas et al., 2006). Loosely speaking,
τFm(x) is the leverage score of them-th column of the semi-infinite
matrix (eFn (xi))(i,n)∈[N ]×N* .
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Similarly, for the cross-leverage score,

〈ΠT (x)e
F
m1
,ΠT (x)e

F
m2
〉F = τFm1,m2

(x) ∈ [−1, 1]. (34)

For g ∈ L2(dω), the interpolation error of the embedding
µg can be expressed using the (cross-)leverage scores.

Lemma 8 If DetK(x) > 0, then,

E(µg;x)2 =
∑
m∈N∗

g2mσn

(
1− τFm(x)

)
(35)

−
∑

m1 6=m2∈N∗

gm1gm2

√
σm1

√
σm2τ

F
m1,m2

(x).

In particular, with probability one, a design sampled from
the continuous volume sampling distribution in Definition 1
satisfies (35). Furthermore, we shall see that the expected
value of the (cross-) leverage scores has a simple expression.

5.2. Explicit formulas for expected leverage scores

Proposition 9 expresses expected leverage scores in terms
of the spectrum of the integration operator.

Proposition 9 For m ∈ N∗,

EVS τ
F
m(x) =

1∑
U∈ UN

∏
u∈U

σu

∑
U∈ UN
m∈U

∏
u∈U

σu. (36)

Moreover, for m1,m2 ∈ N∗ such that m1 6= m2, we have

EVS τ
F
m1,m2

(x) = 0. (37)

In Appendix 2.4, we combine Lemma 8 with Proposition 9.
This concludes the proof of Theorem 4 by Beppo Levi’s
monotone convergence theorem.

It remains to prove Proposition 9. Again, we proceed in two
steps. First, our Proposition 10 yields a characterization of
EVS τ

F
m(x) and EVS τ

F
m1,m2

(x) in terms of the spectrum
of three perturbed versions of the integration operator Σ.
Second, we give explicit forms of these spectra in Proposi-
tion 11 below. The idea is to express EVS τm(x)F as the
normalization constant (21) of a perturbation of the kernel
k. The same goes for EVS τ

F
m1,m2

(x).

Let t ∈ R+ and Σt, Σ+
t and Σ−t be the integration opera-

tors3 on L2(dω), respectively associated with the kernels

kt(x, y) = k(x, y) + teFm(x)eFm(y), (38)

k+t (x, y) = k(x, y) (39)

+ t
(
eFm1

(x) + eFm2
(x)
) (
eFm1

(y) + eFm2
(y)
)
,

3We drop from the notation the dependencies on m,m1 and
m2 for simplicity.

k−t (x, y) = k(x, y) (40)

+ t
(
eFm1

(x)− eFm2
(x)
) (
eFm1

(y)− eFm2
(y)
)
.

By Assumption A, and by the fact that (em)m∈N* is an
orthonormal basis of L2(dω), all three kernels also have
integrable diagonals (see Assumption A). In particular, they
define RKHSs that can be embedded in L2(dω). Moreover,
recalling the definition (21) of the normalization constant
ZN of volume sampling, the following quantities are finite

φm(t) =
1

N !
ZN (kt), φ+m1,m2

(t) =
1

N !
ZN (k+t ),

and φ−m1,m2
(t) =

1

N !
ZN (k−t ). (41)

Remember that by Proposition 2,

φm(t) = N !
∑

U∈ UN

∏
u ∈ U

σ̃u(t), (42)

where {σ̃u(t), u ∈ N*} is the set of eigenvalues4 of Σt.
Similar identities are valid for φ+m1,m2

(t) and φ−m1,m2
(t)

with the eigenvalues of Σ+
t and Σ−t respectively.

Proposition 10 The functions φm, φ+m1,m2
and φ−m1,m2

are
right differentiable in zero. Furthermore,

EVS τ
F
m(x) =

1

ZN (k)

∂φm
∂t

∣∣∣∣
t=0+

,

and

EVS τ
F
m1,m2

(x) =
1

4ZN (k)

(
∂φ+m1,m2

∂t
−
∂φ−m1,m2

∂t

)∣∣∣∣
t=0+

.

The details of the proof are postponed to Appendix 2.7. We
complete this proposition with a description of the spectrum
of the operators Σt, Σ+

t and Σ−t using the spectrum of Σ.

Proposition 11 The eigenvalues of Σt write

σ̃u(t) =

{
σu if u 6= m,
(1 + t)σu if u = m.

(43)

Moreover, the eigenvalues of Σ+
t and Σ−t satisfy

{σ̃+
u (t), u ∈ N*} = {σ̃−u (t), u ∈ N*}. (44)

The proof is based on the observation that the perturbations
in (38), (39), and (40) only affect a principal subspace of
dimension 1 or 2; see Appendix 2.6.

Combining the characterization of EVS τ
F
m(x) and

EVS τ
F
m1,m2

(x) given in Proposition 10, and Proposition 11,
we prove Proposition 9; see details in Appendix 2.8.

4For a given value of t, the eigenvalues σ̃u(t) are not necessar-
ily decreasing in u. We give explicit formulas for these eigenvalues
in Proposition 11, and the order satisfied for t = 0 is not neces-
sarily preserved for t > 0. This does not change anything to the
argument since these eigenvalues only appear in quantities such as
φm(t) which are invariant under permutation of the eigenvalues.
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6. A Numerical Simulation
To illustrate Theorem 4, we let X = [0, 1] and dω be the
uniform measure on X . Let the RKHS kernel be (Berlinet
& Thomas-Agnan, 2011)

ks(x, y) = 1 + 2
∑
m∈N∗

1

m2s
cos(2πm(x− y)), (45)

so that F = Fs is the Sobolev space of order s on [0, 1].
The Mercer decomposition (3) of ks is such that σ1 = 1,
e1 ≡ 1 is constant and, for n ≥ 1, σ2n = σ2n+1 = 1/n2s,{

e2n(x) =
√

2 cos(2πnx),

e2n+1(x) =
√

2 sin(2πnx).
(46)

Note that ks can be expressed in closed form using Bernoulli
polynomials (Wahba, 1990). In Theorem 4, (24) decom-
poses the expected interpolation error of any µg in terms
of the interpolation error εm(N) of the µem . Therefore, it
is sufficient to numerically check the values of the εm(N).
As an illustration we consider g ∈ {e1, e5, e7} in (24), so
that µem = Σem = σmem, with m ∈ {1, 5, 7}. We use
the Gibbs sampler proposed by (Rezaei & Gharan, 2019) to
approximate continuous volume sampling.

We consider various numbers of points N ∈ [2, 20]. Fig-
ure 2 shows log-log plots of the theoretical (th) value of
EVS ‖µg − ΠT (x)µg‖2F compared to its empirical (emp)
counterpart, vs. N , for s ∈ {1, 2}. For each N , the estimate
is an average over 50 independent samples, each sample
resulting from 500 individual Gibbs iterations.

For both values of the smoothness parameter s, we observe
a close fit of the estimate with the actual expected error.

7. Discussion
We deal with interpolation in RKHSs using random nodes
and optimal weights. This problem is intimately related
to kernel quadrature, though interpolation is more general.
We introduced continuous volume sampling (VS), a repul-
sive point process that is a mixture of DPPs, although not
a DPP itself. VS comes with a set of advantages. First,
interpretable bounds on the interpolation error can be de-
rived under minimalistic assumptions. Our bounds are close
to optimal since they share the same decay rate as known
lower bounds. Moreover, we provide explicit evaluations of
the constants appearing in our bounds for some particular
RKHSs (e.g., Sobolev, Gaussian). Second, while the eigen-
decomposition of the integration operator plays an important
role in the analysis, the definition of the density function of
volume sampling only involves kernel evaluations. In that
sense, VS is a fully kernelized approach. Unlike previous
work on random design, this may permit sampling without
knowing the Mercer decomposition of the kernel (Rezaei &
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Figure 2. The empirical estimate of EVS E(µem ;x)2 for m ∈
{1, 5, 7} compared to its expression (24) in the case of the periodic
Sobolev space. The smoothness is s = 1 (top), s = 2 (bottom).

Gharan, 2019), as demonstrated in Section 6. Investigating
efficient samplers and their impact on bounds is deferred to
future work; the current paper is a theoretical motivation for
further methodological research.

We conclude with a few general remarks. In the context of
interpolation, (Karvonen et al., 2019) propose to use approx-
imate Fekete points. In comparison, our analysis yields a
sharper upper bound while circumventing the analysis of the
Lebesgue constant, a central quantity in interpolation theory.
Yet, it would be interesting to analyze the distribution of
the Lebesgue constant under continuous volume sampling,
to provide an assessment of the numerical stability of our
approach. A related extension of our work would be the
analysis of interpolation under regularization as in (Bach,
2017). Finally, while optimal kernel quadrature may be
the main application of our results, Section 4.2 hints that
more generic elements than embeddings can also be well ap-
proximated using VS. This connects to kernel quadrature in
misspecified settings (Kanagawa et al., 2016), or experimen-
tal design problems for Gaussian process approximations
(Wynne et al., 2020).
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