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Abstract
Model-Based Reinforcement Learning (MBRL)
offers a promising direction for sample efficient
learning, often achieving state of the art results for
continuous control tasks. However many exist-
ing MBRL methods rely on combining greedy
policies with exploration heuristics, and even
those which utilize principled exploration bonuses
construct dual objectives in an ad hoc fashion.
In this paper we introduce Ready Policy One
(RP1), a framework that views MBRL as an ac-
tive learning problem, where we aim to improve
the world model in the fewest samples possible.
RP1 achieves this by utilizing a hybrid objective
function, which crucially adapts during optimiza-
tion, allowing the algorithm to trade off reward
v.s. exploration at different stages of learning. In
addition, we introduce a principled mechanism to
terminate sample collection once we have a rich
enough trajectory batch to improve the model.
We rigorously evaluate our method on a variety of
continuous control tasks, and demonstrate statisti-
cally significant gains over existing approaches.

1. Introduction
Reinforcement Learning (RL) considers the problem of an
agent learning to construct of actions that result in an agent
receiving high rewards in a given environment. This can
be achieved in various ways such as: learning an explicit
mapping (a policy) from states to actions that maximizes ex-
pected return (policy gradients), or inferring such a mapping
by calculating the expected return for a given state-action
pair (TD-control methods). Model-Based Reinforcement
Learning (MBRL) seeks to improve the above by learning a
model of the dynamics (from agent’s interactions with the
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environment) that can be leveraged across many different
tasks (transferability) and for planning, which is substan-
tially less expensive than a real environment (which plays
crucial role in robotics applications).

A series of recent work (Ha and Schmidhuber, 2018; Hafner
et al., 2019; Kurutach et al., 2018; Clavera et al., 2018; Chua
et al., 2018; Kaiser et al., 2020; Schrittwieser et al., 2019)
illustrate the benefits of MBRL-approaches that allow us to
decouple learning task-dependent policy and task-agnostic
dynamics. With recent advances, MBRL approaches often
outperform model-free methods (Wang et al., 2019). How-
ever, these results are often overly sensitive to heuristics.

In particular, many of these methods lack a principled mech-
anism to acquire data for training the model. This issue is
circumvented in (Ha and Schmidhuber, 2018), since they
only consider environments which can be explored with
random policies. Other model-based approaches, such as
(Kurutach et al., 2018; Feinberg et al., 2018; Hafner et al.,
2020), rely on stochastic policies to aid exploration, and
inevitably acquire redundant data which reduces sample
efficiency. Such issues have been highlighted previously
(Schmidhuber, 1991; Sun et al., 2011), and motivate the
design of our algorithm. Concretely, we reduce the cost
incurred from data collection by using active learning meth-
ods, and introduce an early stopping mechanism to address
the issue of redundancy.

Efficient exploration is a challenge for existing RL algo-
rithms, and is a core focus in model-free RL (Chentanez
et al., 2005; Houthooft et al., 2016; Brafman and Tennen-
holtz, 2003; Lopes et al., 2012). Despite often considering
a principled objective, these methods generally contain a
fixed temperature parameter, thus requiring hand engineer-
ing to determine the optimal degree of exploration. Our
approach adjusts this parameter in an online manner from
the collected trajectories, and we provide an information
theoretic motivation for our exploration objective.

In this paper, we introduce a novel approach to acquiring
data for training world models through exploration. Our al-
gorithm, Ready Policy One (RP1), includes principled mech-
anisms which acquire data for model-based RL through the
lens of Online Active Learning. Crucially, we continue to
jointly optimize our policies for both reward and model
uncertainty reduction, since we wish to avoid focusing on
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stochastic or challenging regions of the state space which
have no impact on the task at hand. Therefore policies used
for data collection also perform well in the true environ-
ment, and means we can use these policies for evaluation.
Consequently, a separate ‘exploit’ agent does not need to be
trained (Henaff, 2019).

To summarize, our key contributions are as follows:

• Inspired by Active Learning, we train policies in a learned
world model with the objective of acquiring data that most
likely leads to subsequent improvement in the model.

• We introduce a novel early-stopping criteria for real-
environment samples, reducing redundancy in expensive
data collection.

• We adapt the objective function as learning progresses
using an Online Learning mechanism.

The paper is structured as follows. In Section 2 we discuss
related work. In Section 3 we describe our RL setting and
introduce basic concepts. In Section 4 we introduce our
method and related theory. Finally we demonstrate the
effectiveness of our approach across a variety of continuous
control tasks in Section 5 before concluding in Section 6,
where we also mention some exciting future work.

2. Related Work
The Dyna algorithm (Sutton, 1991) is a canonical approach
for model based reinforcement learning (MBRL), based on
the principle of ‘trying things in your head’, using an inter-
nal model of the world. In its original form, Dyna contained
an exploration bonus for each state-action pair, proportional
to this uncertainty measure (Sutton, 1990). A decade later,
principled approaches were proposed for exploration (Braf-
man and Tennenholtz, 2003), yet their guarantees were only
possible in discrete settings with a finite number of states.

In recent times there has been great deal of progress in
MBRL, with success in Atari games (Kaiser et al., 2020;
Schrittwieser et al., 2019), and dexterous manipulation
(Nagabandi et al., 2019), while progress has been made
on continuous control benchmarks (Kurutach et al., 2018;
Chua et al., 2018; Clavera et al., 2018; Janner et al., 2019).
We note that our approach is orthogonal to these in the fol-
lowing ways: 1) our methods, or some subset of the methods
we introduce, can be incorporated into existing MBRL al-
gorithms; 2) we adhere to a strict Dyna style framework,
and our methods are aimed at incorporating active learning
into this paradigm. Other recent work (Ha and Schmidhu-
ber, 2018) shows that Dyna can be extended to latent-state
dynamics models. We note that our framework could be ex-
tended to this setting, however we instead focus on efficient
data acquisition through active learning.

Active approaches (i.e., acquiring data in a principled man-
ner) in MBRL have been considered previously, for example
in (Shyam et al., 2019; Pathak et al., 2019; Henaff, 2019).
Usually, ensembles of models are maintained, and an in-
trinsic reward, defined as some difference measure (i.e.,
KL-divergence, total variation) across the output of differ-
ent models in the ensemble drives exploration. Such ex-
ploration might be ineffective however, as the policy may
visit regions of the state space which have no relation to
solving the task. This may also lead to unsafe exploration if
deployed on a real robot. (Henaff, 2019) bears similarities
to our work in that it aims to improve model generalization
through exploration, and has a criteria to trade-off explo-
ration and exploitation. However their approach to explo-
ration is purely novelty-seeking, and they collect data until
they discover a model (or subset of models) that can fully
model the MDP in question (i.e., when novelty falls below a
predefined value). Once a model is discovered, they imple-
ment a policy (through search) which exploits it to maximize
performance. This has drawbacks mentioned above concern-
ing wasted exploration in task-irrelevant states as well as
unsafe exploration.

Also similar to our work is (Akiyama et al., 2010), who
explicitly use an active learning approach for solving an RL
task; a robot arm hitting a ball. Our work differs in three
significant ways: 1) our policies are trained inside a model,
not on the true environment; 2) we actively limit the number
of trajectories per collection phase based on the data (they
introduce a heuristic); 3) we do not have access to an off-line
measure of generalization, and therefore must introduce an
online-learning mechanism to seek out the optimal setting
of the exploration parameter.

Approaches that produce Bayes-optimal exploration and
exploitation with a model (Deisenroth and Rasmussen, 2011;
Sajid et al., 2019) are also of relevance, however these
methodologies do not scale well to high dimensional tasks
(Wang et al., 2019).

Efficient exploration in environments with very sparse re-
wards also represents a relevant area of research. In such
settings an agent follows its curiosity, quantified by either:
1) rewarding areas of the state-space that reduce uncertainty
in some internal model (i.e., inverse or forward dynamics
models) (Chentanez et al., 2005; Mohamed and Rezende,
2015; Houthooft et al., 2016; Pathak et al., 2017; Burda
et al., 2019); 2) rewarding un-visited areas of the state-space
(Brafman and Tennenholtz, 2003; Lopes et al., 2012; Ostro-
vski et al., 2017). Our approach to exploration leverages a
model ensemble, and sits in the former category.

There has also been a great deal of work on using maximum
entropy principles as a means for exploration in model-free
RL (Haarnoja et al., 2018a). The aim is to find rewarding
behavior whilst maximizing some measure of entropy. We
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differ from these works in both what entropy is maximized
(action entropy v.s. model prediction entropy) and by not
having task-specific, fixed temperature parameter that trades
off reward and entropy/surprise. In later maximum entropy
work, temperature selection has been formulated as a con-
strained optimization problem, such that performance is
maximized subject to some minimum level of policy en-
tropy (Haarnoja et al., 2018b). In contrast, we select this
parameter in an online manner that optimally improves our
internal models.

3. Background
3.1. RL Policies & Markov Decision Processes

A Markov Decision Process (MDP, (Bellman, 1957)) is
a tuple (S,A,P,R). Here S and A stand for the sets of
states and actions respectively, such that for st, st+1 ∈ S
and at ∈ A: P(st+1|st, at) is the probability that the sys-
tem/agent transitions from st to st+1 given action at and
R(at, st, st+1) is a reward obtained by an agent transition-
ing from st to st+1 via at.

A policy πθ : S → A is a (possibly randomized) mapping
(parameterized by θ ∈ Rd, e.g. weight of the neural net-
work) from S toA. Policy learning is the task of optimizing
parameters θ of πθ such that an agent applying it in the
environment given by a fixed MDP maximizes total (ex-
pected/discounted) reward over given horizon H . In this
paper we consider MDPs with finite horizons.

In most practical applications the MDP is not known to
the learner. In MBRL, we seek to use a dataset D =
{(st, at), st+1}Nt=1 of observed transitions to train a dy-
namics/world model f̂φ parameterized by φ to approxi-
mate the true dynamics function f(st+1|st, at) such that
f̂φ(st+1|st, at) u f(st+1|st, at).

We aim to construct rich Ds for learning accurate enough
models f̂θ, but only in those regions that are critical for
training performant policies.

3.2. Sequential Model Based Optimization

Consider a black box function F : Rd → R over some
domain X , whereby the goal is to find x∗ ∈ X such that

x∗ = arg max
x∈X

F (x) (1)

Sequential Model Based Optimization (SMBO, (Hutter
et al., 2011)) is a model-based black box optimization
method which seeks to learn a surrogate model F̂ , within
the true model F . Using the surrogate model, it is possible
to determine which data should be collected to discover
the optimum point of the real black box function F . The
surrogate model is sequentially updated with the data col-
lected in order to obtain better estimates of the true F , and

this process is repeated until convergence or limited to a set
number of iterations.

Many MBRL algorithms follow this regime, by trying to
model a true black box function F using a world model f̂φ
parameterized by φ as follows:

F (θ) u
H∑
t=0

γtR(st, πθ(st), f̂φ(πθ(st), st)) (2)

where γt ∈ [0, 1] is a discount factor, actions are πθ(st) =

at, and next states are generated by st+1 = f̂φ(πθ(st), st).
Subsequently, they seek to find a policy π parameterized
by θ that maximizes the acquisition function, which is just
maxF (θ), then they will generate rollouts in the environ-
ment by using this policy and adding noise to the actions,
such as via a stochastic policy.

Taking this view, essentially the majority of existing MBRL
algorithms are conducting a form of SMBO with a greedy
acquisition function. Any exploration conducted is simply a
post hoc addition of noise in the hope of injecting sufficient
stochasticity, but there is no principled mechanism by which
the model may escape local minima.

Our approach is markedly different. We seek to conduct
Active Learning, whereby the goal is not just to find an
optimal solution to F , but to learn an optimal surrogate
model F̂ ∗ through the world model f̂φ∗ . To do this, we train
policies to maximize an acquisition function that trades-off
reward and information, rather than just greedily maximiz-
ing reward. Given how the acquisition function in SMBO
is an important component for finding optimal performance
(Jones et al., 1998), it therefore makes sense to carefully
design how we acquire data in the MBRL setting.

3.3. Active Learning

Active Learning considers the problem of choosing new
data D′ = {x′i, y′i}mi=1, which is a subset of a larger dataset
i.e., D′ ∈ D = {xi, yi}ni=1, such that a modelM is most
improved.

In traditional supervised learning, we usually have access to
the entirety of D for training, but in the active learning set-
ting we only have access to its feature vectors {xi}ni=1, and
need to query an oracle to obtain the corresponding labels
{yi}ni=1 which incurs a cost. Active learning aims to reduce
this cost by iterating through the set of unlabeled feature vec-
tors {xi}ni=1, and determining which subset {x′i}mi=1 would
produce the greatest improvement in the performance ofM
should we train our models on the subset D′ = {x′i, y′i}mi=1.
The ultimate goal is to achieve the highest performance with
the fewest number of queries (i.e., at the lowest cost).

In reinforcement learning, there is a key difference to the
standard active learning setting; we do not have direct ac-
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cess to a dataset D, and must instead generate D through
placing a ‘sampling’ policy πs in the environment, produc-
ing trajectories. We then assess these trajectories generated
by πs and determine how to best train this policy to obtain
trajectories in some oracle/true environment that will bene-
fit performance. Framing the problem this way is done in
(Akiyama et al., 2010), where it is cheap to generate and
evaluate trajectories, but expensive to obtain labels.

In the Dyna-style approach (Sutton, 1991) that we adopt,
this means training our sampling policy πs in the world
model exclusively, then using this policy to collect samples
in the real world. Through the lens of active learning, it is
therefore important to train πs in our world model such that
the resultant trajectories maximize our world model perfor-
mance, therefore maximizing our final policy performance.
This is because it is free, from a data collection perspective,
to train in the world model, but acquiring data in the real
environment incurs an expense.

Concretely, we wish to train a policy that performs well in
the real environment in as few samples as possible, and we
identify that having a robust and generalizable world model
as being paramount to achieving this. We observe that state-
action pairs which cause high uncertainty/disagreement in
the world model are likely to be parts of the state space
that our world model is poor at modeling (as observed in
(Freeman et al., 2019), where solving ‘difficult’ environment
dynamics is important for learning optimal policies).

However we cannot simply target regions of disagreement;
we are primarily concerned with maximizing policy perfor-
mance, so wish to explore regions of disagreement that are
also critical to solving the task. This becomes a classic ex-
plore/exploit dilemma; how much do we want our sampling
policy to explore (i.e., find states with poor generalization)
or exploit (i.e., visit known high value states) when acquir-
ing new real samples. In order to manage this trade-off,
we leverage an online active learning approach similar to
(Osugi et al., 2005), where model generalization feedback
from the gathered trajectories can be used to determine the
degree to which we explore or exploit in the future.

3.4. Online Learning

Online Learning is a family of methods that is used when a
learner tackles a decision-making task by taking actions a ∈
A, whilst learning from a sequence of data z1, z2, . . . , zN
that arrive in incremental rounds n. The learner must take
an action at the beginning of each round, and the aim is to
minimize cumulative regret, which is usually defined as the
difference in some loss `(a, zn) between the actual action
taken and the optimal action that could have been taken at

that round:

N∑
n=0

(
`(an, zn)−min

a∈A
`(a, zn)

)
.

At each round n the learner does not know what the conse-
quence of some action a will be, and only receives feedback
after submitting its chosen action an. Based on this feed-
back the learner then updates how it selects actions in the
future. In our approach we consider the set of actions A to
be the degree to which our policy explores, and the loss `
to be a normalized generalization error from the data col-
lected. The aim is to therefore ensure that generalization
error (i.e., RMSE on the new data) is maximized at each
round. Since the task of maximizing generalization is both
noisy and stochastic (i.e., the optimal degree of exploration
may vary as we collect data), careful design of this algorithm
is required.

4. Ready Policy One
Here we introduce our main algorithm, Ready Policy One
(RP1). The key differences between RP1 and existing state
of the art MBRL methods are as follows:

1. By taking an Active Learning approach rather than fo-
cusing on greedy optimization, RP1 seeks to directly
learn the best model, rather than learning the best pol-
icy, and indirectly learning the best model to achieve
this objective.

2. We introduce a principled Online Learning-inspired
framework, allowing RP1 to adapt the level of explo-
ration in order to optimally improve the model in the
fewest number of samples possible.

3. We introduce a mechanism to stop gathering new sam-
ples in any given collection phase when the incoming
data resembles what we have already acquired during
that phase.

The algorithm begins in a similar fashion to other MBRL
methods, by sampling initial transitions with a randomly
initialized policy. In the Dyna framework, a policy is then
trained inside f̂φ, and then subsequently used to gather new
data. Typically, random noise is added to the policy to in-
duce exploration. Other methods consider a hybrid objective.
In RP1, consider training a sampling policy, parameterized
by θt, to optimize the following objective:

πθt = max[Eτ∼πθt [(1− λ)R(τ) + λσ(R(τ))]] (3)

where R(τ) =
∑H
i=0 ri, ri = R(si, ai, si+1) and

σ(R(τ)) =
∑H
i=1

√∑M
j=1(rji−r̄i)2
M−1 . This λ value is chosen
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before training the policy in the model, and is selected us-
ing an online learning algorithm mechanism detailed in 4.2.
Hence λ defines the relative weighting of reward and reward
variance, with λ = 0 training a policy that only maximizes
expected return (model-guided exploitation)1, and λ = 1
training a policy that only maximizes variance/disagreement
per time step (model-guided exploration). In reality we limit
λ to [0.0, 0.5] as we wish any exploration to be guided by the
reward signal. As a consequence, there is no need to train
a separate ‘exploit’ policy, since we find policies trained
in this way provide significant gains over commonly used
approaches. This mirrors the fact that MaxEnt strategies
obtain high-performance in deterministic environments (Ey-
senbach and Levine, 2019).

4.1. Information Gain in the Model as Maximum
Entropy

Our objective in Equation 3 is inspired by curiosity driven
exploration via model disagreement (Pathak et al., 2019).
When shown a new unlabeled feature x′ comprising a state
s ∈ S and action a ∈ A pair, the model has an existing
‘prior’ p(r|x′,D) where r is the predicted reward and D is
the data seen so far. After obtaining the label s′ we have a
new datapoint D′ (i.e., D′ = (s, a, s′)), and can update the
world model, producing a ‘posterior’ p(r|s, a, {D ∪D′}).
In our case, reward is a deterministic function of this triple
(i.e., r = R(D′), see Appendix ?? for details). As such, we
define the Information Gain (IG) in the reward as the KL
divergence between the model posterior after observing D′

and its’ respective prior at x′, as follows:

IG(r;x′) = DKL[p(r|x′, {D ∪D′})||p(r|x′,D)]] (4)

=

∫
p(r|x′, {D ∪D′}) log

p(r|x′, {D ∪D′})
p(r|x′,D)

dr. (5)

We observe that to maximize IG(r;x′), we must sample x′

appropriately, which is our only degree freedom (through
policy training). Because we cannot tractably calculate this
quantity for all D′, one approach to maximize information
gain is to ensure that the prior assigns low mass to all re-
gions of r (i.e., minimize the denominator over all r). In
order to do this we would select the improper prior over the
continuous variable r2. In our setting however, the model
takes the form of an empirical Gaussian distribution, formed
from the sample mean and variance of the individual mod-
els in the ensemble. Therefore we would like to choose
p(r|x′,D) such that the following is minimized:

DKL[p(r|x′,D)|p0(r)] (6)

1λ = 0 corresponds to the same objective as in prior MBRL
work, such as (Kurutach et al., 2018).

2This follows the proposal in (MacKay, 2002) when selecting
priors in the face of uncertainty.

where p0(r) is an improper prior. The only way that Equa-
tion 6 is minimized is when the differential entropy of
p(r|x′,D) is maximized. The differential entropy of a Gaus-
sian is well known, given by h(x) = ln(

√
2πσ) + 1

2 . There-
fore to maximize the entropy of p(r|x′,D), and maximize
information gain in the face of uncertainty, we need to max-
imize its variance. This is achieved by training policies that
generate trajectory tuples x′ = (s, a) which cause high vari-
ance in the model, and is analogous to information based
acquisition functions in active learning (MacKay, 1992).

This motivates the second term of Equation 3, where we
show the objective function for our exploration policies.
Essentially, we are seeking to maximize information gain
in the model through maximizing model entropy over the
reward. This is in contrast to other maximum entropy ap-
proaches, which seek to maximize entropy over the action
distribution (Haarnoja et al., 2018a), aiming to succeed at
the task while acting as randomly as possible.

It is also possible to maximize information gain for next
state predictions (as opposed to rewards), and this is similar
to the approach in (Pathak et al., 2019). However in practice
we find that maximizing reward variance results in better
performance (see Section 5).

4.2. Online Learning Mechanism

We use the Exponential Weights framework to derive an
adaptive algorithm for the selection of λ. In this setup
we consider k experts making recommendations at the be-
ginning of each round. After sampling a decision it ∈
{1, · · · , k} from a distribution pt ∈ ∆k with the form
pt(i) ∝ exp (`t(i)) the learner experiences a loss ltit ∈ R.
The distribution pt is updated by updating `t as follows:

`t+1(i) =

{
`t(i) + η

lti
pt(i) if i = it

`t(i) o.w.
(7)

For some step size parameter η.

In our case we consider the case when the selection of λt
is thought as choosing among k experts which we identify
as the different values {λi}ki=1. The loss we consider is of
the form lit = Ĝφt(θt+1), where Gφt(θt+1) is the RMSE
of the model under parameters φt on data collected using
πθt+1 , and θt+1 is the parameter of the policy trained under
the choice λit , after incorporating into the model the data
collected using the previous policy πθt . We then perform
a normalization of G (see Appendix ?? for details), hence
Ĝ. Henceforth we denote by ptλ the exponential weights
distribution over λ values at time t.

Our version of Exponential Weights algorithm also known
as Exponentially Weighted Average Forecaster (Cesa-
Bianchi and Lugosi, 2006) is outlined in Algorithm 1.
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Algorithm 1 Online Learning Mechanism
Input: step size η, number of timesteps T .
Initialize: p1

λ as a uniform distribution.
for t = 1, . . . , T − 1 do

1. Select it ∼ ptλ and λt = λit .
2. Use Equation 7 to update ptλ with

ltit = Ĝφt(θt+1)

In practice and in order to promote more effective explo-
ration over λ values we sample from a mixture distribution
where ptλ is not proportional to exp (`t) but it is a mixture
between this exponential weights distribution and the uni-
form over [k]. In other words, let ε > 0 be a small parameter.
With probability 1−ε the produce it as a sample from an ex-
ponential weights distribution proportional to exp (`t), and
with probability ε it equals a uniform index from 1, · · · , k.

4.3. Diverse Sample Collection

Consider the problem of online data acquisition from a
policy in an environment. At each timestep we receive
a set of datapoints {x1, . . . , xH} ∼ πθ corresponding to
the concatenation of each state and action in a trajectory.
At timestep t we have a dataset Xt = {x1, . . . , xn} ⊂
Rd, where Xt ∈ Rd×n sampled from the sampling policy.
We represent this data in the form of the Singular Value
Decomposition (SVD) of the symmetric matrix, Covt =
1
nXtX

>
t = Q>t ΣtQt ∈ Rd.

Equipped with this representation, we take the top k eigen-
values λi of Covt, where k is smallest such that:

∑k
i=1 λi ≥

(1 − δ)
∑d
i=1 λi for some parameter δ > 0, and take

nt = k. Next we take the corresponding eigenvectors
u1, ...,uk ∈ Rd and let U ∈ Rd×k be obtained by stacking
them together. We define the Active Subspace (Constantine
et al., 2014) Uact ∈ Rd×k as Lactive

def
= span{u1, ...,uk}.

Uact is an orthonormal basis of Lactive.

We use Uact to evaluate new data. After we collect n′ new
samples Vt+1 ∈ Rd×n′ , we form a covariance matrix with
this new data as 1

n′Vt+1V
T
t+1 ∈ Rd×d and project it onto

Uact. We define the residual at timestep t, rt, as follows:

rt =
tr(Vt+1V

T
t+1 −UUTVt+1V

T
t+1UUT )

tr(Vt+1V Tt+1)
(8)

Where tr denotes the trace operator. After evaluating rt we
append the new data Vt+1 toXt to formXt+1 ∈ Rd×(n+n′).
Intuitively, rt tells us how much of the new data could not be
explained by the principal components in the data collected
thus far. We stop collecting data and proceed to retrain the
model once rt < α, where α is a proxy for δ. The full
procedure is presented in Algorithm 2.

Let qt be the probability that at timestep t, step 4. of Algo-
rithm 2 is executed (i.e., qt = P(rt < α)). The evolution of
qt operates in roughly two phases. First, the algorithm tries
to collect data to form an accurate estimate of the covariance
matrix Covt and a stable estimator Uact. During this phase,
qt is small as it is roughly the probability of two random
samples X,X ′ ∈ Rd×n′ aligning. After t0 steps when the
algorithm has built a stable estimator of Uact, the stopping
probability stabilizes to a value q∗ that solely depends on
the trajectories intrinsic noise. Both the length of t0 and
the magnitude of q∗ scale with the trajectories’ noise. If the
trajectories have little noise both t0 and q∗ are small. On
the other hand, if the trajectories have high noise, the early
stopping mechanism will take longer to trigger.

Algorithm 2 Early Stopping Mechanism
Input: thresholds α, δ, maximum number of samples T .
Initialize: training set X = ∅
Collect initial samples X1 = {x1, . . . , xH}.
for t = 2, . . . , T − 1 do

1. Compute Active Subspace Uact as the result of
stacking together some orthonormal basis of Lactive

def
=

span{u1, ...,ur} where the vectors ui correspond to the
top k eigenvalues of the covariance matrix Covt.
2. Produce samples Vt+1 via the sampling policy
3. Calculate the residual rt using Equation 8.
4. Stop collecting data if rt < α

This dynamic approach to determining the effective ‘batch
size’ of the incoming labeled data is similar to (Chakraborty
et al., 2011), whereby feedback from unsupervised learning
is used to control the amount of data collected per batch.
However, we do this in a more instantaneous fashion, lever-
aging data collected so far to determine when to stop.

4.4. The Algorithm

We now present our algorithm: Ready Policy One (RP1). At
each iteration we select a policy objective (λ) to maximize
sample utility, and train a policy on this objective. The
policies are trained using the original PPO (Schulman et al.,
2017) loss function, but we use the training approach in
(Schulman et al., 2015) as this combination delivered more
robust policy updates.3

Once the policy has been trained inside the model, we use it
to generate samples in the real environment. These samples
continue until our early stopping mechanism is triggered,
and we have sufficiently diverse data to retrain the model.
The full procedure is outlined in Algorithm 3.

The overall aim is to therefore determine which part of the
model space is both high value and unknown, so that our

3Full implementation details can be found in Appendix ??.
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trained sampling policy can obtain enough data samples
pertaining to those regions of the environment.

Algorithm 3 RP1: Ready Policy One
Input: Number of initial samples N0, number of ongoing
samplesNt, number of policies in the ensembleM , number
of time steps T .
Initialize: Initial World Model f̂0 comprised of M mod-
els.
CollectN0 samples with a random policy and initialize data
set D0 = {(st, at), st+1}N0

t=1.
for t = 1, . . . , T − 1 do

1. Train f̂t−1 with Dt to derive f̂t.
2. Select λ using Algorithm 1.
3. Train exploration policy πφt using Equation 3 in
f̂t.
4. Collect new samples Dnew = {(st, at), st+1}Ntt=1

in the environment with πφt , where Nt is defined as
the number of time steps required for Algorithm 2 to
return.
5. Dt+1 ← Dt ∪ Dnew
6. Set αt = L(f̂t(Dnew))

5. Experiments
The primary goal of our experiments is to evaluate whether
our active learning approach for MBRL is more sample
efficient than existing approaches. In particular, we test RP1
on a variety of continuous control tasks from the OpenAI
Gym (Brockman et al., 2016), namely: HalfCheetah, Ant,
Swimmer and Hopper, which are commonly used to test
MBRL algorithms. For specifics, see Appendix ??. In order
to produce robust results, we run all experiments for ten
random seeds, more than typically used for similar analyses
(Henderson et al., 2017).

Rather than individual algorithms, we compare against the
two approaches most commonly used in MBRL:

• Greedy: We train the policy to maximize reward in the
model, and subsequently add noise to discover previously
unseen states. This is the approach used in ME-TRPO
(Kurutach et al., 2018).

• Variance + Reward (V+R): We train the policy with λ =
0.5, producing a fixed degree of priority for reward and
model entropy. This resembles methods with exploration
bonuses such as (Houthooft et al., 2016).

We note that these baselines are non-trivial. In particular,
ME-TRPO is competitive with state of the art in MBRL.
In fact, for two of the tasks considered (Swimmer and
Hopper) it outperformed all other approaches in a recent
paper benchmarking MRBL methods (Wang et al., 2019).

We also compare against the same policy gradients algo-
rithm as a model free baseline, which we train for 106,
5× 106 and 107 timesteps. This provides an indication of
the asymptotic performance of our policy, if trained in the
true environment.

Table 1. Median best performance at a given timestep for ten seeds.
Bold indicates the best performing algoirthm. T1 corresponds to
the t-stat for RP1 vs. Greedy, T2 corresponds to the t-stat for RP1
vs. V+R. * indicates p < 0.05.

Timesteps Greedy V+R RP1 T1 T2

HalfCheetah 104 -0.95 -1.1 100.51 5.39* 4.34*
Ant 104 94.72 95.07 113.63 4.02* 3.08*

Swimmer 104 1.08 1.07 3.24 1.2 1.98
Hopper 104 76.5 139.03 322.22 4.32* 3.42*

HalfCheetah 105 260.92 283.27 390.49 3.89* 2.62*
Ant 105 186.36 217.08 238.4 3.83* 3.11*

Swimmer 105 61.76 62.89 64.19 -0.11 -1.09
Hopper 105 487.25 570.09 619.73 3.52* 2.21

Figure 1. Median performance across 10 seeds. Shaded regions
correspond to the Inter-Quartile Range.

Table 1 and Fig 1 show the main results, where RP1 out-
performs both the greedy baseline and the fixed variance
maximizing (V+R) approach. Furthermore, we perform
Welch’s unequal variances t-test and see that in most cases
the results are statistically significant, aside from Swimmer
at 105 timesteps where all three methods have converged to
the optimal solution. In addition, we observe that RP1 is
able to achieve strong performance vs. model-free in fewer
timesteps than the existing baselines.

Interestingly, we see that simply adding a fixed entropy term
(V+R) into the reward function gives improved performance
over the baseline greedy approach. This corroborates with
findings in (Freeman et al., 2019), where there is, in most
tasks, a correlation between regions that are difficult to
predict and regions of high reward. However our findings
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also suggest that this is not always the case, and having
the ability to adjust how much we focus on such regions of
disagreement is vital. We hypothesize that the fixed V+R
approach may collect too many high-variance samples for
certain tasks, since we do not tune λ, nor limit batch size.
As a result, the trajectories gathered do not necessarily result
in strong policy performance, unlike RP1, which aims to
maximize policy performance through the data collected.

We support this hypothesis with Fig. 2 where, we show the
normalized change in reward for different λ values in each
task. In particular, we observe for HalfCheetah, Swimmer
and Ant, a greater focus on uncertainty appears positively
related to faster learning. However, the opposite is true
for Hopper. The benefit of our mechanism is the ability
to dynamically learn this preference, and thus adapt to the
current optimization landscape.

Figure 2. Mean one-step policy improvement after a given λ value,
for all ten seeds of RP1.

Next we study the choice of model variance used in the
reward function. Other work, such as (Pathak et al., 2019)
use the variance over the next state prediction, whereas RP1
uses the variance over the reward. Fig 3 and Table 2 show
that next state variance is a less effective approach. This is
likely due to over-emphasis of regions of the state space that
are inherently hard to predict, but do not impact the ability
to solve the task (Schmidhuber, 2010).

Figure 3. Median performance across 10 seeds. Shaded regions
correspond to the Inter-Quartile Range.

Table 2. Study for the choice of error to maximize. Results show
the median best performance at 105 timesteps for ten seeds. The
highest performing value for each environment is bolded.

HalfCheetah Ant Swimmer Hopper

State 319.41 214.33 63.47 549.19
Reward 390.49 238.4 64.19 619.73

Finally, we consider the individual components of the RP1
algorithm. We evaluate two variants: RP1 (λ = 0), where
we remove the online learning mechanism and train a greedy
policy, and RP1 (No EarlyStop), where we remove the early
stopping mechanism and use a fixed batch size. Results are
shown in Table 3, and Figs ?? and ?? in Appendix ??.

Table 3. Ablation study for the key components of RP1. Results
show the median performance at 105 timesteps for 10 seeds. The
highest performing value for each environment is bolded.

HalfCheetah Ant Swimmer Hopper

Baseline 283.27 186.36 62.89 487.25
RP1 (λ = 0) 319.14 223.21 41.14 603.52
RP1 (No EarlyStop) 247.82 197.95 41.04 595.77
RP1 390.49 238.4 64.19 619.73

We observe that the improvements attributed to RP1 are
not down to any single design choice, and the individual
components complement each other to provide significant
overall gains. For example, by conducting purely noise-
based exploration (λ = 0), we lose the flexibility to target
specific regions of the state-space. On the other hand, by
removing our early stopping mechanism (No EarlyStop), we
acquire a trajectory dataset for our model that has too much
redundant data, reducing sample efficiency. Nonetheless,
we believe adding either of these components to existing
MBRL methods, which either have a fixed temperature
parameter (λ) or fixed data collection batch size, would lead
to performance gains.

For further details on our experiments, see the open
sourced repo at https://github.com/fiorenza2/
ReadyPolicyOne.

6. Conclusion and Future Work
We presented Ready Policy One (RP1), a new approach for
Model-Based Reinforcement Learning (MBRL). RP1 casts
data collection in MBRL as an active learning problem, and
subsequently seeks to acquire the most informative data
via an exploration policy. Leveraging online learning tech-
niques, the objective function for this policy adapts during
optimization, allowing RP1 to vary its focus on the often
fruitful reward function. We showed in a variety of experi-
ments that RP1 significantly increases sample efficiency in
MBRL, and we believe it can lead to new state of the art
when combined with the latest architectures.

https://github.com/fiorenza2/ReadyPolicyOne
https://github.com/fiorenza2/ReadyPolicyOne
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We are particularly excited by the many future directions
from this work. Most obviously, since our method is or-
thogonal to other recent advances in MBRL, RP1 could be
combined with state of the art probabilistic architectures
(Chua et al., 2018), or variational autoencoder based models
(Ha and Schmidhuber, 2018; Hafner et al., 2019).

In addition, we could take a hierarchical approach, by en-
suring our exploration policies maintain core behaviors but
maximize entropy in some distant unexplored region. This
would require behavioral representations, and some notion
of distance in behavioral space (Co-Reyes et al., 2018), and
may lead to increased sample efficiency as we could better
target specific state action pairs.
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