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Abstract
Optimal transport is a foundational problem in
optimization, that allows to compare probability
distributions while taking into account geometric
aspects. Its optimal objective value, the Wasser-
stein distance, provides an important loss between
distributions that has been used in many applica-
tions throughout machine learning and statistics.
Recent algorithmic progress on this problem and
its regularized versions have made these tools in-
creasingly popular. However, existing techniques
require solving an optimization problem to ob-
tain a single gradient of the loss, thus slowing
down first-order methods to minimize the sum of
losses, that require many such gradient computa-
tions. In this work, we introduce an algorithm
to solve a regularized version of this problem
of Wasserstein estimators, with a time per step
which is sublinear in the natural dimensions of
the problem. We introduce a dual formulation,
and optimize it with stochastic gradient steps that
can be computed directly from samples, without
solving additional optimization problems at each
step. Doing so, the estimation and computation
tasks are performed jointly. We show that this
algorithm can be extended to other tasks, includ-
ing estimation of Wasserstein barycenters. We
provide theoretical guarantees and illustrate the
performance of our algorithm with experiments
on synthetic data.

1. Introduction
Optimal transport is one of the foundational problems of
optimization (Monge, 1781; Kantorovich, 2006), and an
important topic in analysis (Villani, 2008). It asks how one
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can transport mass with distribution measure µ to another
distribution measure ν, with minimal global transport cost.
It can also be written with a probabilistic interpretation,
known as the Monge-Kantorovich formulation, of finding a
joint distribution π in the set Π(µ, ν) of those with marginals
µ and ν, minimizing an expected cost between variables X
and Y . The minimum value gives rise to a natural statistical
tool to compare distributions, known as the Wasserstein (or
earth-mover’s) distance,

Wc(µ, ν) = OT(µ, ν) = min
π∈Π(µ,ν)

E(X,Y )∼π [c(X,Y )] .

In the case of finitely supported measures, taken with same
support size n for ease of notation, such as two empirical
measures from samples, it is written as a linear program
(on the right). It can be solved by the Hungarian algorithm
(Kuhn, 1955), which runs in time O(n3). While tractable,
this is still relatively expensive for extremely large-scale
applications in modern machine learning, where one hopes
for running times that are linear in the size of the input (here
n2).

Attention to this problem has been recently renewed in ma-
chine learning, in particular due to recent advances to effi-
ciently solve an entropic-regularized version (Cuturi, 2013),
and its uses in many applications (see e.g. Peyré et al., 2019,
for a survey), as it allows to capture the geometric aspects
of the data. This problem has a strongly convex objective,
and its solution converges to that of the optimal transport
problem when the regularization parameter goes to 0. It
can be easily solved with the Sinkhorn algorithm (Sinkhorn,
1964; Altschuler et al., 2017), or by other methods in time
O(n2 log n) (Dvurechensky et al., 2018).

These tools have been applied in a wide variety of fields,
from machine learning (Alvarez-Melis et al., 2018; Arjovsky
et al., 2017; Gordaliza et al., 2019; Flamary et al., 2018),
natural language processing (Grave et al., 2019; Alaux et al.,
2018; Alvarez-Melis et al., 2018), computer graphics (Feydy
et al., 2017; Lavenant et al., 2018; Solomon et al., 2015),
the natural sciences (del Barrio et al., 2019; Schiebinger
et al., 2019), and learning under privacy (Boursier & Perchet,
2019).

Of particular interests to statistics and machine learning are
analyses of this problem with only sample access to the
distributions. There have been growing efforts to estimate
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either the objective value of this problem, or the unknown
distribution, with this metric or associated regularized met-
rics (see below) (Weed et al., 2019; Genevay et al., 2019;
Uppal et al., 2019). One of the motivations are variational
Wasserstein problems, where the objective value of an op-
timal transport problem is used as a loss, and one seeks to
minimize in a parameter θ an objective that depends on a
known distribution νθ

min
θ∈Θ

OT(µ, νθ) ,

where µ is only accessible through samples. This method
for estimation, referred to as minimum Kantorovich esti-
mators (Bassetti et al., 2006), mirrors the interpretation of
likelihood maximization as the minimization of KL(νθ, µ),
with the Kullback-Leibler divergence.

The value of the entropic-regularized problem, or of the
related Sinkhorn divergence, can also be used as a loss in
learning tasks (Alvarez-Melis et al., 2018; Genevay et al.,
2017; Luise et al., 2018), and compared to other metrics
such as maximum mean discrepency (Gretton et al., 2012;
Feydy et al., 2019; Arbel et al., 2019). One of the advantages
of the regularized problem is the existence of gradients in the
parameters of the problem (cost matrix, target measures).

The problem of minimizing this loss for the `2 cost over Rd
has been shown to be equivalent to maximum likelihood
Gaussian deconvolution (Rigollet & Weed, 2018). We show
here that this result can be generalized for all cost functions
to maximum likelihood estimation for a kernel inversion
problem. It is not only the solution of a stochastic optimiza-
tion problem, but also an estimator, referred to here as the
regularized Wasserstein estimator.

In this work, we propose a new stochastic optimization
scheme to minimize the OTε between an unknown discrete
measure µ and another discrete measure ν ∈ M, with an
additional regularization term on ν. There are many con-
nections between this problem and stochastic optimization:
by a dual formulation, the value OTε(µ, ν) can be written
as the optimum of an expectation in µ, ν, allowing sim-
ple computations with only sample access (Genevay et al.,
2016). Here, we take this one step further and design an
algorithm to optimize in ν, not just evaluate this loss. A
direct approach is to optimize by first-order methods, by
the use of stochastic gradients in ν at each step (Genevay
et al., 2017). However, these gradient estimates are based
on dual solutions of the regularized problem, so obtaining
them requires to solve an optimization problem, with run-
ning time scaling quadratically in the intrinsic dimension of
the problem (the size of the supports of µ, ν). For the dual
formulation that we introduce, stochastic gradients can be
directly computed from samples. Algorithmic techniques
exploiting the particular structure of the dual formulation
for this regularization allow us to compute these gradients

in constant time. We follow here the recent developments in
sublinear algorithms based on stochastic methods (Clarkson
et al., 2012).

We provide theoretical guarantees on the convergence of the
final iterate νt to the true minimizer ν∗, and demonstrate
these results on simulated experiments.

2. Problem Description
Definitions. Let µ be a probability measure on Rd with
finite support X = {xi}1≤i≤I ⊂ Rd and a family M of
probability measures. The measures in M should all be
absolutely continuous with respect to a known measure β
supported in the finite set Y = {yj}1≤j≤J ⊂ Rd. We
consider the following minimization problem:

min
ν∈M

OTε(µ, ν) + ηKL(ν, β). (1)

In this expression, OTε is the regularised optimal transport
cost defined by the following expression

OTε(µ, ν) =

min
π∈Π(µ,ν)

E(X,Y )∼π [c(X,Y )] + εKL(π, µ⊗ ν), (2)

where the minimum is taken over the set

Π(µ, ν) = {π ∈ P(X × Y) : πX = µ, πY = ν}

of couplings of µ and ν, and c is a cost function in Rd.
The operator KL(·, ·) is the Kullback-Leibler divergence,
defined as

KL(µ1, µ2) = EZ∼µ2

[
dµ1

dµ2
(Z) log

(
dµ1

dµ2
(Z)

)]
,

for two measures µ1 and µ2 such that µ1 � µ2. We assume
thatM is convex for the problem to be a convex optimiza-
tion problem, and compact to guarantee that the minimum
is attained. We consider η ≥ ε to guarantee convexity (see
Proposition 3.2).
Remark 1. If c is a distance and if ε = η = 0, then OTε
is a Wasserstein distance and our problem can be seen as
computing a projection of µ ontoM. In the discrete case,
the solution to the unregularized problem is the distribution
ν such that ν(y) = µ(x), where y is the nearest neighbour
in Y of x.
Remark 2. In (2), the addition of entropic regularization
smoothes the transport plan π. In (1), the Kullback-Leibler
divergence plays the role of a second regularization that
smoothes the estimated measure ν. The effects of these two
layers of regularization are further discussed in section 5.2.

Learning problem. Our objective is to solve the optimiza-
tion problem in Equation (1), given observations Xi inde-
pendent and identically distributed (i.i.d.) from µ that is
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unknown, and sample access to β. These can be assumed
to be simulated by the user if β is known, as part of the
regularization. This problem can be either be interpreted as
an unsupervised learning problem or as estimation in an in-
verse problem, and we refer to it as regularized Wasserstein
estimation. The term in Kullback-Leibler (or entropy, up to
an offset) are classical manners in which a probability can
be regularized.

Maximum likelihood interpretation. While the unregu-
larized problem has a trivial solution, there is in general no
closed form for positive ε. When ε > 0, η = 0 andM is
the set of all probability measures on Y , then our problem is
equivalent to the maximum likelihood estimator for a kernel
inversion problem. This corresponds to estimating the un-
known initial distribution of a random variable Y , but only
by observing it after the action of a specific transition ker-
nel κ (see, e.g., Berthet & Kanade, 2019, for the statistical
complexity of estimating initial dustributions under general
Markov kernels).

Proposition 2.1 (MLE interpretation). LetM be the set of
all probability measures on Y , let ν∗ be a measure on Y ,
and let κ : Y → X be a transition kernel of the form

κ(x, y) =
exp

(
− c(x,y)

ε

)
∑
x′∈X exp

(
− c(x

′,y)
ε

) ,
the observed measure is µ = κν∗, which can be written as

µ(x) =

∫
Y

κ(x, y)dν∗(y).

The maximum likelihood estimation of ν∗ for this observa-
tion is

ν̂ := arg max
ν∈M

∑
i

log(κν)(Xi).

This estimator also verifies

ν̂ = arg min
ν∈M

OTε(µ, ν). (3)

Remark 3. If c(x, y) = ‖x−y‖2, then κ(x, y) =: φε(x−y)
is a Gaussian convolution kernel with φε being a centered
gaussian distribution with covariance matrix ε

2 Id. The sam-
ple measure µ = φε ? ν

∗ is a convolution, so the solution of
(3) is the MLE of the Gaussian deconvolution problem, as
already presented by Rigollet & Weed (2018).

As in the Gaussian case, these optimization problems share
an optimum, but are not equal in value. Therefore, in our
regularized setting, it is not possible to substitute one for
the other.

Gaussian case. To illustrate the effect of each regular-
ization term, we consider here the case where c(x, y) =

‖x − y‖2,M is the set of one dimensional Gaussian dis-
tributions and the target measure µ ∼ N (mµ, σ

2
µ) as well

as the prior measure β ∼ N (0, 1) are Gaussian distribu-
tions. The multivariate case has a closed form, as showed
by (Janati et al., 2020). We present this closed form of the
objective in the 1-D case:

OTε(µ, ν) + ηKL(ν, β) =

|mν −mµ|2 +
η

2
|mν |2 + σ2

µ +
(

1 +
η

2

)
σ2
ν

−
√

4σ2
µσ

2
ν +

ε2

4
− η

2
log σ2

ν

+
ε

2
log

(
ε+

√
4σ2

µσ
2
ν +

ε2

4

)
, (4)

where mν and σν are the mean and variance of the gaussian
variable ν. The estimator ν̂ that minimizes (4) over the set
of gaussian distributions verifies:

mν̂ =
mµ

1 + η
2

,

so we see that the regularization term in η centers the Wasser-
stein estimator. If η = 0 then

σ2
ν̂ = σ2

µ −
ε2

4
(5)

since the estimator is a gaussian deconvolution (see Remark
3). However in the general case η > 0, the variance σ2

ν̂ does
not have a closed form, but we can compare the effects of
each regularization by looking at their asymptotic behaviour.
Indeed, when ε tends to 0, we have

σν̂ =
σµ +

√
σ2
µ +

(
1 + η

2

)
(2η − ε)

2 + η
+O(ε2),

where the bounds on O(ε) only depend on σµ. This ex-
pression shows that a larger η will spread the distribution
ν̂ if and only if the variance σ2

µ is smaller than 1. It also
suggests that that a larger ε will reduce the variance of the
estimator, which is already seen in equation (5). We will
see in Proposition 3.2 that it is preferable that η is chosen
greater than ε to guarantee convexity. We remark that if
η ≥ ε and η tends to 0, then

σ2
ν̂ = (1− η)σ2

µ + η +O(η2),

so the variance of ν̂ can be approximated by the average
of the variance of µ and the variance of the prior β. The
effects of the regularization on the estimator are also further
discussed in Section 5.2.

3. Dual formulations
As noted above, first-order optimization methods to solve
directly in ν the regularized problem require at every step to
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solve an optimization problem. We explore instead another
approach, through a dual formulation of our problem. Such
a formulation allows to change the minimization problem
in (2) into a maximization problem.
Proposition 3.1 (Dual formulation). If ε > 0, then the
problem (1) is equivalent to the following problem:

min
f∈F

max
a∈L1(µ),b∈L1(ν)

E [a(X) + b(Y )f(Y )

− ε exp

(
a(X) + b(Y )− c(X,Y )

ε

)
+(η − ε)f(Y ) log f(Y )] , (6)

the expectation being over the variables (X,Y ) ∼ µ ⊗ β,
with f(y) = dν

dβ (y) and F = { dνdβ : ν ∈M}.

If f is constant β-almost everywhere, with value 1, then
the maximization problem for a and b in (6) is the dual of
the regularized optimal transport problem 2, for which a
block coordinate descent corresponds to Sinkhorn algorithm
(Cuturi, 2013).

This dual formulation is a saddle point problem, and it is
convex-concave if η ≥ ε, so the Von Neumann minimax
theorem applies: we can swap the minimum and the maxi-
mum.
Proposition 3.2. If η ≥ ε > 0 then the problem (1) is
equivalent to the following maximization problem:

max
a∈L1(µ),b∈L1(ν)

F (a, b), (7)

with

F (a, b) =E
[
a(X)− εe

a(X)+b(Y )−c(X,Y )
ε

]
− (η − ε)H∗β

(
− b

η − ε

)
, (8)

by writing

H∗β (α) = max
f∈F

E [α(Y )f(Y )− f(Y ) log f(Y )] ,

with the variables (X,Y ) ∼ µ⊗ β.

In its discrete formulation, the problem is written with the
following notations: Ci,j := c(xi, yj) for the cost matrix,
ai = a(xi) and bj = b(yj) for the dual vectors, and fj =
f(yj) for the remaining primal variable.

The problem (7) is hence given by

max
(a,b)∈RI×RJ

F (a, b), (9)

with

F (a, b) =E
[
ai − ε exp

(ai + bj − Ci,j
ε

)]
− (η − ε)H∗β,M

(
− b

η − ε

)
. (10)

The indices (i, j) are here independent random variables
such that xi ∼ µ and yj ∼ β. The function H∗β,M is the
Legendre transform of the relative entropy to β on the set F :

H∗β,M(α) = max
f∈F

E [fj(αj − log fj)] , (11)

with j a random index such that yj ∼ β.

If the maximum is attained on the relative interior ofM at
the point ν∗(α), then we have∇H∗β,M(α) = ν∗(α). More-
over the optimum ν∗(−b∗/(η− ε)) for the dual problem (6)
is the optimal ν ∈M for our general problem (1).

Proposition 3.3. The function F has the following proper-
ties.

1. The set of solutions to the problem (9) is a
nonempty affine space spanned by the vector
((1, . . . , 1), (−1, . . . ,−1)).

2. Every solution (a∗, b∗) of (9) verifies

∀ i, j, |a∗i + b∗j − Ci,j | ≤ B, (12)

with B := εm + 2RC , where RC is the range of the
matrix C given by RC := maxi,j Ci,j − mini,j Ci,j ,
and m := maxj | log fj | with fj = ν∗j /βj .

3. The function −F is λ-strongly convex on the slice
{
∑
i µiai =

∑
j βjbj} with

λ :=
mini,j{µi, βj}

ε
e−(m+2RC/ε).

4. For i and j independent random variables as for (10),
we have the gradients of F are written as simple ex-
pectations

∇aF = E [(1−Di,j)ei] , (13)

∇bF = E
[
(fj −Di,j)e

′
j

]
, (14)

with Di,j(a, b) = exp
(
ai+bj−Ci,j

ε

)
, (ei)1≤i≤I and

(e′j)1≤j≤J the canonical basis in RI and RJ respec-
tively.

4. Stochastic Optimization Methods
The formulas (13) and (14) suggest that our problem can
be solved using a stochastic optimization approach. For
random indices i drawn from µ and j drawn from β, we
obtain the following stochastic gradients

Ga = (1−Di,j)ei =

(
1− exp

(ai + bj − Ci,j
ε

))
ei

Gb = (fj −Di,j)e
′
j =

(
ν∗j
βj
− exp

(ai + bj − Ci,j
ε

))
e′j .
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By Proposition 3.3, these are unbiased estimates of the gra-
dients of F . The algorithm then proceeds with an averaged
gradient ascent that uses these stochastic gradients updates
at each step. The obtained iterates (bt)t≥1 are averaged,

producing the sequence
(
bt
)
t≥0

of iterates defined by

bt :=
1

t

∑
1≤t′≤t

bt
′
.

The computation of Ga can be done in O(1), however Gb
necessitates the value ν∗j in (11) to be computed. The com-
plexity of this computation depends on the setM, and we
will present here two cases where it can be done with low
complexity.

Initialization. To guarantee that the gradients will not get
exponentially big, we choose the initial value of the dual
variables so that it verifies

∀i, j, ai + bj − Ci,j ≤ −εm,

with m being defined in (12). We define

ini(C, ε,m) := (minCi,j − εm)/2,

and we initialize

ai = bj = bj = ini(C, ε,m). (15)

Usually, m is unknown and should be determined by heuris-
tics.

Simple case. We analyze the case whereM is the fam-
ily of all probability measures supported in the finite set
{yj}1≤j≤J ⊂ Rd, with the assumption that η > ε. Then, if
the max is attained on the interior of the simplex, we have
the optimum

ν∗j =
βje
−bj/(η−ε)∑

k βke
−bk/(η−ε)

. (16)

The algorithm needs O(1) complexity for each time step. If
the values of Ci,j are accessible without having the whole
matrix stored (such as a simple function of xi and yj), the
storage is only O(I + J) in this algorithm, because we
do not need to store any Di,j . The complexity at each
step of the algorithm is better than with the non regularized
form, where j is taken as arg maxj βje

−bj/(η−ε), instead of
randomly. This enhancement in complexity mostly comes
from the storage of the sum St =

∑
j gj(b

t
j) with

gj(b
t
j) := βje

−btj/(η−ε).

Indeed, instead of computing the entire sum at each iterates,
which costs O(J) operations, the algorithm simply updates
the part of the sum that was modified:

St+1 = St + gj(b
t+1
j )− gj(btj).

Algorithm 1 SGD for Wasserstein estimator
The entries are the learning rates (γt), the probabilities
µ = (µi)i, β = (βj)j , the cost matrix Ci,j and the
logarithmic gap m between the solution and the prior.
Initialize ai = bj = bj = ini(C, ε,m), S = e−

ini(C,ε,m)
η−ε ..

for t = 1 to T do
Sample i ∈ {1, . . . , I} with probability µi.
Sample j ∈ {1, . . . , J} with probability βj .

Di,j = e
ai+bj−Ci,j

ε .
fj = e−bj/(η−ε)/S.
ai ← ai + γt(1−Di,j).
bj ← bj + γt(fj −Di,j) with the previous as b′j .
bj ←

(
1− 1

t

)
bj + 1

t bj

S ← S + βje
−bj/(η−ε) − βje−b

′
j/(η−ε)

end for
for j = 1 to J do
νj = βje

−bj/(η−ε)/
∑
j′ βj′e

−bj′/(η−ε)

end for
Return ν.

This method assures updates in O(1). In a context focused
entirely on optimization, where µ and β are known in ad-
vance, we could also pick i and j uniformly, and add µi and
βj as factors in the formulas. This would not reduce the
complexity.

Mixture models. We also consider a set of measures
(νk)1≤k≤K supported in supported in the set {yj}1≤j≤J ⊂
Rd, and takeM = {

∑
k θkν

k : θ ∈ ∆K} to be their con-
vex hull. We define the matrix M = (νk(yj))j,k. Then
M = {Mθ : θ ∈ ∆K}, and Equation (11) becomes

H∗β,M(α) = max
θ∈∆K

(α− log(Mθ) + log(β))TMθ, (17)

with the log being taken component-wise.

Proposition 4.1. The maximization problem (17) has a so-
lution

θ∗ =
M† exp

(
PIm(M)(−b/(η − ε)− 1− log(β))

)
1TM† exp

(
PIm(M)(−b/(η − ε)− 1− log(β))

) ,
with M† being the Moore-Penrose inverse of the matrix M .
It gives the measure

ν∗ =
exp

(
PIm(M)(−b/(η − ε)− 1− log(β)

)
1T exp

(
PIm(M)(−b/(η − ε)− 1− log(β)

) .
We can replace it in equation (14) to get the stochastic gradi-
ents. However at each new computed step, every coefficient
changes, and there is a need to do J computations for each
step. The solution computed here is also valid for the case
when it is not unique.
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We can, however, consider another regularization to the
entropy of θ to improve the algorithm. The problem is the
following:

min
θ∈∆K

OTε(ν, µ) + ηKL(θ,M†β).

The other computations are unchanged, apart from Equa-
tion (11), replaced by

H∗β,M(α) = max
θ∈∆K

αTMθ − (η − ε) KL(θ,M†β)

= max
θ∈∆K

(MTα− log(θ) + log(M†β))T θ.

(18)

Proposition 4.2. The maximization problem (18) has a so-
lution

θ∗ =
exp

(
MT (−b/(η − ε)− 1) + log(M†β)

)
1T exp (MT (−b/(η − ε)− 1) + log(M†β))

.

Both regularizations KL(θ,M†β) and KL(ν, β) are mini-
mal when ν = β, and can therefore be used as a suitable
proxy. The solution to the regularized problem is similar
to the solution to the unregularized one. For this modified
problem, the computations are accessible, and they can be
done in time O(K), a great improvement if K � J . We
apply the stochastic gradient scheme in Algorithm 2.

Wasserstein barycenters. Algorithm 1 can be used to
compute an approximation of the Wasserstein barycenter of
K measures µ1, . . . , µK . If the cost funtion in the optimal
transport problem is of the form c(x, y) = d(x, y)p with d
being a distance and p ≥ 1, then the transport cost OT(·, ·)
defines the p-Wasserstein distance. In these conditions, the
Wasserstein barycenter of the measures µ1, . . . , µK with
nonnegative weights w1, . . . , wK is the solution of the min-
imization problem

min
ν

K∑
k=1

wk OT(µk, ν). (19)

This optimization and the barycenter that it defines was
introduced by Agueh & Carlier (2011), these objects and
their regularized versions have attracted a lot of attention,
for their statistical and algorithmic aspects (Zemel et al.,
2019; Cuturi & Doucet, 2014; Claici et al., 2018; Luise
et al., 2019).

As an analogy with our original problem (1), we consider
an entropic regularization of the Wasserstein barycenter
problem (19):

min
ν∈M

K∑
k=1

wk OTε(µ
k, ν) + ηKL(ν, β).

Algorithm 2 SGD for Wasserstein projection
The entries are the learning rates (γt), the probabil-
ities µ = (µi)i, β = (βj)j , the stochastic matrix
M = (νkj )j,k , the cost matrix Ci,j and the logarithmic
gap m between the solution and the prior.
Initialize ai, bj , bj , α = log

(
M†β

)
, θk = 1/K.

for t = 1 to T do
Sample i ∈ {1, . . . , I} with probability µi.
Sample j ∈ {1, . . . , J} with probability βj .

Di,j = e
ai+bj−Ci,j

ε .
fj =

∑K
k=1 θkν

k
j /βj .

ai ← ai + γt(1−Di,j).
bj ← bj + γt(fj −Di,j).
for k = 1 to K do
αk ← αk − γt

η−εν
k
j (fj −Di,j).

αk ←
(
1− 1

t

)
αk + 1

tαk
end for
for k = 1 to K do
θk = eαk/

∑
k′ e

αk′ .
end for

end for
for k = 1 to K do
θk = eαk/

∑
k′ e

αk′ .
end for
for j = 1 to J do
νj =

∑K
k=1 θkν

k
j .

end for
Return ν.

Our approach can be translated to this setting, as well as
the theoretical results found for (1). We have the equivalent
dual formulation

max
a∈L1(µ),b∈L1(ν)

F̃ (a1, . . . , aK , b),

with

F̃ (a1, . . . , aK , b) :=

K∑
k=1

wkFk(ak, b).

Here Fk is defined like the function F in (8) by replacing
µ by µk. The only difference in the algorithm is that there
should be K dual variables a1, . . . , aK that play the role of
the variable a for each measure µk while one variable b is
used to obtain the target measure.

The complexity of the algorithm is O(K) for each stochas-
tic gradient step, which gains a factor logK compared to
the state-of-the-art stochastic Wasserstein barycenter (Staib
et al., 2017), that solves the unregularized minimisation
problem (19). The complexity of a gradient step could be
further reduced to O(1) at the cost of more randomization,
by sampling k randomly at each step with probability pro-
portional to wk, and updating ak and b as in algorithm 1
with µk playing the role of µ.
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If η ≈ ε, the approximation error of this estimated Wasser-
stein Barycenter is of the same order as that of the problem

min
ν∈M

K∑
k=1

wk OTε(µ
k, ν),

considered in Cuturi & Peyré (2015), that solves the problem
with a single layer of regularization.

5. Results
5.1. Convergence bounds

The following convergence bounds are valid for both algo-
rithms presented in the previous section. They come from
general convergence bounds for averaged stochastic gra-
dient descent with decreasing stepsize (Shamir & Zhang,
2012). For ν∗ ∈ M be the optimal Wasserstein estimator,
let νt ∈M be the estimator obtained by stopping the algo-
rithm at step t. Since the measures inM are all supported
on Y , we consider the Kullback-Leibler divergence to ex-
press how close the estimated measure νt is to ν∗. As νt

is obtained with the dual variable bt, the estimation error
of bt can translate to an entropic error in the following two
bounds. The first result uses the stepsize for SGD associated
to strongly convex functions and the second one uses the
stepsize for SGD associated to convex functions. Both re-
sults are presented here: even though the theoretical bound
of the second one is asymptotically worse, its stepsize can
yield better performance in practice.
Theorem 5.1. With stepsize γt = 1

λt , the estimator verifies
the following bound:

E
[
KL(ν∗, νt)

]
≤ 34

e2m

(η − ε)λ2

1 + log t

t
.

Theorem 5.2. With stepsize γt = c0ε√
t
, with any chosen

constant c0 ≤ Be−m/ε, the estimator verifies the following
bound:

E
[
KL(ν∗, νt)

]
≤ 2

B2em

c0ε(η − ε)λ
2 + log t√

t
.

In order to prove both theorems, we present two lemmas
whose proofs are provided in the appendix.
Lemma 5.3. Let at, bt be the iterations of the stochastic
gradient descent, seen as random variables. If the initial-
ization is done as in (15), then the second order moments of
the stochastic gradients are bounded:

E
[
‖∇aFi,j(at, bt)‖2 + ‖∇bFi,j(at, bt)‖2

]
≤ 2e2m.

Lemma 5.4. The convergence of the primal variable ν(b)
is linked to the convergence of the objective by the following
bound:

KL(ν(b∗), ν(b)) ≤ F (a∗, b∗)− F (a, b)

(η − ε)λ
.

Proof of Theorem 5.1. The result from Shamir & Zhang
(2012) on strongly convex functions gives the bound

E
[
F (a∗, b∗)− F (at, bt)

]
≤ 17

G2

λ

1 + log t

t
,

with G2 being a bound on the second order moments of the
stochastic gradients. The lemma 5.3 provides G2 = 2e2m.
We conclude with lemma 5.4.

Proof of theorem 5.2. With stepsize γt = B
G
√
t
, the result

from Shamir & Zhang (2012) on convex functions gives the
bound

E
[
F (a∗, b∗)− F (at, bt)

]
≤ 2(BG)

2 + log t√
t

,

with G2 being a bound on the second order moments of the
stochastic gradients. The lemma 5.3 provides G ≥

√
2em,

here we choose G = B
c0ε

where we assume c0 ≤ Be−m/ε.
We conclude with Lemma 5.4.

Remark 4. The term in log t can be removed by using adap-
tive averaging schemes: by averaging only the past αt iter-
ates, the the term 1 + log t can be replaced by 1−log(1−α)

α .
Remark 5. The strong convexity coefficient

λ =
mini,j{µi, βj}

ε
e−B/ε

is negligible when ε � B, thus the stepsize of the first
theorem is large: it can lead the dual variables to grow out
of their normal range and produces an exponential overflow
in experiments. One solution is to cap the dual variables to
the range provided by (12), but the algorithm would then
not provide any useful solution until a high number of steps
is performed, i.e. t ' 1/Bλ. Instead, we recommend
using the stepsize γt = min{1/λt, c0ε/

√
t} that provides

a quick convergence at the earlier steps, then gives a better
asymptotic convergence rate.

5.2. Simulations

We demonstrate the performance of the algorithm on simu-
lated experiments.

Regularization term. In order to exhibit clearly the im-
pact of regularization parameters, We analyze a simple case,
where X = Y , and Ci,j = |i − j|. In this case the solu-
tion is given by ν∗ = µ for ε = η = 0, with a diagonal
transportation matrix. The prior β is chosen as the uniform
measure on Y , and we use the learning rate provided by
Theorem 5.2.

The regularization coefficient η should be greater than ε
to guarantee convexity, and has a smoothing effect on the
solution. Indeed, the solution converges to β when η tends
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Figure 1. Effect of the regularization on the target measure. Target
measure µ in blue, estimator in orange. Upper plot: ε = η − ε =
0.1. Lower plot: ε = η − ε = 0.01.

to infinity, and generally, an estimator that is regularized
with a larger η will be closer (in KL divergence) to the
reference measure β. For example, if β is chosen as a
uniform law on the discrete set Y , the regularized estimator
will be more spread out than the unregularized solution, i.e.
will have a larger entropy - as in Figure 1. We choose to
take η = 2ε to conserve a similar degree of regularization as
in the case η = 0, while guaranteeing that the exponentials
in (16) do not overflow. We also note that the introduction
of the positive regularization in ε noticeably spreads the
transportation matrix - see Figure 2.

Sensitivity to dimension. We consider the relationship
between the convergence rate and the dimensions (I, J) of
the problem. The theoretical results 5.1 and 5.2 depend on
(mini µi) + (minj βj), which scales with 1/min(I, J) if
µ and β are uniform on their support. We generate X and
Y randomly by drawing two sets of independent Gaussian
vectors of respective sizes I and J . We pick µ to be the
uniform measure on X , and the cost matrix is taken so that
Ci,j is the distance between Xi and Yj . We compute the
gradient norm of the objective function F at the averaged
iterates at, bt. The results can be seen in Figure 3.

The observed rate for the convergence of the gradient norm
is O(t−δ), with δ of order 1/2 as would be predicted from

Figure 2. Effect of the regularization on the transport matrix. Up-
per plot: cost matrix used. Lower plots, from left to right: trans-
portation matrix for ε = η − ε = 0.1 after 106 iterations, and for
ε = η − ε = 0.01.
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Figure 3. Convergence of the gradient norm for different dimen-
sions.



Stochastic Optimization for Regularized Wasserstein Estimators

the theorem 5.1. Overall, a lower dimension increases per-
formance, especially after a small number of iterations. An
increase of the support size J of the target decreases per-
formance less than an increase of the sample size I for the
input measure.

Choice of the learning rate. As noted above, a choice
of learning rate that is large compared to ε can lead to a
divergence of the dual variables. This is due to the exponen-
tial dependency of the gradients in a and b. Experiments
suggest the learning rate

γt = min

{
1

λt
,
c0ε√
t

}
.

Figure 4 shows the convergence to the target with different
choices of c0. Here ε = 0.01, η = 0.02, with the same prob-
lem is the same as in the experiments on the regularization
term shown in Figure 1.
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Figure 4. Comparison of the learning rates.

A regression on the curves shows that the empirical con-
vergence rate is of order O

(
t−δ
)

with δ close to 1, which
matches with theorem 5.1. We remark that the greater c0 is,
the better the algorithm converges, until it becomes unstable
and does not converge anymore for c0 > 1. This instability
was observed consistently for a large range of values of ε
and η. The choice c0 = 1/2 appears to be reasonable for
both stability and convergence.

6. Conclusion
We consider the problem of minimizing a doubly regularized
optimal transport cost over a set of finitely supported mea-
sures with fixed support. Using an entropic regularization
on the target measure, we derive a stochastic gradient de-
scent on the dual formulation with sublinear (even constant
in the simplest case) complexity at each step of the optimiza-
tion. The algorithm is thus highly paralellizable, and can be

used to compute a regularized solution to the Wasserstein
barycenter problem. We also provide convergence bounds
for the estimator that this algorithm yields after t steps, and
demonstrate its performs on randomly generated data.
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