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Abstract

Key problems arising in web applications (with
millions of users and thousands of items) can be
formulated as linear programs involving billions
to trillions of decision variables and constraints.
Despite the appeal of linear program (LP) formu-
lations, solving problems at these scales appear
to be well beyond the capabilities of existing LP
solvers. Often ad-hoc decomposition rules are
used to approximately solve these LPs, which
have limited optimality guarantees and may lead
to sub-optimal performance in practice. In this
work, we propose a distributed solver that solves
a perturbation of the LP problems at scale via a
gradient-based algorithm on the smooth dual of
the perturbed LP. The main workhorses of our
algorithm are distributed matrix-vector multipli-
cations (with load balancing) and efficient projec-
tion operations on distributed machines. Experi-
ments on real-world data show that our proposed
LP solver, ECLIPSE, can solve problems with
10*2 decision variables — well beyond the capabil-
ities of current solvers.

1. Introduction

Large scale Linear Programs arise naturally in several appli-
cations across various scientific and industrial disciplines.
In this paper, we focus on problems arising in the inter-
net industry. Many key problems in this domain, can be
formulated via a Linear Program (LP). Examples include
optimizing the volume of emails to be sent to users (Gupta
et al., 2016; 2017), balancing multiple business metrics in a
ranking or recommendation system (Agarwal et al., 2012;
2014; 2015), optimizing internal promotions (Gupta et al.,
2019); and matching entities (Azevedo & Weyl, 2016) such
as riders to drivers in ride-sharing apps (Zheng & Wu, 2017),
items to buyers in an e-commerce platform (Linden et al.,
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2003; Schafer et al., 1999), jobs to potential job-seekers
(Borisyuk et al., 2017; Kenthapadi et al., 2017), restaurants
to users, etc.

While most of these problems can be formulated as LPs,
solving them becomes difficult as the scale of the problem
increases. Consider, for instance, the task of matching items
to users—the scale of the problem can easily range from
hundreds of millions to trillions of variables, which appear
to be beyond the capabilities of generic LP solvers'. One
common approach used in web-applications, is to translate
the primal problem to a dual problem, solve the dual prob-
lem and then derive a primal solution as a function of the
dual variables (Agarwal et al., 2011; 2012). Solving the
dual problem at scale is also extremely challenging using
current generic LP solvers.

Some ad-hoc techniques are often used in practice result-
ing in sub-optimal solutions. One approach is to split the
problem into several smaller problems, which makes the
system sub-optimal. Another approach is to not solve the
optimization problem at all, but rely on hyperparameter tun-
ing to estimate these dual variables in order to maximize
business metrics (Agarwal et al., 2018; Letham et al., 2019;
Du et al., 2019). Although few specific problems can be
framed as above, tuning multiple dual variables through
an online hyperparameter tuning problem is a challenging
task (Snoek et al., 2012; Letham & Bakshy, 2019).

In this paper, we introduce ECLIPSE: An Extreme Scale
Linear Program Solver, which is a perturbation based ap-
proach (Mangasarian & Meyer, 1979) to solve the LPs at an
unprecedented scale. Our approach leads to a dual that has
Lipschitz continuous gradient (Nesterov, 2005). We present
first order optimization methods on the dual with guaranteed
convergence properties. The gradient computation at every
iteration requires a matrix-vector multiplication, which al-
lows for a distributed implementation—this plays a key
role towards addressing several challenging LPs arising in
the internet industry. We compare ECLIPSE with some
large-scale solvers using simulated and real data. Using this
system in production for solving extreme-scale problems

! Generic LP solvers, are mainly based on the simplex or interior
point methods. Unless one properly exploits problem-structure,
these methods can become prohibitively expensive for large scale
instances.
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we have observed significant improvements in metrics.

The efficiency of the method introduced in this paper de-
pends on the special structure of the problem, as discussed
in Section 2. However, this special structure appears to
be abundant in real-life problems especially in the web-
applications which also brings out the need for an extreme
scale, and that is the specific problem we wish to solve in
this paper.

The rest of the paper is organized as follows. We begin by
describing the problem formulation and traditional solutions
in Section 2. Our proposed solution with theoretical guaran-
tees is shown in Section 3. In Section 4 we describe several
applications and Section 5 discusses the system architecture.
Experimental results are shown in Section 6; and concluding
remarks are presented in Section 7.

2. Problem Setup

To describe the problem setup, let us first begin with some
notations. Any web-scale application has users, which we
denote by ¢, and items which we denote by j. Any asso-
ciation between (i, j) is denoted by x;; which is our main
variable of interest. For example, x;; can denote the proba-
bility of showing item j to user . We denote the vectorized
version as © = (x1,...,xs) where z; = {x;;}7_,. Here,
I denotes the total number of users and .J denotes the to-
tal number of items. Throughout this paper we consider
problems of the following form:

min ¢’z st Az <b, x; €C, i€ []], (1)
x

where, A, xn, bmx1, C; are problem data; x,,x 1 is the opti-
mization variable; and [I] is shorthand for 1,...,I.

In order to achieve the extreme-scale arising from problems
in web-applications we focus on a particular structure of the
above problem. We assume the following:

e n = IJ canrange in 100s of millions to 10s of trillions
(or potentially larger).

e A is sparse and highly structured, i.e. multiplying A
(or its transpose) with a vector can be done efficiently?.
A is of the form: [A™); A®)] where A1) ¢ R™1x7"
with m; = O(1) < n; and

Dy -+ Dy
A® = : ;
Dot Dyt

where, D;; are J x J diagonal matrices.
e The diagonal of each D;; is sparse as well, with a
maximum of K non-zero entries, where K < J. Thus

“This takes into account the number of floating point operations
in addition to other load-balancing considerations arising in our
distributed implementation.

overall, the total number of non-zero entries in A is
given by

nnz(A) =milJ +mol K. (2)

e C;,i € [I] are “simple” constraints (i.e., it is efficient to
compute the Euclidean projection into C;)—examples
include the non-negative orthant, box constraints or the
unit simplex (Parikh & Boyd, 2014b, Ch 6).

While our assumptions regarding problem-structure makes
Problem (1) a bit specific, we shall show in Section 4, that
several important problems arising in the internet industry
(that we focus on in this paper) belong to this family. An in-
depth investigation of scalable algorithms for more general
LPs is an interesting topic for future research.

While small instances of Problem (1) can be handled via
off-the-shelf LP solvers, they quickly become prohibitively
expensive for large scale instances. We propose to use
first-order methods (Nesterov, 2004) to solve (1). How-
ever, performing a projection onto the polyhedral constraint
in (1) is cumbersome — hence, projected gradient descent
methods on the primal LP may not be a good choice. We
apply a perturbation method (Mangasarian & Meyer, 1979)
with old roots in optimization: we add a small ridge regu-
larization into the objective, and then consider solving the
dual of the perturbed problem. This dual is smooth (i.e, has
Lipschitz continuous gradient) and is hence amenable to
first-order methods in smooth continuous optimization (Nes-
terov, 2013). Details of our proposed approach are discussed
in Section 3.

2.1. Current Approaches

A common and effective method to solve LPs is via the
(primal or dual) simplex algorithm—they are implemented
in many software packages (commercial and noncommer-
cial), and they work well in practice for small-moderate
instances (Bertsimas & Tsitsiklis, 1997; Gearhart et al.,
2013; Bixby, 2002). Interior point methods are also used for
solving LPs (Boyd & Vandenberghe, 2004) though they usu-
ally have large memory requirements due to direct matrix
factorizations and/or inversions. To solve large-scale in-
stances, it is necessary to exploit the problem-specific struc-
ture. For example, Gondzio & Sarkissian (2003) present
impressive specialized parallel interior point methods for
solving large-scale LPs where the constraint matrix has
special block-angular like structure. This requires solving
large-scale linear systems using specialized numerical lin-
ear algebra routines. Our approach is based on first order
methods that mainly require distributed matrix-vector mul-
tiplications. The structure of our problem is different than
what is considered in Gondzio & Sarkissian; and our ap-
proach appears to scale to much larger instances.

Well-known techniques for solving large scale LPs include
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Dantzig Wolfe decomposition which is closely related to
column generation (Bertsimas & Tsitsiklis, 1997). Roughly
speaking, these methods express an LP in a suitable ba-
sis that admits a sparse solution (few nonzero coefficients).
These methods often need to be specialized to problem-
specific structure to obtain significant cost-savings. More-
over, as these methods mainly rely on the simplex method,
they may be difficult to parallelize. We note that parallel
implementations of the simplex method are available in
commercial LP solvers such as Gurobi.

Splitting methods such as ADMM (Boyd et al., 2011) can
also be used to approximately solve LPs; though they often
involve expensive intermediate steps for solving large linear
systems. There are variants of ADMM such as linearized
ADMM (Boyd et al., 2011) or linearized Bregman (Osher
et al., 2011), that avoid solving these large linear systems.
Unlike the basic version of ADMM, these linearized algo-
rithms converge under carefully chosen step-sizes (which
may be hard to compute for large-scale instances). There
are improved versions of ADMM that form the basis of
state-of-the-art large scale conic optimization solvers such
as SCS (O’Donoghue et al., 2016) and they work very well
in practice. Operator splitting or ADMM or dual decom-
position based methods can be performed in a distributed
fashion (Boyd et al., 2011; Parikh & Boyd, 2014a) though
these multi-block extensions have limited convergence guar-
antees (Chen et al., 2016).

Pock & Chambolle (2011) present diagonal preconditioning
methods for first order primal-dual algorithms (Chambolle &
Pock, 2011) for a family of convex problems with a known
saddle-point structure. The authors discuss how to solve LPs
arising in total variation denoising, graph cuts and minimal
partitioning problems. See also Goldstein et al. (2013) for
related algorithms. Similar primal-dual algorithms may also
be used to solve the LPs considered in this paper, provided
we exploit problem-structure in a manner similar to what
we have done in this paper.

Current practice in Industry: In practice, solving the dual
problem to find the optimal dual variable \ is often challeng-
ing due to the extreme-scale in industrial problems. One
ad-hoc technique that is used in industry (as discussed in the
published literature) (Gupta et al., 2016) is to split the data
according to different groups of members into K machines
and solve a proxy problem in each machine. In the k-th
machine we solve a (tractable) sub-problem of the form:

min cfx st. Apz <bp, 1, €Cii €Sy (3)
xT

where © € R™ with n,, = IJ/K; Ak, ¢, are the compo-
nents of the original matrix A = [A, ..., Ax] and vector
¢ = (e1,...,cK), respectively. Above, by is an a-priori
specified number such that b = 1 b;.. Finally, S}, de-
notes the set of members in the £-th machine. Problem (3)

being a smaller optimization problem, we can solve and
obtain an estimate of \j, from each machine for k € [K]
and finally consider \ = Zszl Ar/K. This can only give
us a sub-optimal solution as we split the constraints into
artificial sub-constraints.

In many practical situations, where the above approach is
costly as well, practitioners often rely on hyper-parameter
tuning to learn \. Practitioners choose different values
of X\ and use it to evaluate different business metrics by
serving the users with £(\). The A that provides the best
business metrics is chosen as the final optimal \. This
solution can be extremely challenging to employ due to
large amount of noise in the system (Letham et al., 2019;
Agarwal et al., 2018), potential bad user experience, and
high dimensionality of A.

3. ECLIPSE: Extreme-Scale LP Solver

We present our framework to solve problem (1) at unprece-
dented scales, without the ad-hoc splitting schemes dis-
cussed in Section 2.1, which (to the best of our knowledge)
appears to be the state-of-the-art in industry.

A perturbation of the LP: As alluded to in Section 2, the
basic idea behind our approach is to consider a perturbed
version (Mangasarian & Meyer, 1979) of the LP (1) and
propose algorithms to maximize its (smooth) dual. To this
end, consider the following ¢5-squared regularized version
of (1) — this leads to the quadratic program (QP):

min ¢’z + %xTx st. Az <b, x; €Ci,i €[I] @)

where, v > 0 is a regularization parameter that controls
(a) how well the optimal objective of Problem (4) approxi-
mates that of (1) (cf Lemma 1); and (b) the smoothness of
the dual objective function (cf Lemma 3).

Problem (4) is a large scale QP—as written, this is not
amenable to first-order optimization methods due to the
(complicated) nature of the inequality constraints Ax < b
which is difficult to project onto. The constraints z; € C; for
i € I on the other hand, separate across ¢; and it is simple
to project onto the set C;. Thus motivated, we dualize the
complicating polyhedral constraint Az < b, but retain the
(simple) constraints x; € C; as implicit®>. This leads to a

3Similar ideas where a complicated polyhedral constraint is
dualized with separable (simple) constraints remaining implicit
appear in classic Dantzig Wolfe decomposition (Bertsimas & Tsit-
siklis, 1997) methods for solving large scale LPs. These methods
are usually embedded within a simplex like framework for solving
LPs. Our approach differs in that we use first-order methods to
solve the QP (4)—making it amenable to distributed matrix-vector
multiplications (Section 5). See also (Boyd et al., 2011) for further
discussions on dual decomposition methods.
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certain Lagrangian dual given by:

gy(N) = mi(rjl {CT.’E + %xTa: + M'(Az — b)} , ()
zTE

where C = II_,C;. Note that, by strong duality (Boyd &

Vandenberghe, 2004), the optimum objective g7 of the dual

g5 = max 9+(N) (6)

is the minimum of (4).

In Lemma 3 we see that A — g () is differentiable and
the gradient is Lipschitz continuous with parameter L < oo
ie., |[Vgy(A) = Vg,(\)|| < LI|A — N|| for all A\, \. In
addition, it is simple to project onto the constraint set of (6).
Hence, Problem (6) is amenable to first-order methods for
smooth optimization (Nesterov, 2013) provided the gradi-
ent Vg(A) can be computed efficiently. As we shall see
shortly (cf Lemma 3), the gradient can indeed be computed
quite efficiently: In our case, computing Vg, (\) requires
performing

(1) a distributed matrix-vector multiplication and
(ii) an Euclidean projection onto the set C.

Due to the separable structure of the set C across users,
and the simplicity of projecting onto the set C;, operation
(ii) can be performed in parallel across multiple executors
(See Section 5). Note that computing Vg.,(\) efficiently in
practice (especially, considering the scale of the problems
we are dealing with) constitutes the dominant cost of our
proposed framework.

Note that, when v = 0, we get a dual of the LP (1). If
g¢ 1s the optimal objective value of (5) for v = 0, by LP
strong duality this equals the optimal objective of (1). The
following Lemma gives an uniform bound between the per-
turbed dual objective g- () to the unperturbed objective—
this immediately leads to a O(-y)-bound on the difference in
their optimal objective values as discussed in the following
Lemma (Nesterov, 2005):

Lemma 1. The dual g, () satisfies the (uniform) bound:
9y(A) = 79/2 < go(A) < gy(A) VA

where, ¥ = max,ec ! x. The optimal objective value of
the LP (i.e., gg), lies in the interval [g5 — v1U/2, g3, where,
g5, is the optimal objective value of Problem (6).

The proof of Lemma 1 (which appears in the Appendix) also
provides simple bounds on the constant ¥). From the above
result, it follows that as v — 0+, the solution of Problem (4)
converges to the minimum ¢5-norm solution of Problem (1).
This result can be strengthened further (Mangasarian &
Meyer, 1979; Friedlander & Tseng, 2008) in light of what
is known as the exact regularization for LPs:

Lemma 2. There exists ay > 0 such that for all v € [0, 7]
the minimizer x, of the perturbed primal (4) is an optimal
solution to the LP (1).

Lemma 2 states that for sufficiently small (but, strictly pos-
itive) values of =y, an optimal solution to the perturbed QP
is also an optimal solution to the LP — this occurs even if
there is a positive gap (i.e., of order O(~) as in Lemma 1)
between the optimal objective values of the QP and the LP.
Note however, that Lemma 2 offers an existential result—the
choice of 4 (Mangasarian & Meyer, 1979) requires knowing
an optimal primal-dual pair of solutions to (1) and a variant
of the QP (4).

Smooth optimization on the dual: We proceed to show
that for any v > 0, the function A — g, () has Lipschitz
continuous gradient. This follows from the fundamental
observation that the minimization task w.r.t. z in (5) ad-
mits a unique solution due to the strong convexity of the
objective (w.r.t x) (Bertsekas, 1999). For a dual variable
A, the corresponding primal variable Z(\) can be obtained
by solving the inner optimization problem (5). Due to the
block-structure of C = Hle C; the ¢th block of the primal
vector () is given by:

#i(A) = e, [-2(ATA + ¢)4] (7)
where Il¢, (+) is the Euclidean projection operator onto C;;
and for a vector a with the same dimensions as the decision
variable z, we let a; denote the sub-vector with indices
corresponding to user ¢. For our applications (See Sections 2
and 4), ¢, (-) can be computed in nearly closed form. We
obtain #(\) via a stacking operation: #(\) = {Z;(\)}_,.

In addition to the above (nearly closed form) expression of
Z(), the gradient of g (A) and an upper bound on its Lips-
chitz constant can be computed by using standard results in
convex analysis (Bertsekas, 1999; Nesterov, 2005):

Lemma 3. g, (\) is differentiable with V g.,(\) = AZ(\) —
b where, where #(\) = {2;(\)}/_,. Furthermore, g.,(\)
has Lipschitz continuous gradient with parameter L =
| Al|%/~ where, ||Al|s is the largest singular value of A.

As X — Vg, () is Lipschitz continuous, one can use pro-
jected gradient ascent (Nesterov, 2004; 2013) to solve (6).
This leads to the update sequence

A € argming s A = (A" +9Vg(A))|I3

8
—( 4 Vg () ®
where, the step-size n < 1/L and (a); = max{a,0} de-
notes a component-wise operation for a vector a. This has
a sub-linear convergence rate of g — g,(\*) < O(1/k)
where, g7 is defined in (6). The gradient method can be
accelerated by using Accelerated Gradient (AGD) meth-
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ods (Beck & Teboulle, 2009) with updates (for & > 0):

N = (&8 + Vg (E9))

9
£k+1 _ /\k +ﬁk(>\k _ )\k—l) ®)

where, B, = (ty — 1)/tr1 and tyq = (1+ /1 +4¢3)/2
with initialization t; = 1 and ¢! = A°. AGD leads to a
worst-case convergence rate of g% — g, (A\¥) < O(1/k?),
an improvement over the sublinear convergence rate of the
proximal gradient method. In the special case when 5, = 0,
updates (9) reduce to the proximal gradient updates (8).

Choice of v: Observe that Lemma 1 shows a O(+y) approx-
imation quality of the perturbed problem vs the LP, while
Lemma 3 shows Vg, () is O(1/~)-Lipschitz, which dic-
tates the convergence speed of projected gradient ascent.
Practitioners often have a rough idea of the allowable ap-
proximation quality, which can be used to choose . If
this is unknown and/or the « value is too small, one can
apply a continuation approach: solve (6) for a sequence of
decreasing v values (large to small) with warm-starts.

Computing || A|| s and step-size selection: Recall that con-
vergence of updates (8) or (9) occur for n < /|| A||%. Note
that, for improved convergence (i.e., a reduction in the
total number of gradient updates), a line-search may be
used (Beck & Teboulle, 2009). For simplicity, we use a
constant step-size 7 in our exposition. We derive an easy-
to-compute upper bound on the largest singular value of
A = [AM; A®)] making use of its special structure (see
Appendix). This requires computing || A1) || s and || A®)||s,
which can be computed (in a distributed fashion) with total
cost O(n). This is a much friendlier computational opera-
tion, when compared to computing the spectral norm of the
entire matrix A.

The above procedure is summarized in Algorithm 1.

Algorithm 1 ECLIPSE: Extreme-Scale LP Solver

Input: A,,xn, {C;}_1, b, ¢,y and initialization \°.
Output: Dual Solution A*, Primal Solution z*
1: Compute L = v/||A||%; and repeat the following steps
till convergence
2: For a dual iterate \¥, compute a primal solution via (7);
and compute the gradient Vg(\*) = AZ(A\*) — b (cf
Lemma 3). Both operations are performed in parallel
over the executors (cf Section 5).
3: Update the dual variable A\ via the AGD update (9).
(The AGD update can be replaced by a proximal gradi-
ent update as in (8)).
4: Return (approximate) dual \* = A\* and primal z* =
#(AF) solutions.

4. Applications

We specialize the framework presented above to example
problems arising in industrial applications; and discuss so-
lution methods.

Multi-objective optimization problems (Agarwal et al.,
2011; Marler & Arora, 2004) appear frequently in machine
learning and web applications. In internet applications,
multi-objective optimization problems can be framed by
considering one of the objectives as primary and others as
constraints. Typical examples of constraints are:

1. Global constraints: the constraint potentially involves
all the variables of interest.

2. Cohort-level constraints: the constraints are over ei-
ther a cohort of members, a cohort of items or both.

3. User or item level constraints: the constraints are on
an individual item, individual user, or both.

For each of the problems described below, we explain how
such constraints arise, how to formulate the problem as an
LP and solve the corresponding dual (6).

In all of these applications, it is useful to have a good es-
timate of a dual solution. First of all, note that a primal
solution can be obtained from a dual solution via (7). In ad-
dition, for the new items that are coming into the system, we
can obtain an estimate of the (new) primal decision variable
{x;;} using the current dual solution*. This allows us to
work in a low-latency environment as required by most in-
ternet applications. We can efficiently obtain &;(\) because
A and c can be generated very quickly due to fast online
model scoring pipelines; and one can efficiently compute a
projection onto C;.

Thus, the mechanism of solving such problems in industry
is to first solve an extreme-scale problem to generate the
duals; and then use the duals in a low-latency environment
to obtain a primal—we thus avoid the overhead of solving a
new optimization problem for every new item that arrives
into the ecosystem.

Remark 1. The above method for re-using the dual vari-
able works as long as the score distribution of the new items
matches that of the old items which were used to solve the
Problem (4). To prevent staleness, in practice, the optimiza-
tion problem is solved at a regular cadence.

Volume Optimization: A core problem in any internet
industry is to send out emails and notifications to the users
either for marketing purposes, for gaining user attention,
or to bring users back to the platform. They help in the
quick distribution of information, but too many emails or
notifications are not preferable as they may lead to bad user

“We note that the primal variable thus obtained need not be
the optimal solution for the updated problem—nevertheless, this
serves as an useful estimate for streaming data.
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experience (Gupta et al., 2016; 2017; Gao et al., 2018).

Let the formal problem be to maximize the overall sessions,
such that the total number of emails or notifications that are
sent is bounded, the overall click rate is above a threshold
and the total disable rate is bounded as well. To frame this
problem mathematically, let x;; denote the probability of
sending the j-th email or notification to the ¢-th user. We
can build machine learning models for the various quantities
of interest:

e Sessions Model: p}j predicts if user will come back
to the platform if this email/notification is sent (Yuan
et al., 2019).

o Click Model: pfj predicts if user will click on the item.

e Disable Model: pfj predicts if user will disable the
email/notification if sent.

‘We can thus formulate an LP:

max prl (Total Sessions) (10a)
s.t. 271 <e¢;  (Sends are Bounded) (10b)
:UTp2 > ¢ (Clicks above a threshold) (10c¢)

zTp3® < ¢ (Disables below a threshold) (10d)
0 <z <1 (Box Constraint) (10e)

which is an instance of (1) with m; = 3, mo = 0 and
C = [1_,[0,1)7. Here, n ~ 10° with 100’s of millions
of users and 1000s of potential email/notifications. Such
a problem can be solved using the methods we propose in
Section 3—both matrix-vector multiplication and projection
onto [0, 1]/ can be performed efficiently.

Problem (10) can be generalized by introducing some
cohort-level constraints. For example, we can partition
the member base into different cohorts Sy, for k € [K]
(e.g. by activity levels such as daily, weekly, monthly, etc).
Instead of placing a bound on the overall sends, we could
have a separate bound for each such cohort Si. Similar
constraints can also hold for groups of notifications/emails.
If we denote Gy, for [ € [L] as the cohorts of items, we
can enforce click constraints on each such group. We can
even add individual user level constraints. For example,
from a practical stand point, we would not want each user to
be overwhelmed by a large number of emails/notifications.
Combining the cohort and per-user level constraints, the
modified problem replaces (10b), (10c), (10e) by

> > <
ies, 2y i S Ck VR
2
> p2 >
Zie[[] jeG, mljpzj = C21 Vi
E o< Vi, 0<z<1
J€elJ]

respectively. As an instance of (1), we have m; = K+L+1,
mo = 0and C; = {a c [0,1]‘] : Zjaj < Ci}. The

projection Il¢, (+) can be computed easily (Parikh & Boyd,
2014b). As long as the number of cohorts K, L are small,
this problem is computationally feasible.

Matching Problems: Matching problems (Azevedo &
Weyl, 2016) are an important class of problems in the in-
ternet industry. Typical examples include matching items
to users in an e-commerce platform, matching drivers to
riders in ride-sharing apps, matching people to one another
or even jobs to potential job seekers. While we describe
a matching problem in the context of friend or connection
recommendation, other generalizations are possible.

Suppose, we wish to maximize the total value members of a
platform would receive when they form a new connection.
At the same time, we would not want to overwhelm the
influencers and famous people in the platform with a large
number of connection invites. Let x;; denote the probability
of showing the j-th candidate to the ¢-th viewer. As before,
we will have the following machine learning models

o Value Model: Here p}j denotes the probability of
having a meaningful interaction if the connection is
formed.

o Connection Model: Here pfj denotes if the i-th viewer
will send a request to the j-th candidate if the j-th
candidate is recommended.

Based on these, we can write the matching problem as:

max prl (Total Value)
z
2 .
S.t. Zie[[] mijpij < b]', VS [J] (11)
x; € Ci, 1€ [I}

where C; denotes the simplex. Here the first constraint
limits candidate j to at most b; invitations and the simplex
constraint enforces an inherent ranking among the set of
candidates for member 7. We have J ~ 10* candidates, I ~
108 users which generates n = 10'2 (1 trillion) decision
variables.

Remark 2. Note that this problem is inherently different
from the problems we discussed before, mainly because the
first constraint is an item-level constraint (here the items
are also members). We previously only considered global
and cohort level constraints in our matrix A.

In this setup, we have A1) as an empty matrix, A®) =
[D11 ... D1j], where Dq; = Diag(p?). For each user i, we
get 7;(\) = Ilg, (—%(Dli)\ + ¢;)) where, C; is the simplex.
Since p? is quite sparse, the computations are fast. Further
computation details are given in Section 5.

The problem in (11) can be generalized by adding in further
constraints. We can add global constraints for the total
number of invitations being sent out-i.e., >, ; Tijpi; > o
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We can also add cohort level constraints such as members
belonging to a certain cohort gets a minimum number of
invitations—i.e., ), Zjesk xijpfj > «p. Here, we can
write the matrix A = [A(1); A®)] where A®) corresponds
to the global and cohort level constraints with m; = 1+ K
and A corresponding to the per-item constraints having
the diagonal structure as above. Since both of them have
low-cost matrix-vector multiplication, the overall system
can still be solved.

Overall, if we denote the dual variables as A\ and {\5}}2
corresponding to A and A (respectively), the pri-
mal solution (7) for the ith user can be computed as:
I, [—%(Agl)T)\l + 3272 Diag(pf)A§ + ;)] where AV
and ¢; are the appropriately split versions of matrix A1)
and vector c, for user ¢. From an implementation perspec-
tive, each of the my + 1 matrix-vector multiplication opera-
tions can be done in parallel, combined together and finally
projected onto C;.

Remark 3. For this framework, we recommend to have a
few dual variables and use per-member constraints that
have efficient projection algorithms.

5. System Architecture

We now describe how we implemented the proposed al-
gorithm on a distributed computing system. We discuss
high-level system architecture as well as major implementa-
tion details. We will soon open-source the solver.

One key-factor limiting our ability to solve extreme-scale
LPs on a single system is memory consumption. The stor-
age space required for storing the input and intermediate
results appear to be better suited for working with multi-
ple machines. For this reason, we built the system on top
of Apache Spark (Zaharia et al., 2016) that is optimized
to handle large-scale iterative computations that are com-
mon in optimization algorithms. For iterative algorithms,
Spark is capable of caching data in aggregate main memory,
which can significantly reduce I/O cost. Communication
across tasks is also very efficient in reducing the overhead
on iterative algorithms. Although some high performance
computing architecture such as MPI (Jin et al., 2011) have
better support for scientific computations, Spark has the
following advantages: 1) Spark can be run on commodity
clusters of machines that are commonplace, 2) many big
data processing pipelines running at internet companies are
implemented in Spark. Therefore, Spark-based solvers can
be seamlessly integrated into an existing big data processing
pipeline.

Data Representation: Our implementation is based on a
customized DistributedMatrix API. Matrix A is composed
of two parts: a dense flat matrix A(Y) and a sparse matrix
A®@) | To facilitate distributed computing, we split the matrix

into blocks. For A(l), we utilize the BlockMatrix API in
Apache MLLib (Meng et al., 2016). For A®), given its very
special diagonal structure, the matrix-vector multiplication
is equivalent to a vector-vector dot product. Therefore,
we implemented a lightweight Distributed Vector using an
RDD of (index, vector). For all the remaining vectors in
Algorithm 1, we use DistributedVector to represent them.
The size of the block is chosen to be the same as the number
of users.

Estimating the Primal: The matrix multiplication of
Agl)T)\l is done in parallel with respect to i. To compute
Diag(pf)\s we flatten the Diagonal matrix to a vector and
do a vector-vector dot product, which makes the execution
much faster. Moreover, they are done in parallel. The projec-

tion operation also takes place on the executors in parallel.

We discuss the computational cost of the procedure. Each
vector x; is of length J and A() is of dimension m x I.J.
Moreover, let the sparsity of p¢ be bounded by K (i.e. the
maximum number of non-zeros is less than K'). Then to esti-
mate Agl)T/\l we need at most O(m;J) operations. For the
other part, we need K operations. Moreover, if we are per-
forming the simplex projection it can be done in O(J) steps.
Thus the overall complexity of generating each Z;(\) under
simplex projection is O(J). Since each of them can be done
in parallel, we get £(\) in O(J) steps. Note that, matrix A
will be constant across all iterations, while A1, {2} will be
updated every iteration. We explicitly cache A in executor
and broadcast A1, {2} to every executor. In this way, the
communication cost is minimized.

Estimating the Dual: The most computationally expen-
sive step to generate the dual is the matrix-vector multipli-
cation Az(\). Here &(\) has length much larger than A.
Instead of actually combining individual &;(\) to get ()
we use the individual components to speed up the execu-
tion. We estimate in parallel Agl) Z;(\) which accounts for
O(m1J) floating point operations. Moreover, we compute
Diag(pf)4;(\) in O(K) operations (assuming the sparsity
in p¢ to be K) for each i. Thus, each component of A#()\)
is computed in O(J) steps, which are finally combined
together by summing them all up, which takes O(1J) opera-
tions. The rest of the operations are all on the vector of size
m1 + meoJ which is rather small and can be easily handled.

Convergence Criteria: When we are able to estimate the
duality gap (Boyd & Vandenberghe, 2004) (by having access
to a primal feasible solution) our convergence criterion is
set according to it. Specifically, we stop the algorithm if
the relative duality gap is smaller than a threshold. In other
situations, where projection to the feasible region is hard, we
consider the relative difference in norm of the dual variable
as the stopping criteria, i.e. || Ag+1 — Akll/|| k]| < e

The overall architecture is shown in Figure 1.



ECLIPSE: An Extreme-Scale Linear Program Solver for Web-Applications

Objective
and Problem
Constraints

Offline Data
Collection

Solver
( Sub Matrix of A
Partial Primal
Executor 1~ and Full Dual
-
s B
Driver Sub Matrix of A
Executor 2 |— Partial Primal
(Dual Updates) and Full Dual
; J
L SE—
If not within Sub Matrix of A
toletrancei Executor N || Partial Primal
gi?ert;tri]oe: and Full Dual
-

Final Duals Online Serving

Figure 1. The Overall System Architecture for ECLIPSE.

6. Experiments

We run extensive experiments in our system along with
experiments with real datasets. Through this framework,
we have been able to scale to problems which we had never
tackled before. We first describe some of the simulated
experiments followed by some real-world setups.

Simulated Experiments: We run simulated experiments
for three purposes. First, to test the validity of our solution.
Second, to compare the scalability of the solution as com-
pared to other open-source solutions such as the Splitting
Conic Solver (SCS) (O’Donoghue et al., 2016). Third, for
extreme-scale problems, we compare our solution to the
averaging technique as explained in Section 2.

There are many open-source or commercial solvers such
as SDPT3, CPLEX, CLP, GUROBI, etc for solving LPs.
These solvers use simplex (Bertsimas & Tsitsiklis, 1997)
and/or interior-point algorithms (Boyd & Vandenberghe,
2004) and are implemented in low-level languages. While
commercial solvers (e.g., GUROBI) are generally are much
faster and scale to larger LP instances compared to open-
source software, they have limited capabilities for dis-
tributed optimization—in what we can tell, they are not
suitable for the problem-sizes we are considering in this pa-
per. These methods usually lead to high accuracy solutions
while our solver gives approximate solutions. Note that
our aim in this paper is not to introduce a new generic LP
solver. We seek to solve structured LPs for web-applications
at extreme-scale. We do not compare with off-the-shelf

solvers that do not scale to large-scale problems. The only
open-source solver that seemed to be competitive for the
applications we are interested in, is: SCS’ (O’Donoghue
et al., 2016)—this could potentially scale to problem sizes
comparable to the instances we consider.

To test the validity and scalability of the system, we con-
sider a simple volume optimization problem, as described
in Section 4. We let n = IJ where [ is the number of users
and J is the number of items and solve the problem with
two global constraints. We randomly simulate the vectors
¢, p and b, and solve the problem:

max zle st 271 < by, alp < by, 2 €[0,1]" (12)
We use I = 10000 and J = 100 for which we were able to
solve the problem with SCS in a relatively short amount of
time. We then use ECLIPSE to solve the problem and show
how the dual and primal® solutions are approaching the true
solution of the problem. Here, we use the relative duality
gap as the stopping criteria of our problem. Figure 2 shows
the convergence of our method as iterations increase.

0e+00 4 \
[ N
(_g -2e+05 4 Objective
= — Dual
> i
:§ -4e+05 f\/—’ — True Value
a —— Primal
O -6e+05 A

0 200 400 600 800
lterations

Figure 2. Duality Gap as iterations increase

To investigate the scalability of our system, we choose dif-
ferent values of I and J and report the results in Figure 3.
We solve these problems using our method as well as SCS
and in all cases, we have been able to match the solution to
the SCS solver up-to a level of precision. We do multiple
runs and the average running time is shown in Figure 3.

Note that we do not have an optimized implementation for
this simulation, while SCS uses a highly optimized algo-
rithm written in C. In smaller problems, SCS is definitely
faster but we can see that as the size of the problem in-
creases, we converge much faster than SCS—this is due to
the fact that we use fewer (and also structured) matrix-vector
multiplications.

SWe use our own Spark implementation of the SCS solver for
appropriate comparisons.

%Given a dual feasible solution, we obtain a primal via (7). If
this is not feasible for (12), we scale x to make it feasible. This
strategy works for problem (12) due to the nature of the constraints.
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Figure 3. Running time of ECLIPSE vs SCS on simulated data.

Finally, we compare our algorithm to the averaging tech-
nique as described in Section 2. We split the problem into
different groups, solve them and use the average dual as the
final solution. We compare it with our algorithm and report
the objective values as well and the primal residuals for the
different settings of the optimization problem in (12). We
choose J = 100 and different values of I, with split sizes
{103, 10*}. The results are shown in Table 1.

Objective Primal

" Method (max) Residual
ECLIPSE | 3.751 x 10° | 6.91 x 104
10% | Average 1 | 3.748 x 10° | 3.73 x 1073
Average2 | 3.747 x 10° | 1.03 x 1072
ECLIPSE | 3.750 x 10% | 7.12 x 104
107 | Average 1 | 3.747 x 10° | 1.71 x 1073
Average2 | 3.747 x 106 | 3.73 x 1073
ECLIPSE | 3.750 x 107 | 6.56 x 104
108 | Average 1 | 3.747 x 107 | 1.17 x 1073
Average2 | 3.747 x 107 | 1.73x 1073

Table 1. Comparison of our algorithm with the averaging method
for (12). Average 1 and 2 correspond to a split size of 10 and
10* respectively. Here, primal residual refers to || AZ — b||/(1 +
|Ib]|2). The feasibility violation (i.e., ||(AZ — b)+|/(1 + ||b]]2))
for ECLIPSE has a similar value, but this is approximately zero
for methods Average 1, 2. This shows that the averaging heuristics
lead to a sub-optimal solution at the interior of the feasible region
of the LP. See the appendix for further details.

In all the above simulation experiments, it follows from
(2) that the number of non-zero entries in A is 21.J, where,
m1 = 2, mo = 0 in (12). For further experimental details,
data explanations and the code for all of these experiments
please see the supplementary material. Note that, since we
could not find open-source example datasets that exactly
fit the problem structure, we excluded comparisons with
open-source LP instances.

Real World Experiments: We have built ECLIPSE in
Scala/Spark to scale to real-world problems. First, to val-

idate the Scala/Spark implementation, we use a problem
for which the solution is known, and we intentionally repli-
cate the problem to drastically increase its scale. We ran
such a problem using our implementation without explicitly
using the separable nature. In all cases, as we scale the
problem, we achieve parity with the known solution up to
the pre-specified level of precision. We then experimented
with real-data sets. We consider the volume optimization
problem with global constraints as given in (10), and the
matching problem as given in (11). Table 2 shows us the
running time and scale for solving such problems.

Time(Hours)
Problem Scale n ECLIPSE | SCS
Optmiaion 10y | 100 | 13| >
P atio 10° 4.0 >24
gaﬁhﬁin) 1011 72 >24
oble 1012 11.9 >24

Table 2. Running time (hrs) for extreme-scale Problems on real
data.

The experiment was running in a development cluster in
Spark 2.3 with up to 800 executors. In these instances, the
volume optimization problem had nnz(A) = 3n (see (10)),
while the matching problem had nnz(A) = IK = 10%!
(with I =~ 108 and sparsity K = 1000). We also imple-
mented SCS (indirect) method in Spark for comparison.
However, SCS could not scale beyond n = 108 as solving
time was longer than one day. This is primarily because SCS
does not exploit the problem structure and hence the comput-
ing time for each iteration was rather long. On the contrary,
even for a problem of one trillion scale, ECLIPSE converged
within 12 hours. As far as we can tell, this runtime appears
to satisfy most of the web applications’ requirements.

7. Conclusion

In this paper, we designed a framework for solving extreme-
scale LPs arising from several different kinds of web-
applications. The framework is general enough to cater
to several multi-objective optimization problem arising in
the internet industry. Moreover, given the computation re-
sources, the framework can potentially scale to arbitrarily
large problems. We were able to scale the solution for a
matching problem to a range of 1 trillion variables. If more
compute power is available, this framework can easily scale
to even larger problems.
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