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Abstract
Automating algorithm configuration is growing
increasingly necessary as algorithms come with
more and more tunable parameters. It is com-
mon to tune parameters using machine learning,
optimizing algorithmic performance (runtime or
solution quality, for example) using a training set
of problem instances from the specific domain
at hand. We investigate a fundamental question
about these techniques: how large should the train-
ing set be to ensure that a parameter’s average
empirical performance over the training set is
close to its expected, future performance? We
answer this question for algorithm configuration
problems that exhibit a widely-applicable struc-
ture: the algorithm’s performance as a function
of its parameters can be approximated by a “sim-
ple” function. We show that if this approximation
holds under the L∞-norm, we can provide strong
sample complexity bounds, but if the approxima-
tion holds only under the Lp-norm for p < ∞,
it is not possible to provide meaningful sample
complexity bounds in the worst case. We em-
pirically evaluate our bounds in the context of
integer programming, obtaining sample complex-
ity bounds that are up to 700 times smaller than
the previously best-known bounds (Balcan et al.,
2018a).

1. Introduction
Algorithms typically have tunable parameters that signifi-
cantly impact their performance, measured in terms of run-
time, solution quality, and so on. Machine learning is often
used to automate parameter tuning (Horvitz et al., 2001;
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Hutter et al., 2009; Kadioglu et al., 2010; Sandholm, 2013):
given a training set of problem instances from the appli-
cation domain at hand, this automated procedure returns a
parameter setting that will ideally perform well on future,
unseen instances.

It is important to be careful when using this automated ap-
proach: if the training set is too small, a parameter setting
with strong average empirical performance over the training
set may have poor future performance on unseen instances.
Generalization bounds provide guidance when it comes to
selecting the training set size. They bound the difference
between an algorithm’s performance on average over the
training set (drawn from an unknown, application-specific
distribution) and its expected performance on unseen in-
stances. These bounds can be used to evaluate a parameter
setting returned by any black-box procedure: they bound the
difference between that parameter’s average performance
on the training set and its expected performance.

At a high level, we provide generalization bounds that hold
when an algorithm’s performance as a function of its pa-
rameters exhibits a widely-applicable structure: it can be
approximated by a “simple” function. We prove that it is
possible to provide strong generalization bounds when the
approximation holds under the L∞-norm. Meanwhile, it
is not possible to provide strong guarantees in the worst-
case if the approximation only holds under the Lp-norm for
p <∞. Therefore, this connection between learnability and
approximability is balanced on a knife-edge.

Our analysis is based on structure exhibited by primal and
dual functions (Assouad, 1983), which we now describe at
a high level. To provide generalization bounds, a common
strategy is to bound the intrinsic complexity of the following
function class F : for every parameter vector r (such as
a CPLEX parameter setting) there is a function fr ∈ F
that takes as input a problem instance x (such as an integer
program) and returns fr(x), the algorithm’s performance on
input x when parameterized by r. Performance is measured
by runtime, solution quality, or some other metric. The
functions fr are called primal functions.

The class F is gnarly: in the case of integer programming
algorithm configuration, the domain of every function in F
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Figure 1. Examples of dual functions f∗x : R → R (solid blue
lines) which are approximated by simpler functions g∗x (dotted
black lines).

consists of integer programs, so it is unclear how to visualize
or plot these functions, and there are no obvious notions of
Lipschitzness or smoothness to rely on. Rather than fixing
a parameter setting r and varying the input x (as under the
function fr), it can be enlightening to instead fix the input
x and analyze the algorithm’s performance as a function of
r. This dual function is denoted f∗x(r). The dual functions
have a simple, Euclidean domain, they are typically easy
to plot, and they often have ample structure we can use to
bound the intrinsic complexity of the class F .

Our contributions. We observe that for many configura-
tion problems, the dual functions can be closely approxi-
mated by “simple” functions, as in Figure 1. This raises the
question: can we exploit this structure to provide strong gen-
eralization guarantees? We show that if the dual functions
are approximated by simple functions under the L∞-norm
(meaning the maximum distance between the functions is
small), then we can provide strong generalization guarantees.
However, this is no longer true when the approximation only
holds under the Lp-norm for p < ∞: we present a set of
functions whose duals are well-approximated by the simple
constant function g(x) = 1

2 under the Lp-norm (meaning
p

√∫ ∣∣f∗x(r)− 1
2

∣∣p dr is small), but which are not learnable.

We provide an algorithm that finds approximating simple
functions in the following widely-applicable setting: the
dual functions are piecewise-constant with a large number
of pieces, but can be approximated by simpler piecewise-
constant functions with few pieces, as in Figure 1(a). This
is the case in our integer programming experiments.

In our experiments, we demonstrate significant practical
implications of our analysis. We configure CPLEX, one of
the most widely-used integer programming solvers. Integer
programming has diverse applications throughout science.
Prior research has shown that the dual functions associated
with various CPLEX parameters are piecewise constant and
has provided generalization bounds that grow with the num-
ber of pieces (Balcan et al., 2018a). However, the number of
pieces can be so large that these bounds can be quite loose.
We show that these dual functions can be approximated un-
der the L∞-norm by simple functions (as in Figure 1(a)),
so our theoretical results imply strong generalization guar-
antees. In our experiments, we demonstrate that in order to
obtain the same generalization bound, the training set size
required under our analysis is up to 700 times smaller than
that of Balcan et al. (2018a). Improved sample complexity
guarantees imply faster learning algorithms, since the learn-
ing algorithm needs to analyze fewer training instances.

Related research. In algorithm configuration, several pa-
pers have provided generalization guarantees for specific
algorithm families, including greedy algorithms (Gupta &
Roughgarden, 2017; Balcan et al., 2018b), clustering al-
gorithms (Balcan et al., 2017; 2018c; 2020a), and integer
programming algorithms (Balcan et al., 2018a). In contrast,
we provide general guarantees that apply to any configu-
ration problem that satisfies a widely-applicable structure:
the dual functions are approximately simple. A strength of
our results is that they are not tied to any specific algorithm
family, though we show that our guarantees can be empir-
ically much stronger than the best-known bounds. Balcan
et al. (2019) show that if the dual functions are simple—for
example, they are piecewise-constant with few pieces—then
it is possible to provide strong generalization bounds. We
observe, however, that often the dual functions themselves
are not particularly simple, but can be approximated by sim-
ple functions. We exploit this structure to provide more
general guarantees. The analysis tools from prior research
do not apply to this more general structure, so we require
new, refined proof techniques.

Our guarantees are configuration-procedure-agnostic: no
matter how one tunes the parameters using the training set,
we bound the difference between the resulting parameter
setting’s performance on average over the training set and
its expected performance on unseen instances. A related
line of research has provided learning-based algorithm con-
figuration procedures with provable guarantees (Kleinberg
et al., 2017; 2019; Weisz et al., 2018; 2019; Balcan et al.,
2020b). Unlike the results in this paper, their guarantees
are not configuration-procedure-agnostic: they apply to the
specific configuration procedures they propose. Moreover,
their procedures only apply to finding configurations that
minimize computational resource usage, such as runtime,
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whereas the guarantees in this paper apply to more gen-
eral measures of algorithmic performance, such as solution
quality.

A related line of research has studied integer programming
algorithm configuration (Hutter et al., 2009; Sabharwal et al.,
2012; Sandholm, 2013; He et al., 2014; Balafrej et al., 2015;
Khalil et al., 2016; 2017; Di Liberto et al., 2016; Lodi &
Zarpellon, 2017; Alvarez et al., 2017; Kruber et al., 2017;
Balcan et al., 2018a), as do we, though our results apply
more generally. The results in these papers are primarily
empirical, with the exception of the paper by Balcan et al.
(2018a), with which we compare extensively in Section 4.2.

2. Notation and Background
We study functions that map an abstract domain X to [0, 1].
We denote the set of all such functions as [0, 1]X . The
learning algorithms we analyze have sample access to an un-
known distribution D over examples x ∈ X and aim to find
a function f ∈ F with small expected value Ex∼D[f(x)].

2.1. Problem Definition

We provide generalization guarantees, which bound the dif-
ference between the expected value Ex∼D[f(x)] of any func-
tion f ∈ F and its empirical average value 1

N

∑N
i=1 f (xi)

over a training set x1, . . . , xN ∼ D. We focus on functions
that are parameterized by a set of vectors R ⊆ Rd. Given
a vector r ∈ R, we denote the corresponding function as
fr : X → [0, 1], and we define F = {fr | r ∈ R}.

Generalization guarantees are particularly useful for an-
alyzing the expected performance of empirical risk min-
imization learning algorithms for the following reason.
Suppose we know that for any function f ∈ F ,∣∣∣ 1
N

∑N
i=1 f (xi)− Ex∼D[f(x)]

∣∣∣ ≤ ε. Let f̂ be the func-
tion in F with smallest average value over the training set:
f̂ = argminf∈F

∑N
i=1 f (xi). Then f̂ has nearly optimal

expected value: Ex∼D
[
f̂(x)

]
−minf∈F Ex∼D[f(x)] ≤ 2ε.

2.2. Integer Programming Algorithm Configuration

We use integer programming algorithm configuration as a
running example, though our results are much more general.
An integer program (IP) is defined by a matrix A ∈ Rm×n,
a constraint vector b ∈ Rm, an objective vector c ∈ Rn, and
a set of indices I ⊆ [n]. The goal is to find a vector z ∈ Rn
such that c · z is maximized, subject to the constraints that
Az ≤ b and for every index i ∈ I , zi ∈ {0, 1}.

In our experiments, we tune the parameters of branch-and-
bound (B&B) (Land & Doig, 1960), the most widely-used
algorithm for solving IPs. It is used under the hood by com-
mercial solvers such as CPLEX and Gurobi. We provide a

brief, high-level overview of B&B, and refer the reader to
the textbook by Nemhauser & Wolsey (1999) for more de-
tails. B&B builds a search tree to solve an input IP x. At the
tree’s root is the original IP x. At each round, B&B chooses
a leaf of the search tree, which represents an IP x′. It does
so using a node selection policy; common choices include
depth- and best-first search. Then, it chooses an index i ∈ I
using a variable selection policy. It next branches on zi: it
sets the left child of x′ to be that same integer program x′,
but with the additional constraint that zi = 0, and it sets
the right child of x′ to be that same integer program, but
with the additional constraint that zi = 1. It solves both
LP relaxations, and if either solution satisfies the integrality
constraints of the original IP x, it constitutes a feasible solu-
tion to x. B&B fathoms a leaf—which means that it never
will branch on that leaf—if it can guarantee that the optimal
solution does not lie along that path. B&B terminates when
it has fathomed every leaf. At that point, we can guarantee
that the best solution to x found so far is optimal. In our ex-
periments, we tune the parameters of the variable selection
policy, which we describe in more detail in Section 4.2.

In this setting, X is a set of IPs and the functions inF are pa-
rameterized by CPLEX parameter vectors r ∈ Rd, denoted
F =

{
fr | r ∈ Rd

}
. In keeping with prior work (Balcan

et al., 2018a), fr(x) equals the size of the B&B tree CPLEX
builds given the parameter setting r and input IP x, nor-
malized to fall in [0, 1]. The learning algorithms we study
take as input a training set of IPs sampled from D and re-
turn a parameter vector. Since our goal is to minimize tree
size, ideally, the size of the trees CPLEX builds using that
parameter setting should be small in expectation over D.

3. Dual Functions
Our goal is to provide generalization guarantees for the
function class F = {fr | r ∈ R}. To do so, we use struc-
ture exhibited by the dual function class. Every function
in the dual class is defined by an element x ∈ X , denoted
f∗x : R→ [0, 1]. Naturally, f∗x(r) = fr(x). The dual class
F∗ = {f∗x | x ∈ X } is the set of all dual functions.

The dual functions are intuitive in our integer programming
example. For any IP x, the dual function f∗x measures the
size of the tree CPLEX builds (normalized to lie in the inter-
val [0, 1]) when given x as input, as a function of the CPLEX
parameters. Duals are also straightforward in more abstract
settings: if X = Rd and F is the set of linear functions
fr(x) = r · x, each dual function f∗x(r) = r · x is also lin-
ear. When F consists of the constant functions fr(x) = r,
each dual function is the identity function f∗x(r) = r.

Prior research shows that when the dual functions are
simple—for example, they are piecewise-constant with a
small number of pieces—it is possible to provide strong
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generalization bounds (Balcan et al., 2019). In many set-
tings, however, we find that the dual functions themselves
are not simple, but are approximated by simple functions,
as in Figure 1. We formally define this concept as follows.

Definition 3.1 ((γ, p)-approximate). Let F =
{fr | r ∈ R} and G = {gr | r ∈ R} be two sets of
functions mapping X to [0, 1]. We assume that all dual
functions f∗x and g∗x are integrable over the domain
R. We say that the dual class G∗ (γ, p)-approximates
the dual class F∗ if for every element x, the distance
between the functions f∗x and g∗x is at most γ under the
Lp-norm. For p ∈ [1,∞), this means that ‖f∗x − g∗x‖p :=

p

√∫
R |f∗x(r)− g∗x(r)|p dr ≤ γ and when p = ∞, this

means that ‖f∗x − g∗x‖∞ := supr∈R |f∗x(r)− g∗x (r)| ≤ γ.

4. Learnability and Approximability
In this section, we investigate the connection between learn-
ability and approximability. In Section 4.1, we prove that
when the dual functions are approximable under the L∞-
norm by simple functions, we can provide strong generaliza-
tion bounds. In Section 4.2, we empirically evaluate these
improved guarantees in the context of integer programming.
Finally, in Section 4.3, we prove that it is not possible to
provide non-trivial generalization guarantees (in the worst
case) when the norm under which the dual functions are
approximable is the Lp-norm for p <∞.

4.1. Data-dependent Generalization Guarantees

We now show that if the dual class F∗ is (γ,∞)-
approximated by the dual of a “simple” function class G, we
can provide strong generalization bounds for the class F .
There are many different tools for measuring how “simple” a
function class is. We use Rademacher complexity (Koltchin-
skii, 2001), which intuitively measures the extent to which
functions in F match random noise vectors σ ∈ {−1, 1}N .

Definition 4.1 (Rademacher complexity). The empiri-
cal Rademacher complexity of a function class F =
{fr | r ∈ R} given a set S = {x1, . . . , xN} ⊆ X
is R̂S(F) = 1

N Eσ∼{−1,1}N
[
supr∈R

∑N
i=1 σifr (xi)

]
,

where each σi equals −1 or 1 with equal probability.

The summation
∑N
i=1 σifr (xi) measures the correlation

between the vector (fr (x1) , . . . , fr (xN )) and the random
noise vector σ. By taking the supremum over all parameter
vectors r ∈ R, we measure how well functions in the class
F correlate with σ over the sample S . Therefore, R̂S(F)
measures how well functions in the class F correlate with
random noise on average over S . Rademacher complexity
thus provides a way to measure the intrinsic complexity of
F because the more complex the class F is, the better its

functions can correlate with random noise. For example, if
the class F consists of just a single function, R̂S(F) = 0.
At the other extreme, if X = [0, 1] and F = [0, 1][0,1],
R̂S(F) = 1

2 .

Classic learning-theoretic results provide guarantees based
on Rademacher complexity, such as the following.
Theorem 4.2 (e.g., Mohri et al. (2012)). For any δ ∈
(0, 1), with probability 1 − δ over the draw of N sam-
ples S = {x1, . . . , xN} ∼ DN , for all functions fr ∈
F ,
∣∣∣ 1
N

∑N
i=1 fr (xi)− E [fr(x)]

∣∣∣ = Õ
(
R̂S(F) +

√
1
N

)
(the dependence on δ is logarithmic.)

Theorem 4.2 is a generalization guarantee because it mea-
sures the extent to which a function’s empirical average
value over the samples generalizes to its expected value.

Ideally, R̂S(F) converges to zero as the sample size N
grows so the bound in Theorem 4.2 also converges to zero.
If the class F consists of just a single function, R̂S(F) =
0, and Theorem 4.2 recovers Hoeffding’s bound. If, for
example, X = [0, 1] and F = [0, 1][0,1], R̂S(F) = 1

2 , and
the bound from Theorem 4.2 is meaningless.

We show that if the dual class F∗ is (γ,∞)-approximated
by the dual of a class G with small Rademacher complexity,
then the Rademacher complexity of F is also small. The
full proof of the following theorem in Appendix B.1.
Theorem 4.3. Let F = {fr | r ∈ R} and G =
{gr | r ∈ R} consist of functions mapping X to [0, 1]. For
any S ⊆ X , R̂S(F) ≤ R̂S(G) + 1

|S|
∑
x∈S ‖f∗x − g∗x‖∞ .

Proof sketch. To prove this theorem, we use the fact that
for any parameter vector r ∈ R, any element x ∈ X ,
and any binary value σ ∈ {−1, 1}, σfr(x) = σf∗x(r) ≤
σg∗x(r) + ‖f∗x − g∗x‖∞ = σgr(x) + ‖f∗x − g∗x‖∞ .

If the class G∗ (γ,∞)-approximates the class F∗, then
1
|S|
∑
x∈S ‖f∗x − g∗x‖∞ is at most γ. If this term is smaller

than γ for most sets S ∼ DN , then the bound on R̂S(F) in
Theorem 4.3 will often be even better than R̂S(G) + γ.

Theorems 4.2 and 4.3 imply that with probability 1 − δ
over the draw of the set S ∼ DN , for all parameter vec-
tors r ∈ R, the difference between the empirical aver-
age value of fr over S and its expected value is at most

Õ
(

1
N

∑
x∈S ‖f∗x − g∗x‖∞ + R̂S(G) +

√
1
N

)
. In our in-

teger programming experiments, we show that this data-
dependent generalization guarantee can be much tighter
than the best-known worst-case guarantee.

Algorithm for finding approximating functions. We
provide a dynamic programming (DP) algorithm (Algo-
rithm 1 in Appendix B.2) for the widely-applicable case
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where the dual functions f∗x are piecewise constant with
a large number of pieces. Given an integer k, the algo-
rithm returns a piecewise-constant function g∗x with at most
k pieces such that ‖f∗x − g∗x‖∞ is minimized, as in Fig-
ure 1(a). Letting t be the number of pieces in the piecewise
decomposition of f∗x , the DP algorithm runs inO

(
kt2
)

time.
As we describe in Section 4.2, when k and ‖f∗x − g∗x‖∞ are
small, Theorem 4.3 implies strong guarantees. We use this
DP algorithm in our integer programming experiments.

Structural risk minimization. Theorem 4.3 illustrates
a fundamental tradeoff in machine learning. The sim-
pler the class G, the smaller its Rademacher complex-
ity, but—broadly speaking—the worse functions from its
dual will be at approximating functions in F∗. In other
words, the simpler G is, the worse the approximation
1
N

∑
x∈S ‖f∗x − g∗x‖∞ will likely be. Therefore, there is

a tradeoff between generalizability and approximability. It
may not be a priori clear how to balance this tradeoff. Struc-
tural risk minimization (SRM) is a classic, well-studied ap-
proach for optimizing tradeoffs between complexity and
generalizability which we use in our experiments.

Our SRM approach is based on the following corollary of
Theorem 4.3. Let G1,G2,G3, . . . be a countable sequence
of function classes where each Gj = {gj,r | r ∈ R} is a set
of functions mappingX to [0, 1]. We use the notation g∗j,x to
denote the duals of the functions in Gj , so g∗j,x(r) = gj,r(x).

Corollary 4.4. With probability 1− δ over the draw of the
set S ∼ DN , for all r ∈ R and all j ≥ 1,∣∣∣∣∣ 1

N

∑
x∈S

fr(x)− E
x∼D

[fr(x)]

∣∣∣∣∣
= Õ

(
1

N

∑
x∈S

∥∥f∗x − g∗j,x∥∥∞ + R̂S (Gj) +

√
1

N

)
. (1)

The proof of this corollary is in Appendix B.1.

In our experiments, each dual class G∗j consists of piecewise-
constant functions with at most j pieces. This means that as
j grows, the class G∗j becomes more complex, or in other
words, the Rademacher complexity R̂S (Gj) also grows.
Meanwhile, the more pieces a piecewise-constant function
g∗x has, the better it is able to approximate the dual function
f∗x . In other words, as j grows, the approximation term
1
N

∑
x∈S

∥∥f∗x − g∗j,x∥∥∞ shrinks. SRM is the process of
finding the level j in the nested hierarchy that minimizes
the sum of these two terms, and therefore obtains the best
generalization guarantee via Equation (1).
Remark 4.5. We conclude by noting that the empirical
average 1

N

∑
x∈S

∥∥f∗x − g∗j,x∥∥∞ in Equation (1) can be

replaced by the expectation Ex∼D
[∥∥f∗x − g∗j,x∥∥∞]. See

Corollary B.1 in Appendix B.1 for the proof.

4.2. Improved Integer Programming Guarantees

In this section, we demonstrate that our data-dependent gen-
eralization guarantees from Section 4.1 can be much tighter
than worst-case generalization guarantees provided in prior
research. We demonstrate these improvements in the con-
text of integer programming algorithm configuration, which
we introduced in Section 2.2. Our formal model is the same
as that of Balcan et al. (2018a), who studied worst-case
generalization guarantees. Each element of the set X is an
IP. The set R consists of CPLEX parameter settings. We
assume there is an upper bound κ on the size of the largest
tree we allow B&B to build before we terminate, as in prior
research (Hutter et al., 2009; Kleinberg et al., 2017; Balcan
et al., 2018a; Kleinberg et al., 2019). In Appendix B.2, we
describe our methodology for choosing κ. Given a parame-
ter setting r and an IP x, we define fr(x) to be the size of
the tree CPLEX builds, capped at κ, divided by κ (this way,
fr(x) ∈ [0, 1]). We define the set F = {fr | r ∈ R}.

We tune the parameter of B&B’s variable selection policy
(VSP). We described the purpose of VSPs in Section 2.2.
We study score-based VSPs, defined as follows. Let score
be a function that takes as input a partial B&B tree T , a leaf
of T representing an IP x, and an index i ∈ [n], and returns
a real-valued score(T , x, i). Let V be the set of variables
that have not been branched on along the path from the root
of T to x. A score-based VSP branches on the variable
argmaxzi∈V {score(T , x, i)} at the node x.

We study how to learn a high-performing convex combi-
nation of any two scoring rules. We focus on four scoring
rules in our experiments. To define them, we first introduce
some notation. For an IP x with objective function c · z,
we denote an optimal solution to the LP relaxation of x as
z̆x = (z̆x,1, . . . z̆x,n). We also use the notation c̆x = c · z̆x.
Finally, we use the notation x+

i (resp., x−i ) to denote the IP
x with the additional constraint that zi = 1 (resp., zi = 0).1

We study four scoring rules scoreL, scoreS , scoreA,
and scoreP :

• scoreL(T , x, i) = max
{
c̆x − c̆x+

i
, c̆x − c̆x−i

}
. Un-

der scoreL, B&B branches on the variable leading to
the Largest change in the LP objective value.

• scoreS(T , x, i) = min
{
c̆x − c̆x+

i
, c̆x − c̆x−i

}
. Un-

der scoreS , B&B branches on the variable leading to
the Smallest change.

• scoreA(T , x, i) = 1
6scoreL(T , x, i) +

1If x+
i (resp., x−i ) is infeasible, then we define c̆x− c̆

x+
i

(resp.,
c̆x − c̆

x−i
) to be some large number greater than ||c||1.
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5
6scoreS(T , x, i). This is a scoring rule that
Achterberg (2009) recommended. It balances the
optimistic approach to branching under scoreL with
the pessimistic approach under scoreS .

• scoreP (T , x, i) = max
{
c̆x − c̆x+

i
, 10−6

}
·

max
{
c̆x − c̆x−i , 10−6

}
. This is known as the Product

scoring rule. Comparing c̆x − c̆x−i and c̆x − c̆x+
i

to
10−6 allows the algorithm to compare two variables
even if c̆x − c̆x−i

= 0 or c̆x − c̆x+
i

= 0. After all,
suppose the scoring rule simply calculated the product(
c̆x − c̆x−i

)
·
(
c̆x − c̆x+

i

)
without comparing to 10−6.

If c̆x − c̆x−i = 0, then the score equals 0, canceling out
the value of c̆x − c̆x+

i
and thus losing the information

encoded by this difference.

Fix any two scoring rules score1 and score2. We define
fr(x) to be the size of the tree B&B builds (normalized
to lie in [0, 1]) when it uses the score-based VSP defined
by (1 − r)score1 + rscore2. Our goal is to learn the
best convex combination of the two scoring rules. When
score1 = scoreL and score2 = scoreS , prior re-
search has proposed several alternative settings for the pa-
rameter r (Gauthier & Ribière, 1977; Bénichou et al., 1971;
Beale, 1979; Linderoth & Savelsbergh, 1999; Achterberg,
2009), though no one setting is optimal across all appli-
cations. Balcan et al. (2018a) prove the following lemma
about the structure of the functions f∗x .
Lemma 4.6. For any IP x with n variables, the dual func-
tion f∗x is piecewise-constant with at most n2(κ+1) pieces.

Lemma 4.6 implies the following worst-case bound on
R̂S (F). See Lemma B.4 in Appendix B.2 for the proof.
Corollary 4.7. For any set S ⊆ X of integer programs,

R̂S (F) ≤
√

2 ln(|S|(n2(κ+1)−1)+1)
|S| .

This corollary and Theorem 4.2 imply the following worst-
case generalization bound: with probability 1 − δ over
the draw of N samples S ∼ DN , for all r ∈ [0, 1],∣∣ 1
N

∑
x∈S fr(x)− Ex∼D [fr(x)]

∣∣ is bounded above by

2

√
2 ln(N

(
n2(κ+1) − 1

)
+ 1)

N
+ 3

√
1

2N
ln

2

δ
. (2)

This worst-case bound can be large when κ is large. We
find that although the duals f∗x are piecewise-constant with
many pieces, they can be approximated piecewise-constant
functions with few pieces, as in Figure 1(a). As a result,
we improve over Equation (2) via Theorem 4.3, our data-
dependent bound.

To make use of Theorem 4.3, we now formally define
the function class whose dual (γ,∞)-approximates F∗.

We first define the dual class, then the primal class. To
this end, fix some integer j ≥ 1 and let Hj be the
set of all piecewise-constant functions mapping [0, 1] to
[0, 1] with at most j pieces. For every IP x, we define
g∗j,x ∈ argminh∈Hj ‖f

∗
x − h‖∞, breaking ties in some fixed

but arbitrary manner. The function g∗j,x can be found via
dynamic programming; see Algorithm 1 in Appendix B.2.
We define the dual class G∗j =

{
g∗j,x | x ∈ X

}
. Therefore,

the dual class G∗j is consists of piecewise-constant functions
with at most j pieces. In keeping with the definition of pri-
mal and dual functions from Section 3, for every parameter
r ∈ [0, 1] and IP x, we define gj,r(x) = g∗j,x(r). Finally,
we define the primal class Gj = {gj,r | r ∈ [0, 1]} .

To apply our results from Section 4.1, we must bound the
Rademacher complexity of the set Gj . Doing so is simple
due to the structure of the dual class G∗j . The following
lemma2 is a corollary of Lemma B.4 in Appendix B.2.

Lemma 4.8. For any set S ⊆ X of integer programs,

R̂S (Gj) ≤
√

2 ln(|S|(j−1)+1)
|S| .

This lemma together with Remark 4.5 and Corollary 4.4 im-
ply that with probability 1−δ over S ∼ DN , for all parame-
ters r ∈ [0, 1] and j ≥ 1,

∣∣ 1
N

∑
x∈S fr(x)− Ex∼D [fr(x)]

∣∣
is upper-bounded by the minimum of Equation (2) and

2γj + 2

√
2 ln(N(j − 1) + 1)

N
+

√
2

N
ln

2(πj)2

3δ
, (3)

where γj = Ex∼D
[∥∥f∗x − g∗j,x∥∥∞]. As j grows, R̂S (Gj)

grows, but the dual class G∗j is better able to approximate
F∗. In our experiments, we optimize this tradeoff between
generalizability and approximability.

Experiments. We analyze distributions over IPs formulat-
ing the combinatorial auction winner determination problem
under the OR-bidding language (Sandholm, 2002), which
we generate using the Combinatorial Auction Test Suite
(CATS) (Leyton-Brown et al., 2000). We use the “arbitrary”
generator with 200 bids and 100 goods, resulting in IPs with
200 variables, and the “regions” generator with 400 bids
and 200 goods, resulting in IPs with 400 variables.

We use the algorithm described in Appendix D.1 of the
paper by Balcan et al. (2018a) to compute the functions f∗x .
It overrides the default VSP of CPLEX 12.8.0.0 using the
C API. We use Algorithm 1 in Appendix B.2 to compute
the approximating duals. All experiments were run on a
64-core machine with 512 GB of RAM.

In Figures 2-4, we select score1,score2 ∈
{scoreL,scoreS ,scoreA,scoreP } and com-

2This bound on R̂S (Gj) could potentially be optimized even
further using a data-dependent approach, such as the one summa-
rized by Theorem E.3 in the paper by Balcan et al. (2018a).
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min
j∈[1600]

{
2

(
1

M

M∑
i=1

∥∥f∗xi − g∗j,xi∥∥∞ +
1

40

)
+ 2

√
2 ln(N(j − 1) + 1)

N
+

√
2

N
ln

(20πj)2

3

}
. (4)

Figure 2. Results using SRM on the CATS “regions” generator
with score1 = scoreL and score2 = scoreS .

Figure 3. Results using SRM on the CATS “arbitrary” generator
with score1 = scoreL and score2 = scoreS .

pare the worst-case and data-dependent bounds. First, we
plot the worst-case bound from Equation (2), with δ = 0.01,
as a function of the number of training examples N . This is
the black, dotted line in Figures 2-4.

Next, we plot the data-dependent bound, which is the
red, solid line in Figures 2-4. To calculate the data-
dependent bound in Equation (3), we have to estimate

Ex∼D
[∥∥f∗x − g∗j,x∥∥∞] for all j ∈ [1600].3 To do so, we

draw M = 6000 IPs x1, . . . , xM from the distribution D.
We estimate Ex∼D

[∥∥f∗x − g∗j,x∥∥∞] via the empirical aver-

age 1
M

∑M
i=1

∥∥f∗xi − g∗j,xi∥∥∞. A Hoeffding bound guaran-

3We choose the range j ∈ [1600] because under these distribu-
tions, the functions f∗x generally have at most 1600 pieces.

Figure 4. Results using SRM on the CATS “arbitrary” generator
with score1 = scoreP and score2 = scoreA.

tees that with probability 0.995, for all j ∈ [1600],

E
[∥∥f∗x − g∗j,x∥∥∞] ≤ 1

M

M∑
i=1

∥∥f∗xi − g∗j,xi∥∥∞ +
1

40
. (5)

We prove this inequality in Lemma B.3. We thereby esti-
mate our data-dependent bound Equation (3) using Equa-
tion (4); the only difference between these bounds is that
Equation (3) relies on the left-hand-side of Equation (5) and
Equation (4) relies on the right-hand-side of Equation (5)
and sets δ = 0.005.4 In Figures 2-4, the red solid line equals
the minimum of Equations (2) and (4) as a function of the
number of training examples N .

In Figures 2, 3, and 4, we see that our bound significantly
beats the worst-case bound up until the point there are ap-
proximately 100,000,000 training instances. At this point,
the worst-case guarantee is better than the data-dependent
bound, which makes sense because it goes to zero asN goes
to infinity, whereas the term 1

M

∑M
i=1

∥∥f∗xi − g∗j,xi∥∥∞+ 1
40

in our bound (Equation (4)) is a constant.

Figure 2 also illustrates that even when there are only 105

training instances, our bound provides a generalization guar-
antee of approximately 0.1. Meanwhile, 7 · 107 training
instances are necessary to provide a generalization guar-
antee of 0.1 under the worst-case bound, so the sample
complexity implied by our analysis is 700 times better. Sim-
ilarly, in Figure 3, 500 times fewer samples are required to
obtain a generalization guarantee of 0.1 under our bound

4Like the worst-case bound, Equation (4) holds with probability
0.99, because with probability 0.995, Equation (5) holds, and with
probability 0.995, the bound from Equation (3) holds.
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Figure 5. The dual functions f∗x1
and f∗x2

are well-approximated
by the constant function r 7→ 1

2
under, for example, the L1-norm

because the integrals
∫
R

∣∣f∗xi(r)− 1
2

∣∣ dr are small; for most r,
f∗xi(r) = 1

2
. The approximation is not strong under the L∞-

norm, since maxr∈R
∣∣f∗xi(r)− 1

2

∣∣ = 1
2

. The function class F
corresponding to these duals has a large Rademacher complexity.

versus the worst-case bound. In Figure 4, 250 times fewer
samples are required.

In this section, we approximated the dual functions f∗x with
piecewise constant functions that have a small number of
pieces — say, j pieces. We used SRM to find the value for
j which leads to the strongest bounds, as in Equation (4).
In Appendix B.2.1, we compare against another baseline
where we do not use SRM, but simply set j to be the maxi-
mum number of pieces we observe over our training set. Of
course, this bound is much tighter than the worst-case bound
by Balcan et al. (2018a), the baseline in Figures 2-4. How-
ever, we still observe that for a target generalization error,
the number of samples required according to our bound is up
to four times smaller than the number of samples required
by this baseline.

4.3. Rademacher Complexity Lower Bound

In this section, we show that (γ, p)-approximability with
p < ∞ does not necessarily imply strong generalization
guarantees of the type we saw in Section 4.1. We show that
it is possible for a dual class F∗ to be well-approximated
by the dual of a class G with R̂S(G) = 0, yet for the primal
F to have high Rademacher complexity.

Figures 5 and 6 help explain why there is this sharp constrast
between the L∞- and Lp-norms for p < ∞. Figure 5
illustrates two dual functions f∗x1

(the blue solid line) and
f∗x2

(the grey dotted line). Let G be the extremely simple
function class G = {gr : r ∈ R} where gr(x) = 1

2 for
every x ∈ X . It is easy to see that R̂S(G) = 0 for any
set S . Moreover, every dual function g∗x is also simple,
because g∗x(r) = gr(x) = 1

2 . From Figure 5, we can see
that the functions f∗x1

and f∗x2
are well approximated by the

constant function g∗x1
(r) = g∗x2

(r) = 1
2 under, for example,

the L1-norm because the integrals
∫
R
∣∣f∗xi(r)− 1

2

∣∣ dr are

Figure 6. The dual functions f∗x1
and f∗x2

are well-approximated
by the constant function r 7→ 1

2
under the L∞-norm since

maxr∈R
∣∣f∗xi(r)− 1

2

∣∣ is small. The function class F correspond-
ing to these duals has a small Rademacher complexity.

small. However, the approximation is not strong under the
L∞-norm, since maxr∈R

∣∣f∗xi(r)− 1
2

∣∣ = 1
2 for i ∈ {1, 2}.

Moreover, despite the fact that R̂S(G) = 0, we have that
R̂S(F) = 1

2 when S = {x1, x2}, which makes Theo-
rem 4.2 meaningless. At a high level, this is because when
σ1 = 1, we can ensure that σ1fr (x1) = σ1f

∗
x1

(r) = 1 by
choosing r ∈ {r0, r1} and when σ1 = −1, we can ensure
that σ1fr (x1) = 0 by choosing r ∈ {r2, r3}. A similar
argument holds for σ2. In summary, (γ, p)-approximability
for p <∞ does not guarantee low Rademacher complexity.

Meanwhile, in Figure 6, g∗xi(r) = 1
2 and f∗xi(r) are

close for every parameter r. As a result, for any
noise vector σ, supr∈R

{
σ1f

∗
x1

(r) + σ2f
∗
x2

(r)
}

is close
to supr∈R

{
σ1g
∗
x1

(r) + σ2g
∗
x2

(r)
}

. This implies that
the Rademacher complexities R̂S(G) and R̂S(F) are
close. This illustration exemplifies Theorem 4.3: (γ,∞)-
approximability implies strong Rademacher bounds.

We now prove that (γ, p)-approximability by a simple class
for p <∞ does not guarantee low Rademacher complexity.

Theorem 4.9. For any γ ∈ (0, 1/4) and any p ∈ [1,∞),
there exist function classes F ,G ⊂ [0, 1]X such that the
dual class G∗ (γ, p)-approximates F∗ and for any N ≥ 1,
supS:|S|=N R̂S(G) = 0 and supS:|S|=N R̂S(F) = 1

2 .

Proof. We begin by defining the classes F and G. Let
R = (0, γp], and X = [γ−p/2,∞). For any r ∈ R and
x ∈ X , let fr(x) = 1

2 (1+cos(rx)) andF = {fr | r ∈ R}.
These sinusoidal functions are based on the intuition from
Figure 5. As in Figure 5, for any r and x, let gr(x) = 1

2 and
G = {gr | r ∈ R}. Since G consists of identical copies of a
single function, R̂S(G) = 0 for any set S ⊆ X . Meanwhile,
in Lemma B.9 in Appendix B.3, we prove that for any
N ≥ 1, supS:|S|=N R̂S(F) = 1

2 .

In Lemma B.8 in Appendix B.3, we prove that the dual class
G∗ (γ, p)-approximates F∗. To prove this, we first show

that ‖f∗x − g∗x‖2 ≤
1
4

√
2γp + 1

x . When p = 2, we know
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1
x ≤ 2γ2, so ‖f∗x − g∗x‖2 < γ. Otherwise, we use our bound
on ‖f∗x − g∗x‖2, Hölder’s inequality, and the log-convexity
of the Lp-norm to prove that ‖f∗x − g∗x‖p ≤ γ.

Remark 4.10. Suppose, for example, thatR = [0, 1]d. The-
orem 4.9 implies that even if |f∗x(r)− g∗x(r)| is small for
all x in expectation over r ∼ Uniform(R), the function
class F may not have Rademacher complexity close to G.

Statistical learnability. In Appendix B.4, we connect our
results to the literature on statistical learnability (Haussler,
1992). At a high level, a function class F is statistically
learnable (Definition A.2 in Appendix A) if there exists a
learning algorithm that returns a function whose expected
value converges—as the size of the training set grows—
to the smallest expected value of any function in F . We
introduce a relaxation: a function class F is γ-statistically
learnable (Definition A.3) if, at a high level, there exists a
learning algorithm with error at most γ in the limit as the
training set size grows. We prove that if the dual class F∗ is
(γ,∞)-approximated by the dual of a statistically learnable
class G, then F is γ-statistically learnable. On the other
hand, Theorem 4.9 implies that there exists a class F that
is not γ-statistically learnable, yet it is (γ, p)-approximated
by the dual of a statistically learnable class G.

5. Conclusions
We provided generalization guarantees for algorithm con-
figuration, which bound the difference between a param-
eterized algorithm’s average empirical performance over
a set of sample problem instances and its expected perfor-
mance on future, unseen instances. We did so by exploiting
structure exhibited by the dual functions which measure the
algorithm’s performance as a function of its parameters. We
analyzed the widely-applicable setting where the dual func-
tions are approximated by “simple” functions. We showed
that if this approximation holds under the L∞-norm, then it
is possible to provide strong generalization guarantees. If,
however, the approximation only holds under the Lp-norm
for p < ∞, we showed that it is impossible in the worst-
case to provide non-trivial bounds. Via experiments in the
context of integer programming algorithm configuration, we
demonstrated that our bounds can be significantly stronger
than the best-known worst-case guarantees (Balcan et al.,
2018a), leading to a sample complexity improvement of
70,000%.

We conclude with a promising direction for future re-
search. Suppose, for some prior P over parameters,
Ex∼D,r∼P [|f∗x(r)− g∗x(r)|] is small. From Remark 4.10,
we know strong generalization bounds are not possible in
the worst case, but what about under some realistic assump-
tions? This may help us understand, for example, why
random forests—which have a simple piecewise-constant

structure—are often able to accurately predict the runtime
of SAT and MIP solvers (Hutter et al., 2011).
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A. Notation and Learning Theory Background
In this appendix, we study a more general setting than in the main body where the learning algorithms have access to
examples x ∈ X that may be labeled by a real value y ∈ R. The learning algorithms we analyze have sample access to an
unknown distribution D over (labeled) examples (x, y) ∈ X × [0, 1]. The fact that the examples are labeled is without loss
of generality; in our integer programming algorithm configuration example, there are no labels, or equivalently, for every
tuple (x, y) in the support of D, y = 0. We use the notation D|X to denote the marginal distribution of D over X .

Given a set of functions F ⊆ [0, 1]X , the learning algorithms we study aim to find a function h : X → [0, 1] with
expected absolute loss E(x,y)∼D[|h(x) − y|] that is nearly as small as the smallest expected loss of any function in F ,
inff∈F E(x,y)∼D[|f(x)− y|]. (Though we focus on absolute loss in this paper, we believe our results can be generalized
to other loss functions, which we leave for future research.) The function h may or may not be a member of the set F ,
depending on the specific learning task at hand.

In the integer programming example from the main body, the functions in F are parameterized by CPLEX parameter
vectors r ∈ Rd, denoted F =

{
fr | r ∈ Rd

}
. As we described in the main body, for any integer program x ∈ X and

parameter vector r ∈ Rd, fr(x) equals the size of the branch-and-bound tree CPLEX builds given the parameter setting
r and input IP x, normalized to fall within the interval [0, 1]. The learning algorithms we study take as input a training
set of integer programs x1, . . . , xN ∼ D|X and return a CPLEX parameter vector r̂ ∈ Rd, or equivalently, a function
fr̂ ∈ F . Since our goal is to minimize tree size, ideally, the size of the trees CPLEX builds using the parameter setting
r̂ should be small in expectation over D when compared with the best choice of a parameter setting. In other words,
E(x,y)∼D [fr̂(x)] − inffr∈F E(x,y)∼D [fr(x)] should be small. (Recall that in this setting, for every tuple (x, y) in the
support of D, y = 0.)

We denote absolute loss using the notation `(x, y, f) = |f(x)−y|. Given a set of samples S = {(x1, y1) , . . . , (xN , yN )} ⊆
X × [0, 1], we use the standard notation LS(f) = 1

N

∑N
i=1 |f (xi)− yi| to denote the average empirical loss of a function f :

X → [0, 1] and LD(f) = E(x,y)∼D[|f(x)− y|] to denote the expected loss of f . The absolute loss function can be naturally

incorporated into the definition of Rademacher complexity: R̂S(`◦F) = 1
N Eσ∼{−1,1}N

[
supf∈F

∑N
i=1 σi |f (xi)− yi|

]
.

The worst-case empirical Rademacher complexity of a class F is defined as RN (` ◦ F) = supS:|S|=N R̂S(` ◦ F).

We now review several standard definitions from learning theory, beginning with that of a learning algorithm.
Definition A.1 (Learning algorithm). A learning algorithm A takes as input a set S ⊆ X × [0, 1] of examples and returns
a function AS : X → [0, 1].

As we described earlier in this section, in the integer programming example, we study learning algorithmsA whereAS = fr̂
for some CPLEX parameter setting r̂ ∈ Rd.

A function class F ⊆ [0, 1]X is statistically learnable (Haussler, 1992) if there exists some algorithm A whose expected
loss LD (AS) converges to the loss of the best function in F , inff∈F LD(f), even for a worst-case distribution D. We
formalize this notion below.
Definition A.2 (Statistical learnability). Let F be a set of functions mapping X to [0, 1] and let VN (F) =
infA supD ES∼DN [LD (AS)− inff∈F LD(f)] . The function class F is statistically learnable if limN→∞ VN (F) = 0.

In the integer programming example, suppose the class F =
{
fr | r ∈ Rd

}
is statistically learnable. Then there exists a

learning algorithm A that returns a CPLEX parameter setting r̂, or equivalently, a function AS = fr̂ ∈ F , such that the
size of the trees CPLEX builds using the parameter setting r̂ is small in expectation over D when compared with the best
choice of a parameter setting.

In this work, we study a relaxation of statistical learnability, which we refer to as γ-statistical learnability. A function class
F is γ-statistically-learnable if there exists an algorithm whose expected loss converges to the loss of the best function in F ,
plus an additive error term γ.
Definition A.3 (γ-statistically learnable). Let F be a class of functions mapping X to [0, 1]. The class is γ-statistically
learnable if limN→∞ VN (F) ≤ γ.

Based on Theorem 4.2, it is well-known and easy-to-see that if the worst-case empirical Rademacher complexity of the
function class F converges to zero as the number of samples grows, then the class F is statistically learnable. In other
words, if limN→∞RN (` ◦ F) = 0, then limN→∞ VN (F) = 0.
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In our integer programming example, suppose the Rademacher complexity of the class F is small. Theorem 4.2 guarantees
that with high probability over the draw a set of N IPs S = {x1, . . . , xN} ∼ D|NX , for every choice of a CPLEX parameter
vector r ∈ Rd, the size of the tree CPLEX builds when parameterized by r on average over the IPs in S is close to the size
of the tree CPLEX builds in expectation over the draw of an IP x ∼ D|X .

If a function class’s Rademacher complexity does not converge to zero, then the class is not statistically learnable. We
provide an example of one such negative result below.

Theorem A.4 (Sridharan (2012)). For any N ≥ 1 and F ⊆ [0, 1]X , VN (F) ≥ R2N (` ◦ F)− 1
2RN (` ◦ F).

Theorem A.4 demonstrates that if RN (` ◦ F) does not converge to zero, then VN (F) will not converge to zero either.

B. Additional Details about Learnability and Approximability(Section 4)
B.1. Proofs about Data-dependent Generalization Guarantees (Section 4.1)

Theorem 4.3. Let F = {fr | r ∈ R} and G = {gr | r ∈ R} consist of functions mapping X to [0, 1]. For any S ⊆ X ,
R̂S(F) ≤ R̂S(G) + 1

|S|
∑
x∈S ‖f∗x − g∗x‖∞ .

Proof. Let S = {x1, . . . , xN} be an arbitrary subset of X . Fix an arbitrary vector r ∈ R and index i ∈ [N ]. Suppose that
σi = 1. Since f∗xi(r) ≤ g∗xi(r) +

∥∥f∗xi − g∗xi∥∥∞, we have that

σif
∗
xi(r) ≤ σig∗xi(r) +

∥∥f∗xi − g∗xi∥∥∞ . (6)

Meanwhile, suppose σi = −1. Since f∗xi(r) ≥ g∗xi(r)−
∥∥f∗xi − g∗xi∥∥∞, we have that

σif
∗
xi(r) = −f∗xi(r) ≤ −g∗xi(r) +

∥∥f∗xi − g∗xi∥∥∞ = σig
∗
xi(r) +

∥∥f∗xi − g∗xi∥∥∞ . (7)

Combining Equations (6) and (7), we have that

sup
r∈R

N∑
i=1

σigr (xi) ≥
N∑
i=1

σig
∗
xi(r) ≥

N∑
i=1

σif
∗
xi(r)−

∥∥f∗xi − g∗xi∥∥∞ . (8)

By definition of the supremum, Equation (8) implies that for every σ ∈ {−1, 1}N , supr∈R
∑N
i=1 σigr (xi) ≥

supr∈R
∑N
i=1 σifr (xi) −

∑N
i=1

∥∥f∗xi − g∗xi∥∥∞. Therefore Eσ∼{−1,1}N
[
supr∈R

∑N
i=1 σigr (xi)

]
≥

Eσ∼{−1,1}N
[
supr∈R

∑N
i=1 σifr (xi)

]
−
∑N
i=1

∥∥f∗xi − g∗xi∥∥∞, so the lemma statement holds.

Corollary 4.4. With probability 1− δ over the draw of the set S ∼ DN , for all r ∈ R and all j ≥ 1,∣∣∣∣∣ 1

N

∑
x∈S

fr(x)− E
x∼D

[fr(x)]

∣∣∣∣∣
= Õ

(
1

N

∑
x∈S

∥∥f∗x − g∗j,x∥∥∞ + R̂S (Gj) +

√
1

N

)
. (1)

Proof. We will prove that with probability at least 1− δ over the draw of the training set S = {(x1, y1) , . . . , (xN , yN )} ∼
DN , for all parameter vectors r ∈ R and all j ∈ N,

|LS (fr)− LD (fr)| ≤ 2

N

N∑
i=1

∥∥f∗xi − g∗j,xi∥∥∞ + 2R̂S (` ◦ Gj) + 3

√
1

2N
ln

(πj)2

3δ
.

For each integer j ≥ 1, let δj = 6δ
(πj)2 . From Theorems 4.2 and 4.3, we know that with probability at least 1− δj over the
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draw of the training set S = {(x1, y1) , . . . , (xN , yN )} ∼ DN , for all parameter vectors r ∈ R,

|LS (fr)− LD (fr)| ≤ 2

N

N∑
i=1

∥∥f∗xi − g∗j,xi∥∥∞ + 2R̂S (` ◦ Gj) + 3

√
1

2N
ln

2

δj

=
2

N

N∑
i=1

∥∥f∗xi − g∗j,xi∥∥∞ + 2R̂S (` ◦ Gj) + 3

√
1

2N
ln

(πj)2

3δ
.

Since
∑∞
i=1 δj = δ, the corollary follows from a union bound over all j ≥ 1.

Corollary B.1. Let F = {fr | r ∈ R} ⊆ [0, 1]X be a set of functions mapping X to [0, 1]. Let G1,G2,G3, . . . be a
countable sequence of function classes, where for each j ∈ N, Gj = {gj,r | r ∈ R} ⊆ [0, 1]X is a set of functions
mapping X to [0, 1], parameterized by vectors r ∈ R. With probability at least 1 − δ over the draw of the training set
S = {(x1, y1) , . . . , (xN , yN )} ∼ DN , for all parameter vectors r ∈ R and all j ∈ N,

|LS (fr)− LD (fr)| ≤ 2R̂S (` ◦ Gj) + 2 E
x∼D|X

[∥∥f∗x − g∗j,x∥∥∞]+

√
2

N
ln

2(πj)2

3δ
.

Proof. From Theorem 4.3, we know that for every integer j ≥ 1,

E
S′∼DN

[
R̂S′(` ◦ F)

]
≤ E
S′∼DN

[
R̂S′ (` ◦ Gj)

]
+ E
x∼D|X

[∥∥f∗x − g∗j,x∥∥∞] .
For each integer j ≥ 1, let δj = 6δ

(πj)2 . From Theorem B.2 and Hoeffding bound, we know that with probability at least
1− δj over the draw of the training set S = {(x1, y1) , . . . , (xN , yN )} ∼ DN , for all parameter vectors r ∈ R,

|LS (fr)− LD (fr)| ≤ 2R̂S (` ◦ Gj) + 2 E
x∼D|X

[∥∥f∗x − g∗j,x∥∥∞]+

√
2

N
ln

4

δj

= 2R̂S (` ◦ Gj) + 2 E
x∼D|X

[∥∥f∗x − g∗j,x∥∥∞]+

√
2

N
ln

2(πj)2

3δ
.

Since
∑∞
i=1 δj = δ, the corollary follows from a union bound over all j ≥ 1.

Theorem B.2 (e.g., Mohri et al. (2012)). Let F ⊆ [0, 1]X be a set of functions mapping a domain X to [0, 1]. With
probability at least 1− δ over the draw of N samples S = {(x1, y1) , . . . , (xN , yN )} ∼ DN , the following holds for all
f ∈ F :

|LS (fr)− LD (fr)| ≤ 2 E
S′∼DN

[
R̂S′(` ◦ F)

]
+

√
1

2N
ln

2

δ
.

In the following lemma, we show that for any function classes F = {fr | r ∈ R} ⊆ [0, 1]X and G = {gr | r ∈ R} ⊆
[0, 1]X , the value E(x,y)∼D [‖f∗x − g∗x‖∞], which appears in the generalization guarantee in from Corollary B.1, can be
estimated from samples.

Lemma B.3. Let F = {fr | r ∈ R} ⊆ [0, 1]X and G = {gr | r ∈ R} ⊆ [0, 1]X be two sets of functions mapping a
domain X to [0, 1]. With probability 1− δ over the draw of N samples (x1, y1) , . . . , (xN , yN ) ∼ D,

E
(x,y)∼D

[‖f∗x − g∗x‖∞] ≤ 1

N

N∑
i=1

∥∥f∗xi − g∗xi∥∥∞ +

√
1

2N
ln

1

δ
. (9)

Proof. Let h : X × [0, 1]→ [0, 1] be defined such that h(x, y) = ‖f∗x − g∗x‖∞. From Hoeffding’s inequality, we know that
with probability 1− δ over the draw of N samples (x1, y1) , . . . , (xN , yN ) ∼ D,

E
(x,y)∼D

[h(x, y)] ≤ 1

N

N∑
i=1

h (xi, yi) +

√
1

2N
ln

1

δ
,

which implies that Equation (9) holds.
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B.2. Additional Details about Improved Integer Programming Guarantees (Section 4.2)

Selecting a tree size upper bound. As we described earlier in this section, we assume there is an upper bound κ on the
size of the largest tree we allow branch-and-bound to build before we terminate, as in prior research (Hutter et al., 2009;
Kleinberg et al., 2017; Balcan et al., 2018a; Kleinberg et al., 2019). Given a parameter setting r ∈ [0, 1] and an integer
program x ∈ X , we define fr(x) to be the size of the tree CPLEX builds, capped at κ, divided by κ (this way, fr(x) is
normalized, contained in the interval [0, 1]).

We use a data-dependent approach to select κ. For any parameter r ∈ [0, 1] and integer program x ∈ X , let hr(x) be the
size of the tree CPLEX builds (unnormalized). We draw N = 6000 integer programs x1, . . . , xN from the underlying
distributionD and set κ = maxr∈[0,1],i∈[N ] hr (xi). Classic results from learning theory guarantee that with high probability,
for at most 8% of the integer programs sampled from D, CPLEX will build a tree of size larger than κ when parameterized
by some r ∈ [0, 1]. Specifically, since the VC dimension of threshold functions is 1, we have that with probability at least
0.99 over the draw of the N samples, Prx∼D

[
maxr∈[0,1] fr(x) > κ

]
< 0.08.

For the “arbitrary” distribution, when score1 = scoreL and score2 = scoreS , κ = 6341, and when score1 =
scoreP and score2 = scoreA, κ = 2931. For the “regions” distribution, when score1 = scoreL and score2 =
scoreS , κ = 7314.

Dynamic programming. For any k ∈ N, let Gk be the set of piecewise-constant functions with k pieces mapping an
intervalR ⊆ R to R. In this section, we provide a dynamic programming algorithm which takes as input a piecewise-constant
dual function f∗x : R→ R and a value k ∈ N and returns the value ming∈Gk ‖f∗x − g‖∞. Since f∗x is piecewise-constant,
the domain R can be partitioned into intervals [a1, a2) , [a2, a3) . . . , [at, at+1) such that for any interval [ai, ai+1), there
exists a value ci ∈ R such that f∗x(r) = ci for all r ∈ [ai, ai+1).

We now provide an overview of the algorithm. See Algorithm 1 for the pseudo-code. The algorithm takes as input

Algorithm 1 Piecewise-constant function fitting via dynamic programming
Input: Partition [a1, a2) , . . . , [at, at+1) ofR, values c1, . . . , ct, and desired number of pieces k ∈ N.
for i ∈ [t] do

Set ui,i = ci and `i,i = ci.
for i′ ∈ {i+ 1, . . . , t} do

if ci′ < `i,i′−1 then
Set `i,i′ = ci′ and ui,i′ = ui,i′−1.

else if ci′ > ui,i′−1 then
Set `i,i′ = `i,i′−1 and ui,i′ = ci′ .

else
Set `i,i′ = `i,i′−1 and ui,i′ = ui,i′−1.

end if
end for

end for
for i ∈ [t] do

Set C(i, 1) =
u1,i−`1,i

2
end for
for j ∈ {2, . . . , k} do

for i ∈ [t] do
Set C(i, j) = min

{
C(i, 1),mini′∈[i−1]

{
C(i′, j − 1) +

ui′+1,i−`i′+1,i

2

}}
end for

end for
Output: C(t, k).

the partition [a1, a2) , . . . , [at, at+1) of the parameter space R and values c1, . . . , ct such that for any interval [ai, ai+1),
f∗x(r) = ci for all r ∈ [ai, ai+1). The algorithm begins by calculating upper and lower bounds on the value of the function
f∗x across various subsets of its domain. In particular, for each i, i′ ∈ [t] such that i ≤ i′, the algorithm calculates the lower
bound `i,i′ = min {ci, ci+1, . . . , ci′} and the upper bound ui,i′ = max {ci, ci+1, . . . , ci′}. Algorithm 1 performs these
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calculations in O(t2) time.

Next, for each i ∈ [t] and j ∈ [k], the algorithm calculates a value C(i, j) which equals the smallest `∞ norm between
any piecewise constant function with j pieces and the function f∗x when restricted to the interval [a1, ai+1). Since
R = [a1, at+1), we have that C(t, k)—the value our algorithm returns—equals ming∈Gk ‖f∗x − g‖∞, as claimed. For all
i ∈ [t], C(i, 1) =

u1,i−`1,i
2 and for all j ≥ 2,

C(i, j) = min

{
C(i, 1), min

i′∈[i−1]

{
C(i′, j − 1) +

ui′+1,i − `i′+1,i

2

}}
.

Algorithm 1 performs these calculations in O(kt2) time.

Additional lemmas.
Lemma B.4. Let G = {gr | r ∈ R} ⊆ [0, 1]X be a set of functions mapping a set X to [0, 1] parameterized by a single real
value r ∈ R. Suppose that every function g∗x ∈ G∗ ⊆ [0, 1]R is piecewise-constant with at most j pieces. Then for any set
S = {x1, . . . , xN} ⊆ X ,

R̂S (G) =
1

N
E

σ∼{−1,1}N

[
sup
r∈R

N∑
i=1

σigr (xi)

]
≤
√

2 ln(N(j − 1) + 1)

N
.

Proof. We will use Massart’s lemma (Lemma B.5) to prove this lemma. Let A ⊆ [0, 1]N be the following set of vectors:

A =


 gr (x1)

...
gr (xN )

 : r ∈ R

 .

By definition of the dual class,

A =


g
∗
x1

(r)
...

g∗xN (r)

 : r ∈ R

 .

Since each function g∗xi is piecewise-constant with at most j pieces, |A| ≤ N(j − 1) + 1. The lemma statement therefore
follows from Massart’s lemma.

Lemma B.5 (Massart (2000)). Let A ⊆ [0, 1]N be a finite set of vectors. Then

1

N
E

σ∼{−1,1}N

[
sup
a∈A

N∑
i=1

σiai

]
≤
√

2 ln |A|
N

.

B.2.1. ADDITIONAL EXPERIMENTS

In our experiments from Section 4.2, we approximated the dual functions f∗x with piecewise constant functions that have a
small number of pieces — say, j pieces. We used SRM to find the value for j which leads to the strongest bounds, as in
Equation (4). In this section, we compare against another baseline where we do not use SRM, but simply set j to be the
maximum number of pieces we observe over our training set. Of course, this bound is much tighter than the worst-case
bound by Balcan et al. (2018a), the baseline in Figures 2-4. However, we still observe that for a target generalization error,
the number of samples required according to our bound is up to 4.5 times smaller than the number of samples required by
this baseline.

For each of the three experimental setups from Figures 2-4, we draw M = 6000 IPs x1, . . . , xM from the distribution D.
We compute the piecewise-constant dual functions f∗x1

, . . . , f∗xM and find the maximum number of pieces j∗ across these
M functions. We summarize our findings below:

• When using the CATS “arbitrary” generator with score1 = scoreL and score2 = scoreS , the maximum
number of pieces is j∗ = 2214.
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(a) Results on the CATS “regions” generator with score1 =
scoreL and score2 = scoreS .

(b) Results on the CATS “arbitrary” generator with score1 =
scoreL and score2 = scoreS .

(c) Results on the CATS “arbitrary” generator with score1 =
scoreP and score2 = scoreA.

Figure 7. Experiments where we compare our generalization bound to a simple baseline described in Section B.2.1. The red solid line is
our generalization bound: the minimum of Equations (2) and (4) as a function of the number of training examples N . The black dotted
line is the simple baseline from Equation (10).

• When using the CATS “arbitrary” generator with score1 = scoreP and score2 = scoreA, the maximum
number of pieces is j∗ = 296.

• When using the CATS “regions” generator with score1 = scoreL and score2 = scoreS , the maximum number
of pieces is j∗ = 2224.

Since there is a piecewise-constant function g∗j∗,xi with at most j∗ pieces that exactly equals each dual function f∗xi , a

Hoeffding bound guarantees that with probability 0.995, Ex∼D
[∥∥f∗x − g∗j∗,x∥∥∞] ≤ 0.023. Therefore, from Theorem 4.2,

Theorem 4.3, Remark 4.5, and Theorem 4.8, we know that with probability 0.99 over the draw of N samples S ∼ DN , for
all r ∈ [0, 1], ∣∣∣∣∣ 1

N

∑
x∈S

fr(x)− E
x∼D

[fr(x)]

∣∣∣∣∣ ≤ 2

(
0.023 +

√
2 ln(N(j∗ − 1) + 1)

N

)
+ 3

√
1

2N
ln

2

0.005
. (10)

This is the black dotted line in Figure 7. The red solid line is our generalization bound, as we described in Section 4.2: the
minimum of Equations (2) and (4).

In Figure 7, we see that our bound significantly beats this simple baseline up until the point there are approximately
10,000 training instances, at which point they are approximately equal. These experiments demonstrate that for a target
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generalization error, the number of samples required according to our bound is up to 4.5 times smaller than the number
of samples required by this baseline. In Figure 7(a), to get a generalization error of 0.25, 1500 samples are sufficient
our approach and 6700 samples are sufficient using the baseline, so we see a 4.6x improvement. In Figure 7(b), to get a
generalization error of 0.3, 1400 samples are sufficient our approach and 4300 samples are sufficient using the baseline, so
we see a 3.07x improvement. Finally, in Figure 7(c), to get a generalization error of 0.25, 1400 samples are sufficient our
approach and 6100 samples are sufficient using the baseline, so we see a 4.35x improvement.

B.3. Proofs about Rademacher Complexity Lower Bound (Section 4.3)

Theorem B.6 (Hölder’s inequality). Let p0 and p1 be two values in [1,∞] such that 1
p0

+ 1
p1

= 1. Then for all functions u
and w, ‖uw‖1 ≤ ‖u‖p0 ‖w‖p1 .

Theorem B.7 (Interpolation). Let p and q be two values in (0,∞] and let θ be a value in (0, 1). Let pθ be defined such that
1
pθ

= θ
p1

+ 1−θ
p0

. Then for all functions u, ‖f‖pθ ≤ ‖f‖
θ
p1
‖f‖1−θp0

.

Lemma B.8. For any γ ∈
(
0, 1

4

)
and p ∈ [1,∞), let F and G be the function classes defined in Theorem 4.9. The dual

class G∗ (γ, p)-approximates the dual class F∗.

Proof. For ease of notation, let t = γp, a = 1
2γp ,R = (0, t], and X =

[
1

2γp ,∞
)

. Throughout this proof, we will use the
following inequality:

‖f∗x − g∗x‖2 =

√∫ t

0

(f∗x(r)− g∗x(r))
2
dr =

√∫ t

0

(
1

2
cos(rx)

)2

dr =
1

4

√
2t+

sin(2tx)

x
≤ 1

4

√
2t+

1

x
. (11)

First, suppose p = 2. Since t = γ2 and 1
x ≤ 2γ2, Equation (11) implies that ‖f∗x − g∗x‖2 ≤

1
4

√
4γ2 < γ.

Next, suppose p < 2. We know that

‖(f∗x − g∗x)
p‖1 =

∫ t

0

|(f∗x(r)− g∗x(r))
p| dr =

∫ t

0

|f∗x(r)− g∗x(r)|p dr = ‖f∗x − g∗x‖
p
p . (12)

From Equation (12) and Hölder’s inequality (Theorem B.6) with u = (f∗x − g∗x)
p, w the constant function w : r 7→ 1,

p0 = 2
p , and p1 = 2

2−p , we have that

‖f∗x − g∗x‖
p
p = ‖(f∗x − g∗x)

p‖1
≤ ‖w‖ 2

2−p
‖(f∗x − g∗x)

p‖ 2
p

=

(∫ t

0

dr

) 2−p
2

‖(f∗x − g∗x)
p‖ 2

p

= t
2−p
2 ‖(f∗x − g∗x)

p‖ 2
p

= t
2−p
2

(∫ t

0

(f∗x(r)− g∗x(r))
2
dr

) p
2

= t
2−p
2 ‖f∗x − g∗x‖

p
2 .
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Therefore,

‖f∗x − g∗x‖p ≤ t
1
p−

1
2 ‖f∗x − g∗x‖2

≤ t
1
p−

1
2

4

√
2t+

1

x
(Equation (11))

=
t
1
p

4

√
2 +

1

xt

=
γ

4

√
2 +

1

xγp
(t = γp)

< γ,

(
x ≥ 1

2γp

)

Finally, suppose p > 2. Let θ = 1− 2
p , p0 = 2, and p1 =∞. By Theorem B.7,

‖f∗x − g∗x‖p ≤ ‖f
∗
x − g∗x‖

1−θ
2

= ‖f∗x − g∗x‖
2
p

2

≤ p

√
t

8
+

1

16x
(Equation (11))

=
p

√
γp

8
+

1

16x
(t = γp)

≤ p

√
γp

4

(
x ≥ 1

2γp

)
< γ.

Therefore, for all p ∈ [1,∞) and all x ∈ X , ‖f∗x − g∗x‖p ≤ γ, so the dual class G∗ (γ, p)-approximates the dual class
F∗.

Lemma B.9. For any γ ∈
(
0, 1

4

)
and p ∈ [1,∞), let F = {fr | r ∈ (0, γp]} be a class of functions with domain

[
1

2γp ,∞
)

such that for all r ∈ (0, γp] and x ∈
[

1
2γp ,∞

)
, fr(x) = 1

2 (1 + cos(rx)). For every N ≥ 1, RN (` ◦ F) = 1
2 .

Proof. This proof is similar to the proof that the VC-dimension of the function class {x 7→ sign(sin(rx)) | r ∈ R} ⊆
{−1, 1}R is infinite (see, for example, Lemma 7.2 in the textbook by Anthony & Bartlett (2009)). To prove this lemma,
we will show that for every c ∈ (0, 1/2), RN (` ◦ F) ≥ c (Claim B.10). We also show that RN (` ◦ F) ≤ 1

2 (Claim B.11).
Therefore, the lemma statement follows.

Claim B.10. For every c ∈ (0, 1/2), RN (` ◦ F) ≥ c.

Proof of Claim B.10. Let N be an arbitrary positive integer. We begin by defining several variables that we will use
throughout this proof. LetR = (0, γp] and let α be any positive power of 1

2 smaller than min
{

1
2π+1 ,

arccos(2c)
π+arccos(2c)

}
. Since

2c ∈ (0, 1), arccos(2c)
π+arccos(2c) is well-defined. Also, since α ≤ arccos(2c)

π+arccos(2c) , we have that πα
1−α ≤ arccos(2c) < π

2 . Finally, since

the function cos is decreasing on the interval [0, π/2], we have that 1
2 cos πα

1−α ≥ c. Let xi = α−i

2γp and yi = 0 for i ∈ [N ].

Since α < 1, we have that xi ≥ 1
2γp , so each xi is an element of the domain

[
1

2γp ,∞
)

of the functions in F .

We will show that for every assignment of the variables σ1, . . . , σN ∈ {−1, 1}, there exists a parameter r0 ∈ (0, γp] such
that

1

N
sup

r∈(0,γp]

N∑
i=1

σifr (xi) ≥
1

N

N∑
i=1

σifr0 (xi) =
1

2N

N∑
i=1

σi (1 + cos (r0xi)) ≥ c+
1

2

N∑
i=1

σi.
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This means that when S = {(x1, y1) , . . . , (xN , yN )},

RN (` ◦ F) ≥ R̂S(` ◦ F)

=
1

N
E
σ

[
sup
r∈R

N∑
i=1

σi |fr (xi)− yi|

]

=
1

N
E
σ

[
sup
r∈R

N∑
i=1

σi |fr (xi)|

]
(yi = 0)

=
1

N
E
σ

[
sup
r∈R

N∑
i=1

σifr (xi)

]
(fr (xi) ≥ 0)

≥ c+
1

2
E
σ

[
N∑
i=1

σi

]
= c.

To this end, given an assignment of the variables σ1, . . . , σN ∈ {−1, 1}, let (b1, . . . , bN ) ∈ {0, 1}N be defined such that

bi =

{
0 if σi = 1

1 otherwise

and let

r0 = 2πγp

 N∑
j=1

αjbj + αN+1

 .

Since 0 < r0 < 2πγp
∑∞
j=1 α

j = 2πγpα
1−α ≤ γ

p, r0 is an element of the parameter space (0, γp]. The inequality 2πγpα
1−α ≤ γ

p

holds because α ≤ 1
2π+1 , so 2πα

1−α ≤ 1.

Next, we evaluate fr0(xi) = 1
2 (1 + cos(r0xi)):

1

2
(1 + cos(r0xi)) =

1

2
+

1

2
cos

2πγp

 N∑
j=1

αjbj + αN+1

 α−i

2γp


=

1

2
+

1

2
cos

π
 N∑
j=1

αjbj + αN+1

α−i


=

1

2
+

1

2
cos

i−1∑
j=1

αj−iπbj + πbi +

N∑
j=i+1

αj−iπbj + αN+1−iπ


=

1

2
+

1

2
cos

π
bi +

N−i∑
j=1

αjbi+j + αN+1−i

 . (13)

The final equality holds because for every j < i, αj−i is a positive power of 2, so αj−iπbj is a multiple of 2π. We will use
the following fact: since

0 <

N−i∑
j=1

αjbi+j + αN+1−i ≤
N−i+1∑
j=1

αj <

∞∑
j=1

αj =
α

1− α
,

the argument of cos(·) in Equation (13) lies strictly between πbi and πbi + πα
1−α .

Suppose bi = 0. Since α ≤ 1
2 , we know that πα

1−α ≤ π. Therefore, cos(·) is monotone decreasing on the interval
[
0, πα

1−α

]
.

Moreover, we know that 1
2 cos πα

1−α ≥ c. Therefore, fr0(xi) = 1
2 (1 + cos(r0xi)) ≥ 1

2 + c. Since bi = 0, it must be that
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σi = 1, so σifr0(xi) ≥ c + 1
2 = c + σi

2 . Meanwhile, suppose bi = 1. The function cos(·) is monotone increasing on

the interval
[
π, π + πα

1−α

]
. Moreover, 1

2 cos
(
π + πα

1−α

)
= − 1

2 cos πα
1−α ≤ −c. Therefore, fr0(xi) = 1

2 (1 + cos(r0xi)) ≤
1
2 − c. Since bi = 1, it must be that σi = −1, so σifr0(xi) ≥ c− 1

2 = c+ σi
2 . Since this is true for any i ∈ [N ], we have

that
1

2N

N∑
i=1

σi (1 + cos (r0xi)) ≥ c+
1

2

N∑
i=1

σi,

as claimed.

We conclude this proof by showing that RN (` ◦ F) ≤ 1
2 .

Claim B.11. For any N ≥ 1, RN (` ◦ F) ≤ 1
2 .

Proof of Claim B.11. Let S = {(x1, y1) , . . . , (xN , yN )} ⊂
[

1
2γp ,∞

)
× [0, 1] be an arbitrary set of points. For any

assignment of the variables σ1, . . . , σN ∈ {−1, 1}, since |fr (xi)− yi| ∈ [0, 1],

sup
r∈(0,γp]

N∑
i=1

σi |fr (xi)− yi| ≤
N∑
i=1

1{σi=1}.

Therefore,

RN (` ◦ F) = sup
(x1,y1),...,(xN ,yN )

1

N
E
σ

[
sup

r∈(0,γp]

N∑
i=1

σi |fr (xi)− yi|

]
≤ 1

N
E
σ

[
N∑
i=1

1{σi=1}

]
=

1

2
,

as claimed.

Together, Claims B.10 and B.11 imply that for every N ≥ 1, RN (` ◦ F) = 1
2 .

B.4. Connection to Statistical Learnability

Theorem B.12. Let F = {fr | r ∈ R} ⊆ [0, 1]X and G = {gr | r ∈ R} ⊆ [0, 1]X be two sets of functions. Suppose the
dual class G∗ (γ,∞)-approximates the dual class F∗. If G is statistically learnable, then F is γ-statistically learnable.

Proof. We will prove that for all integers N ≥ 1,

VN (F) = inf
A

sup
D

E
S∼DN

[
LD(AS)− inf

r∈R
LD (fr)

]
≤ VN (G) + γ.

Since limN→∞ VN (G) = 0, this implies that limN→∞ VN (F) ≤ γ.

To this end, fix an arbitrary learning algorithm Ā : (X × [0, 1])N → [0, 1]X , distribution D̄ over X × [0, 1], element
x̄ ∈ X , and parameter vector r̄ ∈ R. Since the dual class G∗ (γ,∞)-approximates the dual class F∗, we know that
|g∗x̄ (r̄)− f∗x̄ (r̄)| = |gr̄ (x̄)− fr̄ (x̄)| ≤ γ. Since this inequality holds for all x̄ ∈ X , we also have that

LD̄ (fr̄) = E
(x,y)∼D̄

[|fr̄(x)− y|]

= E
(x,y)∼D̄

[|gr̄(x)− y − (gr̄(x)− fr̄(x))|]

≥ E
(x,y)∼D̄

[|gr̄(x)− y| − |gr̄(x)− fr̄(x)|]

≥ LD̄ (gr̄)− γ
≥ inf
r∈R

LD̄ (gr)− γ.
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These inequalities holds for all parameter vectors r̄ ∈ R, which implies that infr∈R LD̄ (fr) ≥ infr∈R LD̄ (gr) − γ.
Therefore,

E
S∼D̄N

[
LD̄
(
ĀS
)
− inf
r∈R

LD̄ (fr)

]
≤ E
S∼D̄N

[
LD̄
(
ĀS
)
− inf
r∈R

LD̄ (gr)

]
+ γ

≤ sup
D

E
S∼DN

[
LD
(
ĀS
)
− inf
r∈R

LD (gr)

]
+ γ.

Since this inequality holds for every distribution D, we have that

sup
D

E
S∼DN

[
LD
(
ĀS
)
− inf
r∈R

LD (fr)

]
≤ sup

D
E

S∼DN

[
LD
(
ĀS
)
− inf
r∈R

LD (gr)

]
+ γ.

Therefore,

VN (F) = inf
A

sup
D

E
S∼DN

[
LD (AS)− inf

r∈R
LD (fr)

]
≤ sup

D
E

S∼DN

[
LD
(
ĀS
)
− inf
r∈R

LD (gr)

]
+ γ.

Finally, since this inequality holds for every learning algorithm Ā, we have that

VN (F) ≤ inf
A

sup
D

E
S∼DN

[
LD (AS)− inf

r∈R
LD (gr)

]
+ γ = VN (G) + γ,

as claimed.

However, this positive result, Theorem B.12, fails to hold when Lp-norm defining the approximation guarantee is not the
L∞-norm.

Theorem B.13. For any γ ∈ (0, 1/4) and any p ∈ [1,∞), there exist function classes F ,G ⊂ [0, 1]X with the following
properties:

1. The dual class G∗ (γ, p)-approximates the dual F∗.

2. The class G is statistically learnable.

3. The class F is not γ-statistically learnable.

Proof. The function classes F and G are the same as those in Theorem 4.9. Let t = γp, a = γ−p/2, R = (0, t], and
X = [a,∞). For any r ∈ R and x ∈ X , let fr(x) = 1

2 (1 + cos(rx)) and F = {fr | r ∈ R}. For any r ∈ R and x ∈ X ,
let gr(x) = 1

2 and G = {gr | r ∈ R}.

In Lemma B.8, we prove that the dual class G∗ (γ, p)-approximates the dual class F∗. From Lemma B.9 in Appendix B, we
know that for every N ≥ 1, RN (` ◦ F) = 1

2 . Therefore, by Theorem A.4, VN (F) ≥ 1
4 > γ, so F is not γ-statistically

learnable.

Theorem B.13 implies, for example, that even if every function f∗x ∈ F∗ is close to the corresponding function g∗x ∈ G∗ on
average over the parameter vectors r ∈ R, the function class F still may not be statistically learnable.


