Dual Mirror Descent for Online Allocation Problems

Santiago Balseiro ' > Haihao Lu?> Vahab Mirrokni >

Abstract

We consider online allocation problems with con-
cave revenue functions and resource constraints,
which are central problems in revenue manage-
ment and online advertising. In these settings, re-
quests arrive sequentially during a finite horizon
and, for each request, a decision maker needs to
choose an action that consumes a certain amount
of resources and generates revenue. The revenue
function and resource consumption of each re-
quest are drawn independently and at random
from a probability distribution that is unknown to
the decision maker. The objective is to maximize
cumulative revenues subject to a constraint on the
total consumption of resources.

We design a general class of algorithms that
achieve sub-linear expected regret compared to
the hindsight optimal allocation. Our algorithms
operate in the Lagrangian dual space: they main-
tain a dual multiplier for each resource that is
updated using online mirror descent. By choosing
the reference function accordingly, we recover
dual sub-gradient descent and dual exponential
weights algorithm. The resulting algorithms are
simple, efficient, and shown to attain the optimal
order of regret when the length of the horizon and
the initial number of resources are scaled propor-
tionally. We discuss applications to online bidding
in repeated auctions with budget constraints and
online proportional matching with high entropy.

1. Introduction

A central problem in revenue management and online adver-
tising is the online allocation of requests subject to resource
constraints. In revenue management, for example, firms
such as hotels and airlines need to decide, when a request
for a room or a flight arrives, whether to accept or decline
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the request (Talluri & van Ryzin, 2004). In search advertis-
ing, each time a user makes a search, the search engine has
an opportunity to show an advertisement next to the organic
search results (Mehta et al., 2007b). For each arriving user,
the website collects bids from various advertisers who are
interested in showing an ad and then needs to decide, in real
time, which ad to show to the user. Such decisions are not
made in isolation because resources are limited: hotels have
limited number of rooms, planes have limited number of
seats, and advertisers have limited budgets.

In this paper, we study allocation problems with concave
revenue functions and resource constraints. Requests arrive
sequentially during a finite horizon and, for each request,
the decision maker needs to choose an action that consumes
certain amount of resources and generates revenue. The
objective of the decision maker is to maximize cumulative
revenues subject to a constraint on the total consumption
of resources. The revenue function and resource consump-
tion of each request is learnt by the decision maker before
making a decision. For example, airlines know the fare
requested by the consumer before deciding whether to sell
the ticket and search engines know advertisers’ bids be-
fore deciding which ad to show. We assume that the rev-
enue function and resource consumption of each request are
drawn independently and at random from a fixed probabil-
ity distribution. In practice, decision makers rarely know
the probability distribution of requests in advance. Thus
motivated, we consider a data-driven setting in which the
underlying probability distribution is unknown to the deci-
sion maker. Performance of an online algorithm is measured
using regret, which is given by the difference between the
revenue attained by the optimal allocation with the benefit
of hindsight (also referred as the offline optimum) and the
cumulative revenues collected by the algorithm.

1.1. Our Results

We design a general class of algorithms that operate in the
Lagrangian dual space. If the optimal dual variables were
known in advance, the decision maker could, in principle,
use these dual variables to price resources and decompose
the problem across time periods. In practice, however, the
optimal dual variables depend on the entire sequence of re-
quests and are not known to the decision maker in advance.
Our algorithms circumvent this issue by maintaining a dual
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multiplier for each resource, which is updated after each
request using online mirror descent. Actions are then taken
using the estimated dual variables as a proxy for the opportu-
nity cost of consuming resources. By choosing the reference
function accordingly, we recover dual sub-gradient descent
and dual exponential weights algorithm.

From the computational perspective, our algorithms are ef-
ficient; in many cases the dual variables can be updated
after each request in linear time. This is in sharp contrast to
most existing algorithms, which require periodically solving
large convex optimizations problems or knowing bounds
on the value benchmark (see Section 1.2). In many appli-
cations, such as online advertising, a massive number of
decisions need to made in milliseconds and solving large
optimizations problems is not operationally feasible.

We show that our algorithms attain regret of order O(v/T')
when the length of the horizon 7" and initial number of re-
sources are scaled proportionally (Theorem 1). Because no
algorithm can attain regret lower than Q(+/7') under our
minimal assumption (Lemma 1), these two results imply
that our algorithms attain the optimal order of regret. To
establish our regret bounds, we need to overcome two chal-
lenges: lower bounding the cumulative performance of our
algorithm relative to the benchmark and showing that re-
sources are not depleted too early in the horizon. We next
describe these two challenges.

Recall that even though our algorithms operate in the dual
space, performance is ultimately measured in the primal
space. Standard results from the online mirror descent lit-
erature do not directly apply to our setting as these provide
upper bounds on dual performance while the analysis re-
quires lower bounds on primal performance. We overcome
this first challenge by providing an analysis of dual online
mirror descent that yields suitable lower bounds on primal
performance (Proposition 3).

A requisite for obtaining good primal performance is not
depleting resources too early; otherwise, the decision maker
could miss good future opportunities. Our algorithms have
a natural self-correcting feature that prevents them from
depleting resources too early. By design, they target to con-
sume a constant number of resources per period so as to
deplete resources exactly at the end of the horizon. When
a request consumes more (less) resources than the target,
the corresponding dual variable is increased (decreased).
Because resources are then priced higher (lower), future ac-
tions are chosen to consume resources more conservatively
(aggressively). As a result, using the update rule of the dual
variables, we can show that our algorithms never deplete
resources too early (Proposition 2). To the best of our knowl-
edge, this result is new to the online allocation literature and
can be of interest for practitioners as, for example, advertis-
ers have a preference for their ads to be delivered smoothly

over time so as to maximize reach (Bhalgat et al., 2012; Lee
et al., 2013; Xu et al., 2015). Our main result follows from
combining these results together.

We then discuss applications to online bidding in repeated
auctions with budget constraints and to online matching
with high entropy (Section 5). As of 2019, around 85% of
all display advertisements are bought programmatically —
using automated algorithms (eMarketer, 2019). A common
mechanism used by advertisers to buy ad slots is real-time
auctions: each time a user visits a website, an auction is
run to determine the ad to be shown in the user’s browser.
Because there is a large number of these advertising opportu-
nities in a given day, advertisers set budgets to control their
cumulative expenditure. There is thus a need to develop data-
driven algorithm to optimize advertisers’ bids in repeated
auctions with budgets. This problem has been studied re-
cently in Balseiro & Gur (2017; 2019), where they provide
a dual sub-gradient descent algorithm that yields O(v/T)
regret. Our algorithms attain similar regret bounds with
considerably weaker restrictions on the inputs. In particular,
they assume that values and competing bids are indepen-
dent, and that the dual objective is thrice differentiable and
strongly convex. We require no such assumptions.

Online matching is another central problem in computer
science, with applications in online advertisement alloca-
tion, job/server allocation in cloud computing, product rec-
ommendation under resource constraints, etc. It has been
shown that a high-entropy proportional matching can lead
to additional desirable properties, such as fairness and di-
versity (Lan et al., 2010; Venkatasubramanian, 2010; Qin
& Zhu, 2013; Ahmed et al., 2017). We here study the on-
line advertisement allocation problem, where at each time
period, the decision maker matches an incoming impression
with one advertiser (who may have a capacity constraint),
aiming to maximize the total revenue over all incoming
impressions while keeping a high entropy of such match-
ings. Recently Agrawal et al. (2018) studied a multi-round
offline proportional matching algorithm for this problem set-
ting. Our algorithm leads to a simple online counterpart to
Agrawal et al. (2018) that yields similar regret/complexity
bounds.

We conclude the paper by presenting numerical experiments
on online proportional matching, which validate our re-
sults.

1.2. Related Work
Online allocation problems have a rich history in computer
science and operations research.

Online allocation problems with linear revenue functions
have been studied extensively in the so-called random per-
mutation model. In the random permutation model, an ad-
versary first selects a sequence of requests which are then
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presented to the decision maker in random order. This model
is more general than our setting in which requests are drawn
independently and at random from an unknown distribution.
Devanur & Hayes (2009) study online allocation problems
in which revenues are proportional to amount of resources
consumed (this is referred to as the Ad Words problem)
and present a dual training algorithm with two phases: a
training phase in which data is used to estimate the dual
variables by solving a linear program and an exploitation
phase in which actions are taken using the estimated dual
variables. Their algorithm can be shown to obtain regret
of order O(T?/?). Feldman et al. (2010) present similar
training-based algorithms for more general linear online
allocation problems with similar regret guarantees. Pushing
these ideas one step further, Agrawal et al. (2014) consider
an algorithm that dynamically updates the dual variables
by periodically solving a linear program using all data col-
lected so far. This more sophisticated algorithm improves
upon previous work by obtaining regret of order O(T/?).
Compared to these papers, our algorithms work for general
concave revenue functions, and for the linear case we obtain
similar or better regret guarantees with simpler update rules
that do not require solving large linear programs.

Devanur et al. (2019) study linear, online allocation prob-
lems when requests are drawn independently and at random
from an unknown distribution, and provide algorithms that
achieve O(T 1/ 2) regret. A key feature of their algorithms
is that they require knowledge or estimates of the value of
the benchmark (which in their case is the optimal alloca-
tion under the expected instance). When the value of the
benchmark is known, they provide a simple algorithm that,
similarly to ours, does not require solving a linear program
in each stage. Their algorithm also maintains dual variables
for the resource constraints, which are updated using an
exponential update. When the value of the benchmark is
unknown, they provide an algorithm that estimates the value
of the benchmark by working in phases of geometrically
increasing length. This algorithm, however, requires solving
a linear program in each phase to estimate the value of the
benchmark.

Closest to ours is Agrawal & Devanur (2015), which studies
general online allocation problems that allow for concave
objectives and convex feasibility constraints. They present
a general class of algorithms that maintain dual variables
for the constraints, which are updated using any black-box
online convex optimization algorithm. When the objective
is non-linear, they present fast algorithms that do not require
solving a convex program when an estimate of the value of
the benchmark is known. When an estimate is not available,
their algorithm requires periodically solving a convex opti-
mization program to estimate the value of the benchmark.
Additionally, they allow resource constraints to be violated;
they show that constraints are violated by at most O(v/T).

Because we require constraints to be satisfied for every re-
alization, their algorithms are not feasible in our setting.
When the objective is additively separable, they present an
algorithm that updates dual variables using multiplicative
weight updates and satisfies resource constraints for every
realization. This algorithm, however, requires an estimate
of the value of the benchmark that can be either provided
as an input or obtained from solving a linear program once
at the beginning of the horizon (Agrawal, 2019). Our pa-
per extends their work by developing simple algorithms for
concave, additively separable objectives that do not require
estimates of the value of the benchmark and satisfy con-
straints for every realization under a large class of update
rules. As a matter of fact, a key contribution of our work is
showing that under a large class of reference functions, dual
mirror descent does not deplete resources too early in every
sample path (Proposition 2).

Our algorithm is an online dual mirror descent algorithm.
It has been known in the optimization literature that mirror
descent naturally minimizes a primal-dual gap in both deter-
ministic and stochastic setting (Bach, 2015; Lu & Freund,
2018). However, the results therein do not apply directly
to our setting because (i) as we will show later, our goal
is to maximize the revenue in the online setting (i.e., (1))
rather than to maximize the natural primal objective (i.e.,
(19) in the appendix); (ii) we do not allow violations of
the budget constraints in our online setting, while in the
offline setting satisfying these constraints is easy since we
can always shrink variables after the fact.

We discuss additional literature in Appendix B.

1.3. Notations

We define R := {z € R"[z > 0} and R} | := {z €
R™|x > 0}. We use [m] as the shorthand of {1,...,m}. 1
denotes the all-one vector, and e; is the j-th standard unit
vector.

2. Problem Formulation

We consider the following generic online convex problem
with resource constraints:

T
(O): max th(xt)
t=1

T €X —

. (1)
S.t. Z btl‘t < Tp 5

t=1

where z; € X C R? is the decision variable at time ¢,
fi: € R? — R is the concave revenue function received
at time ¢, by € RTXd is the entry-wise non-negative cost
matrix received at time ¢, p € R, is the positive resource
constraint vector. In the online setting, at each time period
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1 <t < T, we receive a request (f;,b;), and we use an
algorithm A to make a real-time decision x; based on the
current request (f;, b;) and the previous history H;_; :=

{f87 b87 xs}i;ll, i.e.,
= A(ft,be|H—1) - 2)

Moreover, the constraint:

t
boas < pT
Z 3)

xtex

must be satisfied for every ¢ < T. The above process
generates total revenue Zthl fi(z¢) at the end of the T" time
periods, and our goal is to a design algorithm A to maximize
such revenue while satisfying constraint (3).

We assume the request (f;,b;) is generated ii.d. from
an unknown distribution P € I, ie., (fi,b) €
{(f1.b1),- -, (fasba)} with probability P((fy,b) =
(fi,bi)) = pi, where J denotes a family of distributions sat-
isfying some regularity conditions (to be further discussed
in Assumption 2). In particular, we define the expected
revenue of an algorithm A over distribution P as
T
R(A|P) = Z ] ,

where z; is computed by (2). The baseline we compare with
is the expected revenue of the optimal solution in hindsight,
which is also referred as the offline problem in the computer
science literature. This amounts to solving for the optimal
allocation under full information of all requests and then
taking expectations over all possible realizations:

T
OPT(P) = By | erex 2 Jil0) L@
S.t. Zt:l bt{Et < Tp

We further define the regret of algorithm A as:

Regret(A|P) := OPT(P) — R(A|P) ,
and the worst-case regret of algorithm A over a family of
distributions J as:

Regret(A|J) := sup {OPT(P) — R(A|P)} .
PeI

Since the probability distribution P is unknown to the de-
cision maker, our goal is to design an algorithm A that
works well for any distribution P € J, namely, it has low
worst-case regret Regret(A|J).

2.1. The Dual Problem to (1)

In this section, we provide an upper bound of OPT(P),
which we call the offline dual problem to (1), and moreover,
this dual problem inspires us to develop our main algorithm
(Algorithm 1 in Section 2.2) for solving (1). Such upper
bound in the linear case has been considered extensively
in the literature (see, e.g., Talluri & van Ryzin 1998 for an
example).

Define
fi'(e) i= max{ fi(w) — ¢'x} 5)

as the conjugate function of f;(x) (restricted in X)'. And
define D(p) : R™ — R as

sz

then D(u) provides a valid upper bound to OPT(P):

w+u'p,

Proposition 1. It holds for any i > 0 that
OPT(P) < TD(n) . ©)

Furthermore, we call

(D) : minD(y) sz w+pp. (7

the offline dual problem to (1).

2.2. Online Dual Mirror Descent

Online mirror descent algorithm is a standard algorithm in
online convex optimization (Hazan et al., 2016). In this
section, we present the online mirror descent algorithm on
the dual problem (7), while our goal is to obtain a good
solution to the original primal problem (1).

To discuss the mirror descent algorithm, first recall that
the Bregman divergence with respect to a given convex
reference function h(-) is defined as Vi, (x,y) := h(z) —
h(y) — (Vh(y),z — y). Algorithm 1 presents the main
algorithm we study in this paper. At time ¢, we receive
a request (f:, b:), and we compute the optimal response
Z; that maximizes an opportunity cost-adjusted revenue
of this request based on the current dual solution ;. We
then take this action (i.e., z; = ;) if that does not exceed
the resource constraint, otherwise we take a void action
(i.e., xy = 0). Notice that it follows from the definition of
conjugate function (5) that —b;Z; € 9, f; (b j1¢). > Thus
gt := —byTy 4+ p is an unbiased stochastic estimator of the
gradient of the dual problem D(u) at p;:

Eg [Gt] = Eo [<b:F: + p] € Y pi0y fi (b] ) + p € 8 D(pe) -

=1

"More precisely, f; (c) is the conjugate function of f;(x) +
1{z € X} under the standard definition of conjugate function,
where 1{x € X} is the indicator function of the constraint.

29 here refers to the set of super-derivatives of a concave func-
tion.
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Algorithm 1 Dual Mirror Descent Algorithm for (1)
Input: Initial dual solution i, total time period 7', remain-
ing resources By = T'p, reference function h(-) : R™ — R,
and step-size 7.

fort=0,...,7—1do

Receive (f;, b)) ~ P, ie., P((ft,be) = (fi, 0:)) = pi-
Make the primal decision and update the remaining

resources:
Ty = argmaxgex{fi(v) — Mthth} )
P { Ty if by .S By
0  otherwise ’
Biy1 = By — by

Obtain a stochastic sub-gradient of D(y;):
gr = —biZy +p.

Update the dual variable by mirror descent:

o 1
pg1 = argmin(ge, p) + =Vu(p, pre) . (8)
n=>0 n

end

We then utilize g, to update the dual variable by performing
an online mirror descent step (8) with step-size 7.

Algorithm 1 only takes an initial dual variable and a step
size as inputs and is simple to implement. In most cases, the
mirror descent step can be computed in linear time as (8)
admits a closed-form solution. For example, if the reference
function is h(p) = — ", pilog(u;), the dual update (8)
becomes
i1 = pe * exp(—ng) ,

which recovers the online exponential weights algorithm for
solving (7); if the reference function is h(p) = %||u||3, the
dual update (8) becomes

He+1 = Projuzo{/it — NGt}

which recovers the online sub-gradient descent method for
solving (7).

3. Regret Bound

In this section, we present the worst-case regret bound of
Algorithm 1 for solving (1). First we state the assumptions
required in our analysis.

3.1. Assumptions

Assumption 1. (Assumptions on constraint set X). We as-
sume that: (i) X is a convex and bounded set in Ri, and (ii)

0eX

The above assumption implies that we can only take non-
negative actions. Moreover, we can always take the void
action by choosing x; = 0 in order to make sure we do
not exceed the resource constraints. This guarantees the
existence of a feasible solution.

Assumption 2. (Assumptions on distribution family J). For
any P € 7, it holds that

1. P has finite support: S(P) := {(f1,01), .-, (fn,bn)}-

2. For any (fi,b;) € 8(P), it holds that (i) fi(xz) >
0,vx € X; (i) f;(0) = 0; (iii) b; > 0; and f;(x)
is a concave function in X.

3. There exists f € Ry such that f;(x) < f for any
x € X and (fz,bz) S S(CP)

4. There exists b € Ry such that ||b;z||o < bfor any
x € Xand (fi,b;) € S(P).

We herein assume P has finite support for simplicity of the
argument. Interestingly, our regret bounds do not depend
on n (the cardinality of the support of the distribution) and
we conjecture our results continue to hold in the case of an
infinite support. The upper bound f and b impose regularity
on the probability class J, and they will appear in the regret
bound. The assumption b; > 0 implies that we cannot re-
plenish resources once they are consumed. The assumption
£i(0) = 0 is without loss of generality since we can always
subtract a constant from the function f;(x).

Assumption 3. (Assumptions on resource parameter p). We
assume there exist p, p € R, such that for any j € [m],

P =pj =P

Remark 1. Without loss of generality, we can assume p; =
1 for any j € [m] by rescaling the j-th row in b;. This may
lead to slightly favorable regret bound, but we herein choose
to keep p for its generality.

Definition 1. We define p™** € R™ such that p7*™* :=
L 41,
Pj

As we will show later in Proposition 2, as long as 0 < po <
©™* the dual variable obtained by Algorithm 1 satisfies
pe < p™® at any time t. In other words, u; attained by
Algorithm 1 always stays in domain D := {u € R™|0 <

I < /Jlmax}.

Assumption 4. (Assumptions on reference function h(-)).
We assume

1. h(w) is coordinate-wisely separable, i.e., h(u) =
Z;n:l hj(w;) where h;(-) is a convex univariate func-
tion.
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2. h(p) is oy1-strongly convex in {1-norm in D, i.e.,

h(p1) > h(pa) + (Vh(uz), pr — p2) + % |l — pa|3
forany iy, ps € D.

3. h(p) is o9-strongly convex in ly-norm in D, i.e.,

h(p1) > h(pz) + (Vh(pz), p1 — pa) + % [lp1 — p2|l3
for any p, p2 € D.

Strong convexity of the reference function is a stan-
dard assumption for the analysis of mirror descent algo-
rithms (Bubeck, 2015). Indeed, the strong convexity in
¢1-norm and /2-norm are equivalent (up to a dimension-
dependent constant). We here assume strong convexity in
both norms in order to obtain a tighter regret bound.

If h(-) is not a coordinate-wise separable function, the sub-
problem (8) can be hard to solve. Furthermore, most exam-
ples in the mirror descent literature utilize coordinate-wise
separable reference functions (Nemirovsky & Yudin, 1983;
Beck & Teboulle, 2003; Bubeck, 2015; Lu et al., 2018; Lu,
2017).

3.2. Master Theorem
The next theorem presents the worst-case regret bound of
Algorithm 1.

Theorem 1. Consider Algorithm I with step-size n < %
and initial solution o < pu™**. Suppose Assumption 1-4
are satisfied. Then it holds for any T' > 1 that

2 62_"_72
(b*+p )nT+ Vi (0, 110)
01 n
f 4 fb
+ —||Vh(u™**) — Vh o+ —.
gnH (™) (o)l P
)

Regret(A|7) <

When choosing n = O(1/v/T), we obtain that
Regret(A|J) < O(V/T) when T is sufficiently large, and,
therefore, our algorithm yields sublinear regret.

Remark 2. In this remark, we assume p = p = 1 (this
is without loss of generality as mentioned in Remark 1).
Here we consider two special cases of Theorem I when T is
sufficiently large:

1. Suppose h(p) = 3||pl|? and po = 0, then Algorithm 1
recovers dual online sub-gradient descent, and with

proper step-size n we can obtain

Regret(A|7) < 2¢/2mf2(b2 + VT + fb .

2. Suppose h(p) = — Z;nzl ;i log py and po = e~ 11,
then Algorithm 1 recovers the dual multiplicative up-
date algorithm, and with proper step-size 1 we can

obtain
Regret(A|7) < fb+
2\/2m(62 +1) (f+1) (flog (f+1) +1) +me=1)VT .

We next discuss the tightness of our regret bound. The
following result, which we reproduce without proof, shows
that one cannot hope to attain regret lower than Q(v/T)
under our modeling assumptions.

Lemma 1 (Lemma 1 from Arlotto & Gurvich 2019). For
every T > 1, there exists a probability distribution P such
that

igf Regret(A|P) > CVT
where C'is a constant independent of T'.

The previous result shows that, for every T, there exists a
probability distribution under which all algorithms —even
those that known the probability distribution— incur Q(+/T)
regret. The worst-case distribution used in the proof of the
result assigns mass to three points with one point having
mass of order 1/4/T. Because the regret bound of Algo-
rithm 1 provided in Theorem 1 does not depend on the
probability mass function of the distribution P, it readily
follows that our algorithm also attains O (y/7") in such worst-
case instance. This implies that our algorithm attains the
optimal order of regret when the length of the horizon and
initial number of resources are scaled proportionally.

We remark that the dependency of our regret bounds on the
number of resources m is sub-optimal. Agrawal et al. (2014)
shows that the best possible dependence on the number of
resources is of order log(m) while our algorithms’ depen-
dency is of polynomial order on m (in particular, m'/2 for
dual online sub-gradient descent and m?3/2 for dual mul-
tiplicative weight updates). The algorithms in Agrawal
et al. (2014), Agrawal & Devanur (2015), and Devanur et al.
(2019) attain the optimal dependency on the number of re-
sources, but, differently to ours, require either knowing an
estimate on the value of benchmark or periodically solving
large optimization problems.

4. Proof Sketch of Theorem 1

There are two major steps in the proof of Theorem 1. We
need to show that: (i) Algorithm 1 does not deplete resources
too early (Proposition 2); and (ii) before running out of
the resources, the average cumulative revenue is close to
a dual objective value (Proposition 3), which provides an
upper bound of OPT(P). Here we present these two major
steps.

Step 1 (Lower bound on the stopping time): At first, we
define the stopping time of Algorithm 1:
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Definition 2. We define the stopping time T4 of Algorithm
1 as the first time less than T' that there exists resource j
such that

TA

> )] w+b>pT

t=1

Notice that 74 is a random variable, and moreover, we will
not violate the resource constraints before the stopping time
74. The next proposition says the stopping time 74 is close
to the end of the horizon 7T'.

Proposition 2. Consider Algorithm I with step-size n < %
Then it holds that iy < p™®* for any t < 'T. Furthermore,
it holds with probability 1 that

1
T 74 < IVRG) = Vh(w)l + 7 (10)

(SRS

Step 2 (Primal-dual bound on the cumulative revenue):
We here study the primal-dual gap until the stopping-time
Ta. Notice that before the stopping time 74, Algorithm
1 performs the standard mirror descent steps on the dual
function.

Let us denote the random variable 7, to be the type of
request in time period ¢, i.e., y; is the random variable
that determines the (stochastic) sample ¢ in the ¢-th iteration
of Algorithm 1. Then p4; is a random variable which
depends on all previous values 7, ..., and we denote
this string of random variables £&; = {0, ...,V }-

The next Proposition presents a primal-dual bound on the
cumulative revenue of Algorithm 1 before the stopping time

TA.

Proposition 3. Consider the Algorithm 1 with given step-
size 1 under Assumptions 1-4. Let T4 be the stopping time

defined in Definition 2. Denote ji;, = Zt LB Then the
following inequality holds:

_2
Ep |7a4D( /"TA th z¢) MT}ET[TA]+M.

Together with the above two steps, we can show that the
cumulative revenue till the stopping time is not far away
from the optimal revenue to the offline problem (1) by us-
ing Proposition 1. We present the proof of Proposition 2,
Proposition 3 and Theorem 1 in Appendix D, Appendix E
and Appendix F, respectively.

5. Applications

In this section, we discuss applications of Algorithm 1 to
online matching with high entropy and bidding in repeated
auctions with budgets.

5.1. Bidding in Repeated Auctions with Budgets

Most online advertisements are sold using auctions in which
advertisers bid based on viewer-specific information. Typi-
cally advertisers participate in a large number of auctions on
a given day, and they set budgets to control their cumulative
expenditure throughout the day. We discuss how to apply
our methods to the problem of bidding in repeated auctions
with budgets.

We consider an advertiser with a budget pT" that limits the
cumulative expenditure over 71" auctions. Each request cor-
responds to an auction in which an impression becomes
available for sale. When the ¢-th impression arrives, the
advertiser first learns a value v, for winning the impression
based viewer-specific information and then determines a bid
wy to submit to the auction. We assume that impressions
are sold using a second-price auction. Denoting by b, the
highest bid submitted by competitors, the advertiser wins
whenever his bid is the highest (i.e., w; > b;) and pays the
second-highest bid in case of winning (i.e., b;1{w; > b;:}).
To simplify the exposition, we assume that ties are broken
in favor of the advertiser. At the point of bidding, the adver-
tiser does not know the highest competing bid. Consistent
with practice, we assume that the advertiser only observes
his payment in case of winning.

Values and competing bids are drawn i.i.d. from an unknown,
discrete distribution. The assumption that competing bids
are i.i.d. can be motivated by mean-field models in which
each agent is assumed to compete with a stationary bidding
landscape (see, e.g., Iyer et al. 2014; Balseiro et al. 2015).
These are predicated on the fact that, typically, the number
of bidders in online advertising markets is large (in the
orders of hundreds or thousands) and that in each auction
an advertiser competes with a small random set of different
bidders. As a result, the competing bids an advertiser faces
tends to be independently distributed and exogenous (i.e.,
not affected by the past bids of the decision maker).

The problem of bidding in repeated auctions with budgets
has been studied recently in Balseiro & Gur (2017; 2019).
In their paper, they present an adaptive pacing strategy that
attempts to learn an optimal Lagrange multiplier using sub-
gradient descent. Their adaptive pacing strategy is shown
to attain O(v/T') regret under restrictive assumptions on the
distribution of inputs. Specifically, they assume that val-
ues and competing bids are independent, and that D () is
thrice differentiable and strongly convex. In practice, how-
ever, values and competing bids are positively correlated.
Our algorithms attain similar regret bounds without such
restrictive assumptions on the inputs.

With the benefit of hindsight, a decision maker can win an
auction by bidding an amount equal to the highest compet-
ing bid (i.e., w; = b;). Therefore, the optimal solution in
hindsight reduces to solving a knapsack problem in which
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the impressions to be won are chosen to maximize the net
utility subject to the budget constraint. The problem is given
by:

T

max (’Ut - bt)fﬁt

z:€{0,1} P

T
S.t. Z bt.ift < 71,07

t=1

where x; € {0, 1} is a decision variable indicating whether
the advertiser wins the ¢-th impression.

Note that the informational assumptions are different from
the ones of our baseline model because the competing bid
b; is not assumed to be known at the point of bidding. In-
terestingly, because ads are sold using an ex-post incentive
compatible auction, such information is not necessary for
our algorithm: the algorithm only needs to know the pay-
ment incurred. As a matter of fact, our analysis applies to
any other ex-post incentive compatible auction.

This problem can be mapped to our framework by setting
fi(x) = (v — by)x. Denoting by ¢ > 0 the dual multiplier
of the budget constraint, the primal decision in Algorithm 1
is given by
T, = arg xg%ﬁ}{ft(ﬂf) — pebe} = 1{vp > (1 + pe)be}

This decision can be implemented by bidding wy = v, /(1 +
) without knowing the maximum competing bid. We
present the formal algorithm (Algorithm 2) in Appendix A.
Theorem 1 readily implies that choosing 7 ~ 1/+/T yields
a regret of O(v/T).

5.2. Proportional Matching with High Entropy

We consider an online matching problem using the terminol-
ogy from online advertising. Suppose there are n different
impressions and m advertisers. At time period ¢, an im-
pression with revenue vector r; € R"™ arrives, i.e., if we
allocate it to advertiser j € [m], then it generates revenue

(re);.

In the online setting, the impressions arrive sequentially.
For each time period ¢, we decide an assignment proba-
bility variable 2; € X := {x € RT|>"  2; < 1}, and
assign the arriving impression to advertiser j with probabil-
ity (x);. Notice that with probability 1 — Z;nzl(:ct) ; the
impression is not assigned to any advertiser, and in practice,
such impressions will go to other traffic. Suppose there are
in total T" time periods, and we assume the capacity of the
j-th advertiser is p;T. Define

H(z):=— ij log(z;) — <1 — Z@) log (1 — Z@)

to be the entropy function of assignment probability
x.

We herein study the high entropy fractional matching, where
the goal is to find a fractional matching {z;}; to maximize
the revenue with an entropy regularizer. The hindsight prob-
lem is:

T
.
max Z T, T + AH (x4)

T €
=1

T
s.t. th <Tp,
t=1

where A is the parameter of the entropy regularizer and vy is
a random variable defined by (12).

Y

A matching with high entropy has been shown to possess
many additional desirable properties, for example, higher
fairness and higher diversity (Lan et al., 2010; Venkatasub-
ramanian, 2010; Qin & Zhu, 2013; Ahmed et al., 2017).
Recently (Agrawal et al., 2018) designed a multi-round of-
fline proportional allocation algorithm for solving (11). Our
algorithm, in contrast, is a simpler online algorithm and
does not need to be run multi-rounds. A major difference
is that their capacity constraints can be violated during the
runs because they allow rescaling the variables at the end of
the run to satisfy the capacity constraints, while we do not
allow such violation in our online setting. Refer to Agrawal
et al. (2018) for a more detailed literature review on the
background of this problem.

Algorithm 3 in Appendix A is a variant of Algorithm 1
for the above proportional matching problem (11), with
fi(x) = r]x + AH(x) and by = I. The only difference
is that in the constraints we need to take into account the
actual realization of the probabilistic matching. Define the
random variable

o €; W.Pp.T;

ve = { 0 wp. 137" a; ° (12)
where e¢; € R™ is the j-th standard unit vector in R". Then
v; characterizes the realized assignment of the impression
at time ¢. In the online problem, the constraint of (11) is
stated in terms of vy, i.e., the random realization of the
decision variable x;. Let ( denote the random variable
determines the realization in the above process, then the
results in Theorem 1 still holds after taking the expectation
over ¢ on the left-hand of (9):

Proposition 4. Consider Algorithm 3 with step-size n ~
O(ﬁ) and initial solution 11 = 0 for solving (11). Then
it holds that

Regret(Al|J) := ;lég{OPT(?)—IECR(AW)} <0 (\/T) .
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Figure 1. Regret versus horizon 7" for the numerical experiments
on proportional matching with high entropy.

6. Numerical Experiment

Here, we present a numerical experiment on proportional
matching with high entropy (Section 5.2) to verify our re-
sults.

The dataset is generated following the procedures stated
in Balseiro et al. (2014). For each value of T', we plot the
average regret and its 95% confidence interval over 400
random trials. For all experiments, we start from pg = 0,
utilize h(z) = %||z||3 as our reference function (thus the
algorithm is dual sub-gradient descent), and choose = %
as the step-size. The details of the numerical experiment and
data generation are presented in Appendix H, and the code to

reproduce the results is in supplementary materials.

Figure 1 plots the regret versus horizon 7', from which we
can clearly see that the regret grows at the rate of /7', which
verifies the results in Theorem 1.

Figure 2 plots the relative reward (ratio between the reward
collected by the online algorithm and the offline optimal)
versus horizon 7. As we can see in Figure 2, the relative
reward gets to around 90% with 10, 000 online iterations,
which showcases the effectiveness of our proposed algo-
rithm.

We present additional results and discussions in Ap-
pendix H.

7. Conclusion

In this paper, we present a class of simple and efficient
algorithms for online allocation problems with concave rev-
enue functions. We show that our algorithms attain O(v/T)
regret, which matches the lower bound. Numerical exper-
iments validate our results. Interesting future research di-
rections are to explore whether better regret bounds can be

0.9

0.8

Relative Reward
o o =]
w o ~

I
IS

0.3

0.2

0 2000 4000 6000 8000 10000

T

Figure 2. Relative reward versus horizon 7" for the numerical ex-
periments on proportional matching with high entropy.

obtained under more restrictive assumptions on the inputs
and to study the performance of online dual mirror descent
on more general inputs (e.g., non-stationary or adversarial
inputs).
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A. Formal Algorithms for Solving the Two
Applications in Section 5

Algorithm 2 Online Dual Mirror Descent Algorithm for
Bidding in Repeated Auctions

Input: Initial dual solution pg, reference function h(-) :
R — R, step-size 7.

fort=0,..., 7 —1do

Receive an impression with value v;.

Bid Wy = min{ﬁ)t, Bt} where ’l[)t = ’Ut/(l + /,Lt) and
B4 is the remaining budget.

Observe the payment ¢; = by 1{w; > b;:}.

Obtain a stochastic dual sub-gradient

gt =—q+p.

Update the dual variable using mirror descent:

L 1
i1 = arg 1:121]8@7:, ) + E‘/}L(:u) fht) -

end

Algorithm 3 Online Dual Mirror Descent Algorithm for
Proportional Matching Problems with High Entropy

Input: Initial dual solution p, and step-size 7.
fort=0,...,7—1do

Receive an impression with revenue vector r, and regu-
larized revenue function f;(z) = v,z + AH (z).
Decide the assignment probability and update the re-
maining capacity:

vy = argmax{ fy(x) — puf x}
zeX

or equivalently

(@2); = exp((re(j) — pe(5))/A) .
T exp((re(l) — (D)) /A) + 1

Make the allocation decision: v, is set base on x4 by (12)
if it does not excess the capacity constraint, otherwise
set vy = 0.

Obtain a stochastic dual sub-gradient:

gt =—x+p.

Update the dual variable using mirror descent:

1
= in (g -V .
1 arggl218<gtau>+n n(fy pit)

end

B. Additional Literature Review

There is a stream of literature that studies online allocation
problems with linear utility functions when the input is ad-
versarial (Mehta et al., 2007a; Feldman et al., 2009). In
this case, it is generally impossible to attain sublinear regret
and, instead, the focus is on designing algorithms that ob-
tain constant factor approximations to the offline optimum
solution.

Our algorithms attain regret of order O(+/T'), which is tight
under our minimal assumptions on the input (Lemma 1).
Jasin (2015) studies linear allocation problems and shows
that it is possible to attain O(logT') regret when the ex-
pected instance is non-degenerate. His algorithm periodi-
cally re-estimates the distribution of requests and computes
a primal control by periodically solving a linear program
with the re-estimated parameters. Li & Ye (2019) study
linear allocation problems under the assumption that the
distribution of requests is absolutely continuous with uni-
formly bounded densities. They present a dual algorithm
that attains O(log T') regret. Their algorithm updates dual
variables by solving a dual, linear program in each stage
using all data collected so far. The assumptions of these
two papers are essentially imposing that the dual objective
is strongly convex at the optimal dual variables. In com-
parison, under our weaker assumptions, the dual objective
cannot be guaranteed to be strongly convex, which leads to a
Q(v/T) lower bound on regret. Similar distinctions arise in
online convex optimization where convexity vs. strong con-
vexity of the primal objective functions determine whether
O(V/T) vs. ©(log T) regret is attainable (see, e.g., Hazan
et al. 2016).

Our work is also related to the literature on multi-arm ban-
dits with knapsacks. Our feedback structure is stronger
because we get to observe the reward function and con-
sumption matrix before making a decision, while, in the
bandit literature, these are revealed after making a decision.
While algorithms for bandits with knapsacks are not directly
applicable, our problem can be thought of as a contextual
multi-arm bandit problem with knapsacks, where the con-
text would correspond to the information of the request. The
algorithms of Badanidiyuru et al. (2014) and Agrawal et al.
(2016) can be applied to our setting after discretizing the
context and action space. Discretization, however, leads
to sub-optimal performance guarantees. In particular, the
cardinality of the support of the action space does not ap-
pear in our regret bounds, while it must appear in the bandit
setting since bandit algorithms need to explore the rewards
for different actions. For example, in the problem of bidding
in second-price auctions, contextual bandits algorithms with
discretization lead to O(T3/4) regret while our algorithms
lead to O(T"/?) regret.
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C. Proofs of Proposition 1
Notice that for any p > 0, it holds that

OPT(P)
maxg,ex Zthl fe(a)

S.t. ZZ;l btxt < Tp

T
mafot (1) +Tu'p— NTthCEt‘|

t=1

:EfP

<Esp

13
=TEp {ma% fz) —p'br + qu} (1)
e

=T (Z pimax{fi(z) — plbic} + MTP>
i—1

=T (Z pif; (b 1) + MTP> :
i=1
where the first inequality is because of the feasibility of x
and p > 0 and the last equality is due to the definition of
f. This finishes the proof. O

D. Proofs of Proposition 2

The key step in the proof of Proposition 2 is the follow-
ing lemma, which shows that the dual update (8) never
exceeds the upper bound p™#* when the step-size 7 is small
enough.

Lemma 2. Let § = bVf*(b"p) + p with (b, f) €
{(bh f1)7 LERE) (bna fn)}r and ,u+ = argminu>0<g /l> +
%Vh(,&, f)- Suppose p < ™ and n < %2, then it holds
that pt < p™ax,

Proof. Denote J := {j] u;' > 0}, then we just need to show
,u;r < py* for any j € J. Following the update rule (8), it
holds for any j € J that

hy(pf) = hy(

—n(b)] V(b 1) —np;.

(14)

115)—ng; = hj(pj)

Define hi(c) = max, {cu; — hj(p;)} as the conju-
gate function of h;(u;), then by the property of conju-
gate function it holds that A} (-) is a U—Z-smooth univari-

ate convex function. Furthermore, h;() is increasing, and
5 (hj(s)) = pj.

Now define & := argmaxzex{f(z) — u
—Vf*(b" ). Then it holds that 0 = f(0) < f(5c
p1'bi < f — ' b, whereby p ' b3 < f. Since pu >
0,# € X C R%, it holds for any j € J that (b)]

Meanwhile, it follows by the definition of b that
Together with (14), it holds that

hi(n}) < hj(p;) +nmin (/ig) —npj. (15)

If < pj < pi™, we have min (}%,B) —p; <0, thus it
holds that uj‘ < py < p by utilizing (15) and convexity

of hj. Otherwise, p; < %, and furthermore,
J

b = (hy () < (B (p5) +nb)
nb _ f

M+ 1=y
J

< Iy (hy(p

where the first inequality is from (15) and the monotonicity
of h}(-), the second inequality is from A} (h;(u;)) = p;
and the —-smoothness of hj(-), the last inequality utilizes
n < %2, and the last equality follows from Definition 1.
This finishes the proof of Lemma 2. O

Proof of Proposition 2: First, a direct application of
Lemma 8 shows that for any ¢, p; < p™?*. Next, it follows
by the definition of 74 (Definition 2) that there exist j such
that Y72, (b)) 2, + b > p;T. By the definition of g;, we
have

TA TA

Z(gt)j = pPjTA — Z(bt) zy < pjTa — pT + b,

t=1 t=1

thus ~
T—74 < b— til(gt)j.
Pj

(16)

On the other hand, it follows the update rule (8) that for any
t <74,

hy((pesn);) = hy((pe)g) = 0(Ge); -
Thus
> s <+ (b (easn)s) — s ((0),))
=1 " (17)
< = (s =y () -

where the last inequality is due to the monotocity of hj ).
Combining (16) and (17), we reach

{h 5 () — i ((0);) N b } '

np; Pj

T — 714 <max
J

This finishes the proof by noticing that p; >
p and hi(Ere) = hi((o);) < IVR(u) —

Vh(110)]| - O

E. Proof of Proposition 3

Before proving Proposition 3, we first introduce some new
notations which are used in the proof. By the definition of
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conjugate function, we can rewrite the dual problem (7) as
the following saddle-point problem:

() minmaxL(y, n) ~fizzlpzfz(yz/pz) p' By+p'p,

(18)

where ¥y = [y1,...,9yn] € R"™, B := [b;...;b,] €
R™*" and pX = {y|y; € p;X} C R}’ By minimiz-
ing over 4 in (18), we obtain the following primal prob-
lem:

Y

(P): maxP(y) := Zplfl(y,/pl) (19)

st.By <p (20)
yepX. (21)

The decision variable y; /p; € X can be interpreted as the
expected action to be taken when a request of type 7 ar-
rives. Therefore, (P) can be interpreted as a deterministic
optimization problem in which resource constraints can be
satisfied in expectation. In the linear case, this problem is
sometimes referred as the deterministic linear program (Tal-
luri & van Ryzin, 1998) or the expected instance (Devanur
et al., 2019). Moreover, we define an auxiliary primal vari-
able sequence {z; =1, . 7:

& = arg max L(z, ) - (22)

As a direct consequence of (18) and (22), we obtain:

gt = =Bz +p =V, Lz, pus) € 0, D(g) . (23)

Proof of Proposition 3. It follows by the definition of §;, b
and p that

o [196% < 2 (Byllbezlle + llol5) <2 (6 +57) -
(24)

Note that u; € 0(&-1), 9t € 0(&—-1), and §; € o(&),
where o(X) denotes the sigma algebra generated by a
stochastic process X. Notice E.,g; = g;, thus it holds

for any p € D that

(ges e — 11y
=(E, [Ge|pe] s e — 1)

- 1
<E., [{Gt: e — pre+1) + EVh('u’ i)

1 1
- EVh(Ma Piy1) — th<Mt+17Mt),ut:|

- 1
<E., | (G, t — pre1) + 5Vh(u, )
]. 01 2
- EVh(M’ 1) — 2*77||#t+1 — e[| 7] e
[ i~ 2 1 1
<E,, | —l9¢ll5 + = Vit 1) — = Vi (g, preg1) e
01 n n

2n - 1 1
Sﬁ (52 + /72) + = Vi, pe) — E,, [Vh(ﬂaﬂt-&-l)lﬂt] )

01 n n
(25)

where the first inequality follows from Three-Point Property
stated in Lemma 3.2 of Chen & Teboulle (1993), the second
inequality is by strongly convexity of h, the third inequality
uses that a® + b > 2ab for a,b € R and Cauchy-Schwarz
to obtain

[

o1 /. -
2*||Mt+1 —puellF + = 1Gell 20 = i1 — pell1llGelloo
n 01

> [{Ges e — pes1)|

and the last inequality follows from (24). Taking expectation
with respect to £;_1 and multiplying by 7 on both sides of
(25) yields:

Eft—l [77<gt7 Mt — ,U>] (26)
2 (b% + p?
< <0'1p)772 T ]E'Et—l [Vh('u”ﬂ’tﬂ - ]Eft [Vh(ﬂ’a /u't+1)] .

Consider the process M; = 22:1 N{gs, phs — p) —
Ee, ,[n{(gs, ps — )], which is martingale with respect to §;
(i.e., My € o(&) and E[M41]&:] = M;) with increments
bounded by

|My — Mi—1| < n([|gelloe + Ee, , [Igelloo) e — plla
<2(b+ p)m|lpe — 1l oo
< 4m(b+ p) | ™ || o

= 4m(b+ p) (i—l—l) < oo,

where the first inequality is Cauchy-Schwarz, the second
inequality is from ||g¢||co < b+ p almost surely, and the last

inequality uses p; € D by Lemma 2. Since 74 is a stopping
time with respect to &; and 74 is bounded, the Optional Stop-
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ping Theorem implies that E [M, ] = 0. Therefore,

TA
E lz N(Ges bt — 1)
t=1

2 62 + =2
< (Ulp)UQE [7a] + Vi (i, po) - 27

TA
=E > Ee,_,[n{ge, s1r — 1))
t=1

where the inequality follows from summing up (26) from
t = 1tot = 74, telescoping, and using that the Bregman
divergence is non-negative.

On the other hand, it holds that by choosing 1 = 0
TA
> nlge i —p
t=1

TA
= Z VL2, i), e — 1)

—ZW
—ZW

— Zn (D(pe) = P(z)
Zt 1 P

= L(z, 1))

Zt’ #f

— P(z) — p(p — Bzt))

Zta,ut
— p(p — Bz))

>TAN (D(ﬂm) ) ZM (p— Bz)
=TA7 (D(ﬂm) - 72)52;{4 < t)) )

where the first equality uses (23), the second equality is
because L(z, ) is linear in py, the third equality is from
2y = argmin, L(z, uy), the first inequality uses convexity
of D(-) over u, and the last equality is because y» = 0. Com-
bining (27) and (28) and choosing p = 0, we obtain:

(28)

E |74D(jir,) ZP 2t)
(29)
2 (b +p? Vi (1,
< ( - p)ﬂE[TA}‘F w1 NO).
1

Notice that i, and z; are measurable given the sigma algebra
o(&—1). From the update of x; and z;, we know that if a
request of type i-th is realized in the ¢-th iteration, then
2t = (2¢)i/p;. Thus it holds for any ¢ < 74 that

., [fe(2¢)|€—1] szfz ((z0)i/pi) = P(z) .

Therefore, another martingale argument yields that

(30)

Combining (29) and (30) finishes the proof. O

F. Proof of Theorem 1

Proof of Theorem 1. For any P € J, we have for any 74
that

TA OPT(P)

—7a) [

OPT(P) = %AOPT(?) +

< 7aD(pir,) + (T

where the inequality uses (6) and the fact that OPT(P) < f.
Therefore,

Regret(A|P)
=OPT(P) — R(A|P)

T
<Egp lTAD(ﬂm) +(T—71a)f Z ]
<Ep KTAD fira) th Ty >]

+Ep [(T —7a)f]

_ (31)
2 (b* + p? Vi (0,
< ( P )n]ECP [TA} + h( MO)
01 n
f b
+ —[|Vh(u™**) — Vh o+ —
gnH (1™) (120) |l P
2 62 =2
2047 5 Va0 )
_01 n

f max fT)
+ VA" = Vh(po)leo + =,
pn P

where the second inequality is because 74 < T and
fie(xy) > 0, the third inequality uses Proposition 2 and
Proposition 3, and the last inequality is from 74 < T almost
surely. Moreover, (31) holds for any P € J, which finishes
the proof of Theorem 1. O

G. Proof of Proposition 4

Proof of Proposition 4. The proof essentially follows
exactly from the proof of Theorem 1 after taking the expec-
tation on (. Notice that g; does not depend on the realization
of , thus Proposition 3 still holds. The only part requiring
major modification in the proof is the bound on stopping
time (i.e., Proposition 2). Actually (10) no longer holds al-
most surely, but it still holds in expectation, which is enough
to show Proposition 4. The difficulty in establishing this
result is that the stopping time is now defined in term of
the realized allocation v; instead of the action z;. For the
consistency of the proof, we still use the notations for the
general problem (1) herein. Our goal is now to show that
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E¢ [T — 74 < max
nPj Pj

J

{hjw;na’() — h;((10);) b

(32)

Consider the sigma algebra F; = o(Hy, fi41, bry1) where
H; = {fs,bs,vs}t_; is the previous history. Note that
Tep1 € Fp but vy € Fypp. At first, it holds that
M; = Zi:l bs(vs — ) is a martingale with respect to Fy,
because M; € Fy, E¢(||My]|) < 2bt is bounded for any ¢,
and

Ee [My41 — My|Fy] = b1 E [vp1 — pga|ze41] =0

Recall that 74 is the first time that

TA

> (b)) v+ b > pT (33)
t=0

Notice the (bt);rvt in the left-hand-side of (33) is measur-
able with respect to J;, thus 74 is a stopping time with
respect to J;. It then follows by Martingale Optional Stop-
ping Theorem that E¢[M,,| = E¢[M;] = 0. Therefore,

because g; = —x; + p we obtain
TA TA
E¢ Z(gt)j] =E¢ lpjTA - Z(bt);xt]
t=1 t=1
TA
= E¢ [PﬂA - Z(bt);%]
t=1

< E¢ [pjTa —p;T+b] ,

where the second equality is from E;[M,,] = 0 and the
inequality from (33). Thus

E¢ [T - ma] < Eq {b‘@)} .

Pj

Notice that g; does not depend on the realized allocation
&, thus Lemma 2 and (17) still holds, which finishes the
proof of (32). Proposition 4 can be then proved by following
the exact steps in the proof of Theorem 1 after taking an
additional expectation over (. O

H. Additional details on the numerical
experiments

Here we present additional details in the numerical experi-
ments.

Data generation: We use the dataset introduced by Bal-
seiro et al. (2014). They consider the problem faced by a
publisher who has to deliver impressions to advertisers so
as to maximize click-through rates. (They consider the sec-
ondary objective of maximizing revenue from a spot market,

which we do not take into account for this experiments). We
incorporate the entropy regularizer H () to the objective
with parameter A = 0.0002, which was tuned to balance
diversity and efficiency of the allocation. In each problem in-
stance there are m advertisers; advertiser j can be assigned
at most p; T impressions. The revenue vector r; gives the
expected click-through rate of assigning the impression to
each advertiser. In their paper, they parametrically estimate
click-through rates using mixtures of log-normal distribu-
tions. Because they do not report the actual data used to
estimate their model, we instead take their estimate model
as a generative model and sample impressions from the dis-
tributions provided in their paper. We generated 100, 000
samples for each publisher, and we present results for pub-
lisher 2 from their dataset, which has 12 advertisers.

Random trials: There are two layers of randomness in
Algorithm 3: randomness coming from the data (i.e., P),
and randomness coming from the proportional matching
(i.e., ¢). In the numerical experiments, we first obtain 20
random datasets with size 7" uniformly randomly chosen
from 100, 000 samples (for the first layer of randomness),
and for each dataset, we run Algorithm 3 20 times (for the
second layer of randomness). In total, we run 400 random
trials, and report the average regret with 95% confidence
interval in Figure 1.

Regret and relative reward computation: For each ran-
dom trial with given round 7', we compute the cumulative
revenue obtained by Algorithm 3. Once an advertiser does
not have any remaining budget, we rule it out from the fu-
ture allocation. We then compute the average cumulative
revenue over the 400 trials as our expected revenue of Al-
gorithm 3, i.e., R(A|P). We compute OPT by solving the
offline problem (1) with 100, 000 samples. We report the fol-
lowing regret: Regret(A|P) = 7'/100000 x OPT — R(A|P)
and its 95% confidence interval any different value of
T in Figure 1. We report the following relative reward:
R(A|P)/(T/100000 x OPT) in Figure 2.



