ECLIPSE: An Extreme-Scale Linear Program Solver for Web-Applications

8. Appendix: Supplemental Material for
“ECLIPSE: An Extreme-Scale Linear
Program Solver for Web-Applications'

8.1. Proofs and Technical Details
Proof of Lemma 1.

s T v.r T _
g,y(/\)—I;lelél {c x+ 5% x4+ A (Az b)}
>min {2+ AT (Az — b)} + min T Ty (13)
zeC zeC 2
>go(A)

where, in arriving at the last line we used the fact that
mingec %xTx > 0.

On the other hand, we have that:

go(A) =min {c"z+ A\ (Az —b)}

zeC
=min {CT:E + X1aTe 4 M (Az —b) - sz:L’}
zeC 2 2
> min {CTJC +2aTe 4 M (Az — b)}
el 2
— max 227z
z€C 2
=g (V) — 39
(14)
where,
¥ =maxa’r = max x; ;
zeC b z;€C4
€[]

If C; is the unit simplex then max,,cc, z7 x; = 1 If C; is
the unit hypercube, then max,,cc, *7 z; = |J|.

Combining the results from (13) and (14) we arrive at the

result of the Lemma. O

Proof of Lemma 2. We present an outline of the proof fol-
lowing Mangasarian & Meyer (1979). Note that LP (1) can
be written in the following form:

[:=min 'z st Az > b (15)

where, the inequality Az > b describes the polyhedral
constraint set in (1)

{z: Az <b}n{x: 2 €C}.
Note that I' is the optimal objective value of (15).

We wish to show that for all v > 0 sufficiently small, a
solution to the following perturbed problem

min ¢’z +/2|z||? st Az >b (16)

solves Problem (15). The idea of the proof works as follows.
Starting with a primal solution to (15) (and a solution for the

dual of this LP), we propose a candidate primal-dual pair
that satisfies the optimality conditions of (16). The construc-
tion of this primal-dual pair depends upon the following
problem:

min ||z||2 st. Az >b, To<T (17)

which by construction requires knowing the optimal objec-
tive value I" for Problem (15).

Let be an optimal solution to (17); and let v, @ be the
optimal dual variables corresponding to the constraints
Az > band T2z < T respectively. One can write down
the Karush-Kuhn-Tucker (KKT)-optimality conditions for
Problem (17):

27 — ATo +

0
7- (A7 —b) =0 (18)
r

and in addition we have feasibility conditions:

N

(Az—b)>0, 5>0, @>0.
Note that z is also an optimal solution to the LP (15) — let
w be a corresponding optimal dual solution.

We consider two cases. (i) If & = 0, then the multiplier
corresponding to the constraint ¢’z < T is inactive. In
this case, recall that Z is an optimal primal solution to (16).
Furthermore, for any v > 0, the candidate w + o is an
optimal solution for the dual variables corresponding to
the constraint Az > b in (16). That is, for any v > 0,
(Z,w +) is a primal-dual pair that satisfies the KKT
system of Problem (16).

We consider the second case (ii) that is, « > 0. In this
case, the following primal-dual tuple (Z,7/@) is an optimal
solution to the KKT-system of Problem (16) fory = 1/4. In
fact, investigating the KKT-system for Problem (17) above,
any convex combination of @ and ¥/ will satisfy the KKT
system for Problem (16) — more precisely,

(Z,(1 = 7m)w+ 7(v/a))

is a KKT point for (16) for any v = 7/a < 1/u with
7 € [0, 1]. This completes the proof of the lemma. [

Proof of Lemma 3. Let us recall the definition of the dual
function g.,(\):

A) = mi AT Az + LaTa — AT
9+(Y) rInelg {(C+) m—i—zx * } (19)

=th,(c+ ATX) — A\Tb
where,

i T YT }
Py (w) : gﬂelél{w x + 5% .

ECLIPSE: An Extreme-Scale Linear Program Solver for Web-Applications

For every w, let #(w) € argmin, ¢, {w”z + 2"z }. For
~ > 0, the minimizer Z(w) is unique; and hence the function
w — 1 (w) is differentiable. By Danskin’s Theorem (Bert-
sekas, 1999), the gradient of the map w — 1, (w) is given

by: Vb, (w) = &(w).

For v = 0, &(w) is not unique, and hence w +— 1 (w) is not
differentiable. In this case, a subgradient of ¢ (w) exists and
is given by 9¢(w) = #(w) € argmin, o w’ .

Let &(\) be the minimizer of the optimization problem wrt
x in (19) (for a given \). Then we have (using the chain rule
for example),

Vg, (A) = AZ(N) —b.
We also have the following chain of inequalities:

IVgy(A) = Vg, (N = [A(E(N) — (X))
< [Allsll2(A) =2\ (20)

where || - || s deonotes the Spectral norm. Now recall that:

Hence,
J8(\) — 3V
< fne (F=) e ()
Y v
< ZlAlsIA - X1, @)

where, the last inequality follows from the observation that
the projection operator I1¢(+) is a contraction:

M (u) = Te(v) || < lu—vf;
and the definition of the spectral norm of A. Therefore,
combining (20) and (21) we get:
1

IVg(A) = Vgl < ;HAII%IIA N @2)
which concludes the proof of the Lemma. O
8.2. Details on Computing || A||s with regard to

step-size selection

Note that in this paper, we are interested in matrices of
the form: A = [A(M); A®)] (cf Section 2) where, A(Y) has
m = O(1)-many rows and A is of the form:

D11 N D1[
AR = . (23)
szl sz]

where, D;; are diagonal matrices.

We proceed to obtain an upper bound on the largest singular
value of A — to this end, we make use of the following chain
of inequalities (in the display below we take an = € R"):

AW g
st = |4,

1/2
(14D2)3 + A®a))

1/2
(IADE + 1A212) " fal,

IN

We now consider x € R™; and using a partition for x =
[€1; x2] such that z; € R™! and x5 € R™2, we have:

A]2 1(AD) T2y + (AP) |2
I(AD) 1 fla + [1(AP) s o
IAD sl]l + [AP|s | 222
Clllzllz + [lwzl2)
V20| |z]|2

where, above C' = max{||AM)||s, | A®|s}; and the last

inequality follows by using the fact that /(a2 + b?)/2 >
(a+b)/2 for any two scalars a, b. Therefore, combining the
above inequalities we have:

IN AN N IA

1/2
w47l < min {VEC, (A0 + 1422)]

llzll2=1
(24)
In light of (24), to obtain a bound on the spectral norm (i.e.,

largest singular value) of A, we compute the spectral norms
of A and A®).

As the matrix A™) has a small number of rows i.e., O(1) =
mq < n, in order to compute the spectral norm of AM we
find the largest singular value of the m X m1 matrix product
AWM (AM)T (this computation is done once at the start of
the algorithm—in a distributed fashion). As m; is usually
very small, this matrix operation costs O(n). When m; is
larger than a few thousand, we use a randomized power
method (Halko et al., 2011) to compute the largest eigen-
value. The matrix A(®) composes of diagonal matrices (23)—
to compute the largest singular value of A(?), we use the
power method (the randomized power method (Halko et al.,
2011) is also found to work well). Every iteration of this
algorithm requires multiplications of the form Ay and
(A®NTy for vectors u, v of suitable dimensions. These
multiplications are cheap due to

e the diagonal-concatenation structure of A(?)

o the diagonal blocks have very few nonzero entries (See
Sections 4, 5 and 6 for discussions on the structure
of these diagonal blocks and anticipated number of
nonzeros in typical applications that we consider).

Roughly speaking, these products can be computed with
cost: } 3¢y Kma, where K denotes the average number of

ECLIPSE: An Extreme-Scale Linear Program Solver for Web-Applications

non-zeros in each diagonal block — usually in applications
(as discussed in the main text), K is at most a thousand.
Moreover, the product operation can be parallelized across
i € [I]. Once again, this can be computed off-line (for once)
before the start of the algorithm.

8.3. Simulation Experimental Details

The first two simulation experiments are run on macOS
10.15.1, 2.4 GHz 8-Core Intel Core i9, with 32GB memory.

8.3.1. VALIDITY EXPERIMENTS

For the validity experiment shown in Figure 2, the full de-
tails are given below.

e The data has been simulated using a uniform distri-

bution with a fixed seed. The size of the dataset is

= 10000 and J = 100 with n = I.J = 105. We

are attaching the code, through which the data can be
generated.

e No data was excluded in any pre-processing steps.

e Throughout the simulation we have chosen vy = 103
and initialized all entries of A by 1.

e To show the plot, we have done a single run. It can
be easily modified to do multiple runs so that we can
have similar plots. We found the trend to hold across
simulations.

e We display the Objective value of the optimization
problem (primal and dual) along the y-axis and the
iterations on the x-axis.

e The stopping criteria is the relative duality gap given
by

|primalObj, — dualObyj, |
1 + |primalObj,| + |dualObj, |

where we choose € = 107° and the primal objective
is obtained using the feasible primal solution—this
is generated by modifying #(\) so that it becomes
feasible for Az < b. In our example, it is possible to
do that because there are only two constraints in A. We
identify,

§* = max{d : dal 2(\) < b; Vi}
and choose & feqsibe = 0*Z(N).

8.3.2. SCALABILITY EXPERIMENTS

The details for the scalability experiment plot (Figure 3) are
given below:

e Similar to before, we consider random samples from
the uniform distribution with different seeds. We
choose I = 100, 500, 1000, 5000, 10000 and J = 100
and n = I.J. The data can be generated by running the
script.

e No data was excluded in any pre-processing steps.

e We choose v = 1072 and initialized all entries of \ by
1.

e The stopping criteria was chosen exactly as the previ-
ous experiment with e = 1075,

e We run the system for 50 evaluations and report the
average.

e We report the average running time of the different
algorithm along with the error bars.

8.3.3. COMPARISON WITH AVERAGE METHOD IN
EXTREME SCALE

For the extreme-scale problem, the details of the results for
Table 1 are given below.

e We choose I = 10%,10°,10° and J = 100. This
makes n = 105,107, 10%. The same simulation from
uniform distribution is done with a fixed seed. We pick
split size as 1000 and 10000.

e No data was excluded in any pre-processing steps.

e We split users accordingly to the split size and solve
the problem in each group for the split method.

e Similar to before, we choose v = 1073, initialized
A = 1 and the stopping criteria was same as above
with e = 1075,

e We show the primal objective value 27 ¢ and the primal
residual which is defined as

Primal Residual = [|[(AZ — b)||/(1 +||b]]) (25)

e We also compute the primal feasibility violation which
is defined as || (AZ — b)+]|/(1 + ||b]|2). In our simula-
tions we observe that this primal feasibility violation
is about 33% of the primal residual for ECLIPSE. For
the averaging methods the primal solution was found
to be feasible (this is by construction). However, these
solutions were found to be in the interior of the feasible
region, leading to a sub-optimal objective value.

e We run this specific large scale simulation on a Red
Hat Enterprise Linux Workstation 7.6 (Maipo) with 16
Processors each running Intel Xeon Silver 4108 CPU
@1.80GHz and a total memory of 64 GB.

8.4. Real-World Experimental Details

8.4.1. VALIDITY EXPERIMENTS

To validate the extreme-scale solver that has been imple-
mented in Scala/Spark, we consider a small problem that
can be easily solved and then we artificially replicate the
problem. By doing so, the solution keeps on repeating. That

ECLIPSE: An Extreme-Scale Linear Program Solver for Web-Applications

is, we start with a small problem of the form
Maximize pr
x
subject to injmj S bj VJ
i
Z Tij = 1 Vi
J

0<z<1

(26)

where I = 5,J = 5andn = IJ = 25. p,r are chosen
once of length n from the uniform distribution and fixed.
We can easily solve this problem and let Asx1 be the dual
solution.

We then replicate this problem intentionally, by keeping
using the same p and r. That is, with a repeat factor of K,
we create /X more users and K more items. Thus we have,

Pra+i = (0 Pit,Pizs - Pig .- 0),

fork =0,..., K — 1 where the original p; vector is set at
the k-slot with O padded on either side such that we increase
the total items to J = 5K but the user still only has the
original 5 items. As a simple example, for [= 2, J = 3
and K = 2, if we have

pr=(01 02 0.3)

p2=(04 0.5 0.6)
then
p1=(01 02 03 0 0 0)
p2=(04 05 06 0 0 0)
ps=(0 0 0 01 02 0.3)
pa=(0 0 0 04 05 0.6)

With a similar translation to 7 from r it is easy to see that if
we replicated problem, it has the form

Maximize z’p
xT

subject to Z%‘jﬂ'j <b; Vj
i

(27)
J
0<x<1
where b = (b, ...,b) is repeated K times. Because of this
separable structure, the new dual solution is

'75\5><1)

repeated K times. We use this data generation mechanism
to test our production solver. The code to generate the data
is given in the supplementary material. We do not consider
the explicit separable nature in the problem, but we were
able to match the exact dual upto a precision of 1072,

;\5K><1 = (;\5><1a e

e We considered 7 = 100, J = 50, K = 107 and were
still able to converge in a relatively short amount of
time. We choose v = 1073, initialized all entries of \
by 1, and the stopping criteria was the relative change
in the norm of the dual variables with a threshold of
1076,

e These experiments were run on the developmental clus-
ter with 800 executors and 8GB of memory per execu-
tor.

8.4.2. SCALABILITY EXPERIMENTS

After the above validity experiment, we ran experiments
with real datasets, the results of which are presented in
Table 2. For a comparison, we also implemented SCS (an
ADMM based method) in Scala/Spark, but it could not scale
to the problems at hand as it did not leverage the problem
structure. The details of our experiments are as follows.

e The data was collected from live traffic and internal
email/notification generation pipelines. We also con-
sidered the candidate sets from the people recommen-
dation system.

e Due to privacy concerns we will not be able to share
this data. All simulated data and the data generation
mechanism have been shared.

e We choose v = 1073, initialized all entries of \ by
1, and the stopping criteria was the relative change
in the norm of the dual variables with a threshold of
10~°. Note that since we were working with the gen-
eral system, we could not use the relative duality gap
as obtaining a feasible solution is non-trivial.

e We let the algorithms run till convergence was reached.

e We describe the running time using our internal
datasets.

e As before, the experiments were run on the develop-
mental cluster with 800 executors and 8 GB of memory
per executor.

