1. Appendix
1.1. Proof for Theorem 1

Theorem 1. If the third-derivative of the loss function at
0* is sufficiently small, the second-order group influence
function (denoted by T?) (U)) when all samples in a group
U are up-weighted by e is:
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Proof. We consider the empirical risk minimization prob-
lem where the learning algorithm is given training samples
S = {z; = (x;,y;)}"; drawn i.i.d from some distribution
P. Let O be the space of the parameters and hy be the
hypothesis to learn. The goal is to select model parameters
f to minimize the empirical risk as follows:
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The ERM problem with a subset &/ C S removed from S is
as follows:
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In our formulation for the group influence function, we
assume that weights of samples in the set I/ has been up-
weighted all by e. This leads to a down-weighting of the
remaining training samples by € = %e, to conserve the
empirical weight distribution of the training data. We de-
note p as ‘ | to denote the fraction of up-weighted training
samples. Therefore the resulting ERM optimization can be
written as:

0 = arg r%in Ly(9) 4)
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and € = I Sllu ‘|‘ - We consider the stationary condition

where the gradient of Lj, is zero. More specifically:
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Next we expand V Lgy(65,) around the optimal parameter
0* using Taylor’s expansion and retrieve the terms with
coefficients O(¢) to find 6():

0= VLy(0") + V2Ly(0") (6, - 07)
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At the optimal parameters 6*, VLy(0*) = 0 and 65, — 6* =
€0, thus simplifying Equation (7):
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Substituting |I/|/|S| as p, we get the following identity:
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where 01 is the first-order approximation of group
influence function. We denote the first-order approximation
as (M,

Next we derive Z' by comparing terms to the order
of € (i.e. O(¢?)) in Equation (6) by expanding around 6*:
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where:
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Substituting Equation (11) in Equation (10), and expanding

in O(e?) we get the following identity:
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Taking the common coefficients |U/|/(|S| — |U]) out and

rearranging Equation (12), we get the following identity:
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Now we multiply both sides of the Equation (13) with the
Hessian inverse i.e. VZLy(0*)~! , we obtain the cross-term
involving the gradients and the Hessians of the removed
points in the second order influence function as follows:
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where p = [U]/|S| and we denote 6 as Z'. We combine
Equation (9) and (14), to write the second order influence
function Z(?) () as:

IOWU) =IOU) + T W) (15)
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1.2. Synthetic Dataset - Influence Computation

The synthetic data is sampled from a multivariate Gaussian
distribution with 5 dimensions and consists of two classes.
We sample a total of 10000 points for our experiments. For
the first class, the mean is kept at 0.1, while for the second
class the mean is kept at 0.8. The covariance matrix in both
the classes is a diagonal matrix whose entries are sampled
randomly between 0 and 1.

1.3. Coherent Groups

In case of randomly removed groups, the perturbations to
the model are relatively small when compared to a case
where groups having similar properties are removed. This is
also the experimental setting in (Koh, Ang, Teo, and Liang,

)9(1)

2019), where the first-order group influence function is
analysed. In our experimental setup for the MNIST dataset,
we remove groups of sizes (denoted by ||U/||) ranging from
100 to 3500 from a specific class. Essentially when a group
of points are removed, they are ensured to be from a similar
class.

1.4. Synthetic Dataset - Group Selection

For testing our optimal group selection procedure
for second-order group influence functions we gener-
ate synthetic data consisting of 20000 samples from
sklearn.datasets.make_blobs consisting of 5
features from 4 distinct classes. The generated data is in the
form of isotropic Gaussian blobs.

1.5. Plots for Neural Network Experiments
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Figure 1. Correlation vs group size plot for neural networks
(MNIST dataset).

In case of neural networks, we use the existing first-order ap-
proximation of influence functions and our proposed second-
order influence functions to approximate effect of leave-k-
out retraining on the test-loss for a particular sample. We
use the MNIST dataset in our experiments. Across different
groups sizes ranging from 10% to 50% of the entire training
data, we observe that the correlation with the ground-truth
is far from significant (Figure (1)). Up-weighting of a group
leads to a large perturbation to the underlying model, where
a local approximation via influence functions around the
loss function at the optimal parameters might not lead to an
accurate estimate in case of deep networks when compared
to a linear model. A comprehensive investigation of the be-
haviour of influence functions in deep learning is a direction
for future work.



1.6. On Infinitesimal Jackknife and Influence
Functions

Infinitesimal jackknife and influence functions are methods
from robust statistics to linearly approximate cross-
validation procedures and attaching standard errors to point
estimates (Efron, 1992; Jaeckel, 1972; Cook and Weisberg,
1980; Cook and Sanford, 1982). Previously (Efron, 1992)
have shown that linear approximations for cross-validation
in case of infinitesimal jackknife and influence functions
are relatively similar, although the technical ideas are
different. Recently (Giordano, Stephenson, Liu, Jordan, and
Broderick, 2018) approximated cross-validation procedures
by using a linear approximation to the dependence of the
cross-validation fitting procedure on the empirical weight
distribution of the training data in the ERM. This procedure
is similar in idea to (Koh and Liang, 2017), but differs
technically where a training sample was up-weighted by an
€ factor and the approximated solution to the modified ERM
was found using influence functions. However in both the
cases of (Giordano et al., 2018) and (Koh and Liang, 2017;
Koh et al., 2019) higher-order terms have been ignored.
A recent work (Giordano, Jordan, and Broderick, 2019)
focuses on higher-order terms of infinitesimal jackknife for
leave-k-out retraining approximations. (Giordano et al.,
2019) specifically provide tools for extending infinitesimal
jackknife(Giordano et al., 2018) to higher-order terms with
finite sample accuracy bounds. We give a small description
on how the higher-order terms in (Giordano et al., 2019)
have been derived, in the following part:

With a training set {z; = (z;,v:;)}}, we consider
the following ERM problem:

N
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and let f(w) be the solution to the following optimization
problem:

O(w) = arg mainL(G,w) (17

Let 6 be the solution to the ERM problem with w; =
1, Vie [1,N]. We denote this vector of w in case of § as
1. We consider the change in the empirical weight distri-
bution of the training data in the ERM as Aw = w — 1y.
Infinitesimal jackknife procedures compute the directional
derivative of 6(w) in a direction denoted by Aw. Let
61 6(w) be the first-order directional derivative of f(w) in
the direction Aw, 620(w) be the second-order derivative
and 55)@ (w) be the k" order derivative. As a representative

example, 01 (w) is defined in the following way:
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and the second-order directional derivative as:
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Infinitesimal jackknife focuses on finding the solution to
6(w) by a Taylor series approximation around 6 as follows :

k
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(Giordano et al., 2019) specifically provide tools to obtain
the higher-order directional derivatives i.e (k > 2) through
a recursive procedure and also provide their associated finite
sample accuracy bounds. However any experiment support-
ing how their derived higher-order infinitesimal jackknife
behave in case of practical machine learning models was
not explored in (Giordano et al., 2019). Note that even in
influence functions  is used as the known solution around
which the up-weighted solution of the ERM is found. How-
ever the technical derivation of the parameters of the ERM
with up-weighted training examples is different as can be
observed in (Cook and Weisberg, 1980; Koh and Liang,
2017; Koh et al., 2019). Our work specifically focuses on
higher-order terms in case of influence functions first shown
in (Cook and Weisberg, 1980) and subsequently by (Koh
and Liang, 2017; Koh et al., 2019). We use a combination of
perturbation series and Taylor series to compute the higher-
order terms in case of influence functions. In the process
we make certain practical modifications like conserving the
empirical weight distribution of the training data to one,
which is particularly important as shown in the main paper.
Note that higher-order terms of influence functions as shown
in this paper is different from the higher-order terms of in-
finitesimal jackknife as shown in (Giordano et al., 2019)
due to these differences. Also we show practically how
the second-order influence function is beneficial over exist-
ing first-order influence function in case of approximating
leave-k-out retraining procedures for machine learning mod-
els especially for large values of k as well as for influential
group selection procedure.

2. Efficient Computation of Second-Order
Influence Function

The second-order group influence function (Z' (&) (U, z¢)) can
be expressed as:
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Term]1 can be efficiently computed using a combination of
Hessian-vector product (Pearlmutter, 1994) and conjugate-
gradient. T'erm?2, which captures cross-dependencies
amongst the samples can also be computed efficiently using
three steps. First v, = H,.! > ey VE(he-(2")) is com-
puted using a combination of Hessian-vector product and
conjugate gradient. In the next step, vo = V2{(hg-(2))v1
is computed using Hessian-vector product and the output of
this step is a vector. In the final step, v = H, 9_*11)2 is com-
puted using Hessian-vector product and conjugate-gradient.
The second-order group influence function thus requires an
extra computation of conjugate-gradient. While the second-
order group influence function is a bit more expensive than
the first-order one (due to an extra CG operation), it is much
faster than retraining to compute the ground-truth influence.
For example, the running time of first-order influence on
MNIST for different groups (up to 20 % of removed data)
averaged over 100 runs is 16.7 £ 2.56s while that of the
second-order method is 28.2 4= 4.8s.

3. Additional Experimental Results

In this section, we provide an additional experimental result
with the second-order group influence function evaluated
on the Iris dataset for logistic regression. From Figure (2),
we observe that the second-order group influence estimates
have a better correlation with the ground-truth across differ-
ent group sizes. Specifically we notice that when more than
33% of the training data is removed, the improvement in
correlation by the second-order influence function is more.
In this experimental setup, the groups were removed ran-
domly. Specifically for each group size, 200 groups were
randomly removed and the experiment was repeated for 10
trials to obtain the mean correlation.

4. Experimental Details on MNIST

For the experiments with the MNIST dataset, for each group
size and test-point (in case of both the random and coherent
groups), 500 groups were removed and the experiment is
repeated for 10 trials. In our paper, we report the mean
correlation amongst 10 experimental trials.

5. Relationship To Representer Point
Theorem

Identification of influential samples in the training set can
also be done by alternative methods such as representer
point theorem (Yeh, Kim, Yen, and Ravikumar, 2018). In
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Figure 2. Correlation vs group size plot for Iris dataset.

particular, unlike influence functions, (Yeh et al., 2018) as-
signs an influence score by kernel evaluations at the training
samples. While both (Yeh et al., 2018) and our method ex-
plain a test-prediction through the lens of the training data,
the definitions of influences or importances are different in
both cases. Influence functions define importance analo-
gous to the leave-out re-training procedure while the kernel
function defined in (Yeh et al., 2018) evaluates influences
by relying on the weighted sum of the feature similarity of
the training samples in the pre-activation layer of a deep
network. Investigation of the exact relationship between ker-
nel based methods like representer theorem and influence
functions is a direction for future work.
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