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Abstract
Self-play, where the algorithm learns by playing
against itself without requiring any direct super-
vision, has become the new weapon in modern
Reinforcement Learning (RL) for achieving super-
human performance in practice. However, the ma-
jority of exisiting theory in reinforcement learning
only applies to the setting where the agent plays
against a fixed environment; it remains largely
open whether self-play algorithms can be prov-
ably effective, especially when it is necessary to
manage the exploration/exploitation tradeoff. We
study self-play in competitive reinforcement learn-
ing under the setting of Markov games, a general-
ization of Markov decision processes to the two-
player case. We introduce a self-play algorithm—
Value Iteration with Upper/Lower Confidence
Bound (VI-ULCB)—and show that it achieves
regret Õ(

√
T ) after playing T steps of the game,

where the regret is measured by the agent’s perfor-
mance against a fully adversarial opponent who
can exploit the agent’s strategy at any step. We
also introduce an explore-then-exploit style al-
gorithm, which achieves a slightly worse regret
of Õ(T 2/3), but is guaranteed to run in polyno-
mial time even in the worst case. To the best of
our knowledge, our work presents the first line of
provably sample-efficient self-play algorithms for
competitive reinforcement learning.

1. Introduction
This paper studies competitive reinforcement learning (com-
petitive RL), that is, reinforcement learning with two or
more agents taking actions simultaneously, but each maxi-
mizing their own reward. Competitive RL is a major branch
of the more general setting of multi-agent reinforcement
learning (MARL), with the specification that the agents have
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conflicting rewards (so that they essentially compete with
each other) yet can be trained in a centralized fashion (i.e.
each agent has access to the other agents’ policies) (Cran-
dall & Goodrich, 2005).

There are substantial recent progresses in competitive RL,
in particular in solving hard multi-player games such as
GO (Silver et al., 2017), Starcraft (Vinyals et al., 2019),
and Dota 2 (OpenAI, 2018). A key highlight in their ap-
proaches is the successful use of self-play for achieving
super-human performance in absence of human knowledge
or expert opponents. These self-play algorithms are able
to learn a good policy for all players from scratch through
repeatedly playing the current policies against each other
and performing policy updates using these self-played game
trajectories. The empirical success of self-play has chal-
lenged the conventional wisdom that expert opponents are
necessary for achieving good performance, and calls for a
better theoretical understanding.

In this paper, we take initial steps towards understanding
the effectiveness of self-play algorithms in competitive RL
from a theoretical perspective. We focus on the special
case of two-player zero-sum Markov games (Shapley, 1953;
Littman, 1994), a generalization of Markov Decision Pro-
cesses (MDPs) to the two-player setting. In a Markov game,
the two players share states, play actions simultaneously,
and observe the same reward. However, one player aims
to maximize the return while the other aims to minimize
it. This setting covers the majority of two-player games
including GO (there is a single reward of {+1,−1} at the
end of the game indicating which player has won), and also
generalizes zero-sum matrix games (von Neumann, 1928)—
an important game-theoretic problem—into the multi-step
(RL) case.

More concretely, the goal of this paper is to design low-
regret algorithms for solving episodic two-player Markov
games in the general setting (Kearns & Singh, 2002), that is,
the algorithm is allowed to play the game for a fixed amount
of episodes using arbitrary policies, and its performance
is measured in terms of the regret. We consider a strong
notion of regret for two-player zero-sum games, where the
performance of the deployed policies in each episode is
measured against the best response for that policy, which
can be different in different episodes. Such a regret bound
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measures the algorithm’s ability in managing the exploration
and exploitation tradeoff against fully adaptive opponents,
and can directly translate to other types of guarantees such
as the PAC sample complexity bound.

Our contribution This paper introduces the first line of
provably sample-efficient self-play algorithms for zero-sum
Markov game under no restrictive assumptions. Concretely,

• We introduce the first self-play algorithm with Õ(
√
T )

regret for zero-sum Markov games. More specifi-
cally, it achieves Õ(

√
H3S2ABT ) regret in the gen-

eral case, where H is the length of the game, S is
the number of states, A,B are the number of actions
for each player, and T is the total number of steps
played. In special case of turn-based games, it achieves
Õ(
√
H3S2(A+B)T ) regret with guaranteed polyno-

mial runtime.

• We also introduce an explore-then-exploit style algo-
rithm. It has guaranteed polynomial runtime in the
general setting of zero-sum Markov games, with a
slightly worse Õ(T 2/3) regret.

• We raise the open question about the optimal depen-
dency of the regret on S,A,B. We provide a lower
bound Ω(

√
S(A+B)T ), and show that the lower

bound can be achieved in simple case of two-step turn-
based games by a mirror descent style algorithm.

Above results are summarized in Table 1.

1.1. Related Work

There is a fast-growing body of work on multi-agent rein-
forcement learning (MARL). Many of them achieve striking
empirical performance, or attack MARL in the cooperative
setting, where agents are optimizing for a shared or similar
reward. We refer the readers to several recent surveys for
these results (see e.g. Buşoniu et al., 2010; Nguyen et al.,
2018; OroojlooyJadid & Hajinezhad, 2019; Zhang et al.,
2019). In the rest of this section we focus on theoretical
results related to competitive RL.

Markov games Markov games (or stochastic games) is
proposed as a mathematical model for compeitive RL back
in the early 1950s (Shapley, 1953). There is a long line
of classical work since then on solving this problem (see
e.g. Littman, 1994; 2001; Hu & Wellman, 2003; Hansen
et al., 2013). They design algorithms, possibly with runtime
guarantees, to find optimal policies in Markov games when
both the transition matrix and reward are known, or in the
asymptotic setting where number of data goes to infinity.
These results do not directly apply to the non-asymptotic
setting where the transition and reward are unknown and

only a limited amount of data are available for estimating
them.

A few recent work tackles self-play algorithms for Markov
games in the non-asymptotic setting, working under either
structural assumptions about the game or stronger sampling
oracles. Wei et al. (2017) propose an upper confidence algo-
rithm for stochastic games and prove that a self-play style
algorithm finds ε-optimal policies in poly(1/ε) samples. Jia
et al. (2019); Sidford et al. (2019) study turn-based stochas-
tic games—a special case of general Markov games, and
propose algorithms with near-optimal sample complexity.
However, both lines of work make strong assumptions—on
either the structure of Markov games or how we access
data—that are not always true in practice. Specifically, Wei
et al. (2017) assumes no matter what strategy one agent
sticks to, the other agent can always reach all states by play-
ing a certain policy, and Jia et al. (2019); Sidford et al. (2019)
assume access to simulators (or generative models) which
enable the agent to directly sample transition and reward
information for any state-action pair. These assumptions
greatly alleviate the challenge in exploration. In contrast,
our results apply to general Markov games without further
structural assumptions, and our algorithms have built-in
mechanisms for solving the challenge in the exploration-
exploitation tradeoff.

Finally, we note that classical R-MAX algorithm (Brafman
& Tennenholtz, 2002) does not make restrictive assumptions.
It also has provable guarantees even when playing against
the adversarial opponent in Markov game. However, the
theoretical guarantee in Brafman & Tennenholtz (2002) is
weaker than the standard regret, and does not directly imply
any self-play algorithm with regret bound in our setting (See
Section E for more details).

Adversarial MDP Another line of related work focuses
on provable algorithms against adversarial opponents in
MDP. Most work in this line considers the setting with ad-
versarial rewards (see e.g. Zimin & Neu, 2013; Rosenberg &
Mansour, 2019; Jin et al., 2019). These results do not direcly
imply provable self-play algorithms in our setting, because
the adversarial opponent in Markov games can affect both
the reward and the transition. There exist a few works that
tackle both adversarial transition functions and adversarial
rewards (Yu & Mannor, 2009; Cheung et al., 2019; Lykouris
et al., 2019). In particular, Lykouris et al. (2019) considers
a stochastic problem with C episodes arbitrarily corrupted
and obtain O(C

√
T + C2) regret. When applying these

results to Markov games with an adversarial opponent, C
can be Θ(T ) without further assumptions, which makes the
bound vacuous.

Single-agent RL There is an extensive body of research
on the sample efficiency of reinforcement learning in the
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Table 1. Regret and PAC guarantees of the Algorithms in this paper for zero-sum Markov games.

Settings Algorithm Regret PAC Runtime

General
Markov Game

VI-ULCB (Theorem 2) Õ(
√
H3S2ABT ) Õ(H4S2AB/ε2) PPAD-complete

VI-explore (Theorem 5) Õ((H5S2ABT 2)1/3) Õ(H5S2AB/ε2)

Polynomial
Mirror Descent (H = 1)

(Rakhlin & Sridharan, 2013) Õ(
√
S(A+B)T ) Õ(S(A+B)/ε2)

Turn-Based
Markov Game

VI-ULCB (Corollary 4) Õ(
√
H3S2(A+B)T ) Õ(H4S2(A+B)/ε2)

Mirror Descent (H = 2)
(Theorem 10) Õ(

√
S(A+B)T ) Õ(S(A+B)/ε2)

Both Lower Bound (Corollary 7) Ω(
√
H2S(A+B)T ) Ω(H2S(A+B)/ε2) -

single agent setting (see e.g. Jaksch et al., 2010; Osband
et al., 2014; Azar et al., 2017; Dann et al., 2017; Strehl et al.,
2006; Jin et al., 2018), which are studied under the model of
Markov decision process—a special case of Markov games.
For the tabular episodic setting with nonstationary dynam-
ics and no simulators, the best regrets achieved by existing
model-based and model-free algorithms are Õ(

√
H2SAT )

(Azar et al., 2017) and Õ(
√
H3SAT ) (Jin et al., 2018), re-

spectively, where S is the number of states, A is the number
of actions, H is the length of each episode, and T is the total
number of steps played. Both of them (nearly) match the
minimax lower bound Ω(

√
H2SAT ) (Jaksch et al., 2010;

Osband & Van Roy, 2016; Jin et al., 2018).

2. Preliminaries
In this paper, we consider zero-sum Markov Games
(MG) (Shapley, 1953; Littman, 1994), which also known as
stochastic games in the literature. Zero-sum Markov games
are generalization of standard Markov Decision Processes
(MDP) into the two-player setting, in which the max-player
seeks to maximize the total return and the min-player seeks
to minimize the total return.

Formally, we consider tabular episodic zero-sum Markov
games of the form MG(H,S,A,B,P, r), where

• H is the number of steps in each episode.

• S = ∪h∈[H+1]Sh, and Sh is the set of states at step h,
with maxh∈[H+1] |Sh| ≤ S.

• A = ∪h∈[H]Ah, and Ah is the set of actions of the
max-player at step h, with maxh∈[H] |Ah| ≤ A.

• B = ∪h∈[H]Bh, and Bh is the set of actions of the
min-player at step h, with maxh∈[H] |Bh| ≤ B.

• P = {Ph}h∈[H] is a collection of transition matrices,
so that Ph(·|s, a, b) gives the distribution over states if
action pair (a, b) is taken for state s at step h.

• r = {rh}h∈[H] is a collection of reward functions, and
rh : Sh×Ah×Bh → [0, 1] is the deterministic reward
function at step h. Note that we are assuming that
rewards are in [0, 1] for normalization. 1

In each episode of this MG, an initial state s1 is picked
arbitrarily by an adversary. Then, at each step h ∈ [H],
both players observe state sh ∈ Sh, pick the action ah ∈
Ah, bh ∈ Bh simultaneously, receive reward rh(sh, ah, bh),
and then transition to the next state sh+1 ∼ Ph(·|sh, ah, bh).
The episode ends when sH+1 is reached.

Policy and value function A policy µ of the max-player
is a collection of H functions

{
µh : S → ∆Ah

}
h∈[H]

,
where ∆Ah

is the probability simplex over action set Ah.
Similarly, a policy ν of the min-player is a collection of
H functions

{
νh : S → ∆Bh

}
h∈[H]

. We use the notation
µh(a|s) and νh(b|s) to present the probability of taking
action a or b for state s at step h under policy µ or ν respec-
tively. We use V µ,νh : Sh → R to denote the value function
at step h under policy µ and ν, so that V µ,νh (s) gives the
expected cumulative rewards received under policy µ and ν,
starting from sh = s, until the end of the episode:

V µ,νh (s) := Eµ,ν

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣ sh = s

]
.

We also defineQµ,νh : Sh×Ah×Bh → R to denoteQ-value
function at step h so that Qµ,νh (s, a) gives the cumulative
rewards received under policy µ and ν, starting from sh =
s, ah = a, bh = b, till the end of the episode:

Qµ,νh (s, a, b)

:= Eµ,ν

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣ sh = s, ah = a, bh = b

]
.

1While we study deterministic reward functions for notational
simplicity, our results generalize to randomized reward functions.
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For simplicity, we use notation of operator Ph so that
[PhV ](s, a, b) := Es′∼Ph(·|s,a,b)V (s′) for any value func-
tion V . By definition of value functions, for all (s, a, b, h) ∈
Sh ×Ah × Bh × [H], we have the Bellman equation

Qµ,νh (s, a, b) = (rh + PhV µ,νh+1)(s, a, b), (1)

V µ,νh (s) =
∑
a,b

µh(a|s)νh(b|s)Qµ,νh (s, a, b). (2)

where we define V µ,νH+1(s) = 0 for all s ∈ SH+1

Best response and regret We now define the notion of
best response and review some basic properties of it (cf. (Fi-
lar & Vrieze, 2012)), which will motivate our definition
of the regret in two-player Markov games. For any max-
player strategy µ, there exists a best response of the min-
player, which is a policy ν†(µ) satisfying V µ,ν

†(µ)
h (s) =

infν V
µ,ν
h (s) for any (s, h). For simplicity, we denote

V µ,†h := V
µ,ν†(µ)
h . By symmetry, we can define the best

response of the max-player µ†(ν), and define V †,νh . The
value functions V µ,†h and V †,νh satisfy the following Bell-
man optimality equations:

V µ,†h (s) = inf
ν∈∆Bh

∑
a,b

µh(a|s)ν(b)Qµ,†h (s, a, b), (3)

V †,νh (s) = sup
µ∈∆Ah

∑
a,b

µ(a)νh(b|s)Q†,νh (s, a, b). (4)

It is further known that there exist policies µ?, ν? that are
optimal against the best responses of the opponent:

V µ
?,†

h (s) = sup
µ
V µ,†h (s),

V †,ν
?

h (s) = inf
ν
V †,νh (s),

for all (s, h).

It is also known that, for any (s, h), the minimax theorem
holds:

sup
µ

inf
ν
V µ,νh (s) = V µ

?,ν?

h (s) = inf
ν

sup
µ
V µ,νh (s).

Therefore, the optimal strategies (µ?, ν?) are also the Nash
Equilibrium for the Markov game. Based on this, it is
sensible to measure the suboptimality of any pair of policies
(µ̂, ν̂) using the gap between their performance and the
performance of the optimal strategy when playing against
the best responses respectively, i.e.,[

V †,ν̂h (s)− inf
ν
V †,νh (s)

]
+

[
sup
µ
V µ,†h (s)− V µ̂,†h (s)

]
= V †,ν̂h (s)− V µ̂,†h (s).

(5)
We make this formal in the following definition of the regret.

Definition 1 (Regret). For any algorithm that plays the
Markov game for K episodes with (potentially adversarial)
starting state sk1 for each episode k = 1, 2, . . . ,K, the
regret is defined as

Regret(K) =

K∑
k=1

[
V †,ν

k

1 (sk1)− V µ
k,†

1 (sk1)
]
,

where (µk, νk) denote the policies deployed by the algo-
rithm in the k-th episode.

We note that as a unique feature of self-play algorithms, the
learner is playing against herself, and thus chooses strategies
for both max-player and min-player at each episode.

2.1. Turn-based games

In zero-sum Markov games, each step involves the two
players playing simultaneously and independently. It is a
general framework, which contains a very important special
case—turn-based games. (Shapley, 1953; Jia et al., 2019).

The main feature of a turn-based game is that only one
player is taking actions in each step; in other words, the
max and min player take turns to play the game. Formally, a
turn-based game can be defined through a partition of steps
[H] into two setsHmax andHmin, whereHmax andHmin

denote the sets of steps the max-player and the min-player
choose the actions respectively, which satisfies Hmax ∩
Hmin = ∅ andHmax ∪Hmin = [H]. As a special example,
GO is a turn-based game in which the two players play in
alternate turns, i.e.

Hmax = {1, 3, . . . ,H − 1} and Hmin = {2, 4, . . . ,H}

Mathematically, we can specialize general zero-sum Markov
games to turn-based games by restricting Ah = {̊a} for all
h ∈ Hmin, and Bh = {̊b} for all h ∈ Hmax, where å
and b̊ are special dummy actions. Consequently, in those
steps, Ah or Bh has only a single action as its element,
i.e. the corresponding player can not affect the game in
those steps. A consequence of this specialization is that the
Nash Equilibria for turn-based games are pure strategies (i.e.
deterministic policies) (Shapley, 1953), similar as in one-
player MDPs. This is not always true for general Markov
games.

3. Main Results
In this section, we present our algorithm and main theorems.
In particular, our algorithm is the first self-play algorithm
that achieves Õ(

√
T ) regret in Markov Games. We describe

the algorithm in Section 3.1, and present its theoretical
guarantee for general Markov games in Section 3.2. In
Section 3.3, we show that when specialized to turn-based
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games, the regret and runtime of our algorithm can be further
improved.

3.1. Algorithm description

To solve zero-sum Markov games, the main idea is to extend
the celebrated UCB (Upper Confidence Bounds) principle—
an algorithmic principle that achieves provably efficient
exploration in bandits (Auer et al., 2002) and single-agent
RL (Azar et al., 2017; Jin et al., 2018)—to the two-player
setting. Recall that in single-agent RL, the provably efficient
UCBVI algorithm (Azar et al., 2017) proceeds as

Algorithm (UCBVI for single-player RL): Com-
pute {Qup

h (s, a) : h, s, a} based on estimated tran-
sition and optimistic (upper) estimate of reward,
then play one episode with the greedy policy with
respect to Qup.

Regret bounds for UCBVI is then established by showing
and utilizing the fact that Qup remains an optimistic (upper)
estimate of the optimal Q? throughout execution of the
algorithm.

In zero-sum games, the two player have conflicting goals:
the max-player seeks to maximize the return and the min-
player seeks to minimize the return. Therefore, it seems
natural here to maintain two sets of Q estimates, one up-
per bounding the true value and one lower bounding the
true value, so that each player can play optimistically with
respect to her own goal. We summarize this idea into the
following proposal.

Proposal (Naive two-player extension of
UCBVI): Compute

{
Qup
h (s, a, b), Qlow

h (s, a, b)
}

based on estimated transition and {upper, lower}
estimates of rewards, then play one episode
where the max-player (µ) is greedy with respect
to Qup and the min-player (ν) is greedy with
respect to Qlow.

However, the above proposal is not yet a well-defined algo-
rithm: a greedy strategy µ with respect to Qup requires the
knowledge of how the other player chooses b, and vice versa.
Therefore, what we really want is not that “µ is greedy with
respect to Qup”, but rather that “µ is greedy with respect to
Qup when the other player uses ν”, and vice versa. In other
words, we rather desire that (µ, ν) are jointly greedy with
respect to (Qup, Qlow).

Our algorithm concretizes such joint greediness precisely,
building on insights from one-step matrix games: we choose
(µh, νh) to be the Nash equilibrium for the general-sum
game in which the payoff matrix for the max player is Qup

and for the min player is Qlow. In other words, both player

have their own payoff matrix (and they are not equal), but
they jointly determine their policies. Formally, we let (µ, ν)
be determined as

(µh(·|s), νh(·|s))
= NASH GENERAL SUM(Qup

h (s, ·, ·), Qlow
h (s, ·, ·))

for all (h, s), where NASH GENERAL SUM is a subroutine
that takes two matrices P,Q ∈ RA×B , and returns the
Nash equilibrium (φ, ψ) ∈ ∆A×∆B for general sum game,
which satisfies

φ>Pψ = max
φ̃

φ̃>Pψ, φ>Qψ = min
ψ̃
φ>Qψ̃. (6)

Such an equilibrium is guaranteed to exist due to the seminal
work of Nash (1951), and is computable by algorithms such
as the Lemke-Howson algorithm (Lemke & Howson, 1964).
With the NASH GENERAL SUM subroutine in hand, our
algorithm can be briefly described as

Our Algorithm (VI-ULCB): Compute{
Qup
h (s, a, b), Qlow

h (s, a, b)
}

based on esti-
mated transition and {upper, lower} estimates
of rewards, along the way determining policies
(µ, ν) by running the NASH GENERAL SUM sub-
routine on (Qup, Qlow). Play one episode
according to (µ, ν).

The full algorithm is described in Algorithm 1.

3.2. Guarantees for General Markov Games

We are now ready to present our main theorem.

Theorem 2 (Regret bound for VI-ULCB). For zero-sum
Markov games, Algorithm 1 (with choice of bonus βt =
c
√
H2Sι/t for large absolute constant c) achieves regret

Regret(K) ≤ O

(√
H3S2

[
max
h∈[H]

AhBh

]
Tι

)
≤ O

(√
H3S2ABTι

)
with probability at least 1− p, where ι = log(SABT/p).

We defer the proof of Theorem 2 into Appendix A.1.

Optimism in the face of uncertainty and best response
An implication of Theorem 2 is that a low regret can be
achieved via self-play, i.e. the algorithm plays with itself and
does not need an expert as its opponent. This is intriguing
because the regret is measured in terms of the suboptimality
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Algorithm 1 Value Iteration with Upper-Lower Confidence
Bound (VI-ULCB)

1: Initialize: for any (s, a, b, h), Qup
h (s, a, b) ← H ,

Qlow
h (s, a, b) ← 0, Nh(s, a, b) ← 0, Nh(s, a, b, s′) ←

0.
2: for episode k = 1, . . . ,K do
3: for step h = H,H − 1, . . . , 1 do
4: for (s, a, b) ∈ Sh ×Ah × Bh do
5: t = Nh(s, a, b);
6: Qup

h (s, a, b)←
min{r̂h(s, a, b) + [P̂hV up

h+1](s, a, b) + βt, H}
7: Qlow

h (s, a, b)←
max{r̂h(s, a, b) + [P̂hV low

h+1](s, a, b)− βt, 0}
8: end for
9: for s ∈ Sh do

10: (µh(·|s), νh(·|s))←
NASH GENERAL SUM(Qup

h (s, ·, ·), Qlow
h (s, ·, ·))

11: V up
h (s)←

∑
a,b µh(a|s)νh(b|s)Qup

h (s, a, b).
12: V low

h (s)←
∑
a,b µh(a|s)νh(b|s)Qlow

h (s, a, b).
13: end for
14: end for
15: Receive s1.
16: for step h = 1, . . . ,H do
17: Take action ah ∼ µh(sh), bh ∼ νh(sh).
18: Observe reward rh and next state sh+1.
19: Nh(sh, ah, bh)← Nh(sh, ah, bh) + 1.
20: Nh(sh, ah, bh, sh+1)← Nh(sh, ah, bh, sh+1)+1

21: P̂h(·|sh, ah, bh)← Nh(sh, ah, bh, ·)
Nh(sh, ah, bh)

.

22: r̂h(sh, ah, bh)← rh.
23: end for
24: end for

against the worst-case opponent:

Regret(K) =

K∑
k=1

[
V †,ν

k

1 (sk1)− V µ
k,†

1 (sk1)
]

=

K∑
k=1

[
max
µ

V µ,ν
k

1 (sk1)− V µ
k,νk

1 (sk1)

]
︸ ︷︷ ︸
gap between µk and the best response to νk

+

[
V µ

k,νk

1 (sk1)−min
ν
V µ

k,ν
1 (sk1)

]
︸ ︷︷ ︸
gap between νk and the best response to µk

.

(Note that this decomposition of the regret has a slightly dif-
ferent form from (5).) Therefore, Theorem 2 demonstrates
that self-play can protect against fully adversarial opponent
even when such a strong opponent is not explicitly available.

The key technical reason enabling such a guarantee is that
our Q estimates are optimistic in the face of both the un-
certainty of the game, as well as the best response from the

opponent. More precisely, we show that the (Qup, Qlow) in
Algorithm 1 satisfy with high probability

Qup,k
h (s, a, b) ≥ sup

µ
Qµ,ν

k

h (s, a, b)

≥ inf
ν
Qµ

k,ν
h (s, a, b) ≥ Qlow,k

h (s, a, b)

for all (s, a, b, h, k), where (Qup,k, Qlow,k) denote the run-
ning (Qup, Qlow) at the beginning of the k-th episode
(Lemma 1). In constrast, such a guarantee (and consequently
the regret bound) is not achievable if the upper and lower
estimates are only guaranteed to {upper, lower} bound the
values of the Nash equilibrium.

Translation to PAC bound Our regret bound directly im-
plies a PAC sample complexity bound for learning near-
equilibrium policies, based on an online-to-batch conver-
sion. We state this in the following Corollary, and defer the
proof to Appendix A.2.

Corollary 3 (PAC bound for VI-ULCB). Suppose the initial
state of Markov game is fixed at s1, then there exists a pair of
(randomized) policies (µ̂, ν̂) derived through the VI-ULCB
algorithm such that with probability at least 1− p (over the
randomness in the trajectories) we have

Eµ̂,ν̂
[
V †,ν̂(s1)− V µ̂,†(s1)

]
≤ ε,

as soon as the number of episodes K ≥ Ω(H4S2ABι/ε2),
where ι = log(HSAB/(pε)), and the expectation is over
the randomization in (µ̂, ν̂).

Runtime of Algorithm 1 Algorithm 1 involves the
NASH GENERAL SUM subroutine for computing the Nash
equilibrium of a general sum matrix game. However, it is
known that the computational complexity for approximat-
ing2 such an equilibrium is PPAD-complete (Daskalakis,
2013), a complexity class conjectured to not enjoy poly-
nomial or quasi-polynomial time algorithms. Therefore,
Algorithm 1 is strictly speaking not a polynomial time algo-
rithm, despite of being rather sample-efficient.

We note however that there exists practical implementa-
tions of the subroutine such as the Lemke-Howson algo-
rithm (Lemke & Howson, 1964) that can usually find the
solution efficiently. We will further revisit the computational
issue in Section 4, in which we design a computationally
efficient algorithm for zero-sum games with a slightly worse
Õ(T 2/3) regret.

2More precisely, our proof requires the subroutine to find a
(1 + 1/H)-multiplicative approximation of the equilibrium, that
is, for payoff matrices P,Q ∈ RA×B we desire vectors φ ∈ ∆A

and ψ ∈ ∆B such that maxφ̃ φ̃
>Pψ − minψ̃ φ

>Qψ̃ ≤ (1 +

1/H)φ>(P−Q)ψ.
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3.3. Guarantees for Turn-based Markov Games

We now instantiate Theorem 2 on turn-based games (intro-
duced in Section 2.1), in which the same algorithm enjoys
better regret guarantee and polynomial runtime. Recall that
in turn-based games, for all h, we have either Ah = 1 or
Bh = 1, therefore given maxhAh ≤ A and maxhBh ≤ B
we have

max
h

AhBh ≤ max {A,B} ≤ A+B,

and thus by Theorem 2 the regret of Algorithm 1 on turn-
based games is bounded by O(

√
H3S2(A+B)T ).

Further, since either Ah = 1 or Bh = 1, all the
NASH GENERAL SUM subroutines reduce to vector games
rather than matrix games, and can be trivially implemented
in polynomial (indeed linear) time. Indeed, suppose the
payoff matrices in (6) has dimensions P,Q ∈ RA×1, then
NASH GENERAL SUM reduces to finding φ ∈ ∆A and
ψ ≡ 1 such that

φ>P = max
φ̃

φ̃>P

(the other side is trivialized as ψ ∈ ∆1 has only one choice),
which is solved at φ = ea? where a? = arg maxa∈[A] Pa.
The situation is similar if P,Q ∈ R1×B .

We summarize the above results into the following corollary.
Corollary 4 (Regret bound for VI-ULCB on turn-based
games). For turn-based zero-sum Markov games, Algorithm
1 has runtime poly(S,A,B, T ) and achieves regret bound
O(
√
H3S2(A+B)Tι) with probability at least 1 − p,

where ι = log(SABT/p).

4. Computationally Efficient Algorithm
In this section, we show that the computational issue of
Algorithm 1 is not intrinsic to the problem: there exists
a sublinear regret algorithm for general zero-sum Markov
games that has a guaranteed polynomial runtime, with regret
scaling as O(T 2/3), slightly worse than that of Algorithm 1.
Therefore, computational efficiency can be achieved if one
is willing to trade some statistical efficiency (sample com-
plexity). For simplicity, we assume in this section that the
initial state s1 is fixed.

Value Iteration after Exploration At a high level, our
algorithm follows an explore-then-exploit approach. We be-
gin by running a (polynomial time) reward-free exploration
procedure REWARD FREE EXPLORATION(ε) on a small
number of episodes, which queries the MDP and outputs an
estimate (P̂, r̂). Then, we run value iteration on the empir-
ical version of Markov game with transition P̂ and reward
r̂, which finds its Nash equilibrium (µ̂, ν̂). Finally, the al-
gorithm simply plays the policy (µ̂, ν̂) for the remaining

Algorithm 2 Value Iteration after Exploration (VI-Explore)

1: (P̂, r̂)← REWARD FREE EXPLORATION(ε).
2: VH(s)← 0 for any s ∈ SH .
3: for step h = H − 1, . . . , 1 do
4: for (s, a, b) ∈ S ×A× B do
5: Qh(s, a, b)← r̂h(s, a, b) + [P̂hVh+1](s, a, b).
6: end for
7: for s ∈ S do
8: (µ̂h(·|s), ν̂h(·|s))←

NASH ZERO SUM(Qh(s, ·, ·)).
9: end for

10: end for
11: for all remaining episodes do
12: Play the game with policy (µ̂, ν̂).
13: end for

episodes. The full algorithm is described in Algorithm 2 in
the Appendix.

By “reward-free” exploration, we mean the procedure will
not use any reward information to guide exploration. Instead,
the procedure prioritize on visiting all possible states and
gathering sufficient information about their transition and
rewards, so that (P̂, r̂) are close to (P, r) in the sense that
the Nash equilibria of MG(P̂, r̂) and MG(P, r) are close,
where MG(P̂, r̂) denotes the Markov game with transition
P̂ and reward r̂.

This goal can be achieved by the following algorithm. For
any fixed state s, we can create an artificial reward r̃ defined
as r̃(s, a, b) = 1 and r̃(s′, a, b) = 0 for any s′ 6= s, a
and b. Then, we can treat C = A × B as a new action
set for a single agent, and run any standard reinforcement
learning algorithm with PAC or regret guarantees to find
a near-optimal policy π̃ of MDP(H,S, C,P, r̃). It can be
shown that the optimal policy for this MDP is the policy
that maximize the probability to reach state s. Therefore, by
repeatedly playing π̃, we can gather transition and reward
information at state s as well as we can. Finally, we repeat
the routine above for all state s. See Appendix B for more
details.

In this paper, we adapt the sharp treatments in Jin et al.
(2020) which studies reward-free exploration in the single-
agent MDP setting, and provide following guarantees for
the REWARD FREE EXPLORATION procedure.

Theorem 5 (PAC bound for VI-Explore). With probability
at least 1− p, REWARD FREE EXPLORATION(ε) runs for
c(H5S2ABι/ε2+H7S4ABι3/ε) episodes with some large
constant c, and ι = log(HSAB/(pε)), and outputs (P̂, r̂)
such that the Nash equilibrium (µ̂, ν̂) of MG(P̂, r̂) satisfies[

V †,ν̂(s1)− V µ̂,†(s1)
]
≤ ε.
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Importantly, such Nash equilibrium (µ̂, ν̂) of MG(P̂, r̂) can
be computed by Value Iteration (VI) using P̂ and r̂. VI only
calls NASH ZERO SUM subroutine, which takes a matrix
Q ∈ RA×B and returns the Nash equilibrium (φ, ψ) ∈
∆A ×∆B for zero-sum game, which satisfies

max
φ̃

φ̃>Qψ = φ>Qψ = min
ψ̃
φ>Qψ̃. (7)

This problem can by solved efficiently (in polyno-
mial time) by many existing algorithms designed for
convex-concave optimization (see, e.g. (Koller, 1994)),
and does not suffer from the PPAD-completeness that
NASH GENERAL SUM does.

The PAC bound in Theorem 5 can be easily converted into
a regret bound, which is presented as follows.

Corollary 6 (Polynomial time algorithm via explore-then–
exploit). For zero-sum Markov games, with probability at
least 1− p, Algorithm 2 runs in poly(S,A,B,H, T ) time,
and achieves regret bound

O
(

(H5S2ABT 2ι)
1
3 +
√
H7S4ABTι3

)
,

where ι = log(SABT/p).

5. Towards the Optimal Regret
We investigate the tightness of our regret upper bounds in
Theorem 2 and Corollary 4 through raising the question of
optimal regret in two-player Markov games, and making
initial progresses on it by providing lower bounds and new
upper bounds in specific settings. Specifically, we ask an

Open question: What is the optimal regret for general
Markov games (in terms of dependence on (H,S,A,B))?

It is known that the (tight) regret lower bound for single-
player MDPs is Ω(

√
SAT · poly(H)) (Azar et al., 2017).

By restricting two-player games to a single-player MDP
(making the other player dummy), we immediately have

Corollary 7 (Regret lower bound, corollary of Jaksch et al.
(2010), Theorem 5). The regret3 for any algorithm on turn-
based games (and thus also general zero-sum games) is
lower bounded by Ω(

√
H2S(A+B)T ).

Comparing this lower bound with the upper bound in Theo-
rem 2 (Õ(

√
S2ABT · poly(H)) regret for general games

and Õ(
√
S2(A+B)T · poly(H)) regret for turn-based

games), there are gaps in both the S-dependence and the
(A,B)-dependence.

Matching the lower bound on short-horizon games To-
wards closing the gap between lower and upper bounds, we

3This also applies to the weak regret defined in (8).

develop alternative algorithms in the special case where
each player only plays once, i.e. one-step general games
with H = 1 and two-step turn-based games. In these cases,
we show that there exists mirror descent type algorithms
that achieve an improved regret Õ(

√
S(A+B)T ) (and

thus matching the lower bounds), provided that we consider
a weaker notion of the regret defined as

Definition 8 (Weak Regret). The weak regret for any algo-
rithm that deploys policies (µk, νk) in episode k is defined
as

WeakRegret(K)

:= max
µ

K∑
k=1

V µ,ν
k

(sk1)−min
ν

K∑
k=1

V µ
k,ν(sk1).

(8)

The difference in the weak regret is that it uses fixed
opponents—as opposed to adaptive opponents—for mea-
suring the performance gap: the max is taken with respect
to a fixed µ for all episodes k = 1, . . . ,K, rather than a
different µ for each episode. By definition, we have for any
algorithm that WeakRegret(K) ≤ Regret(K).

With the definition of the weak regret in hand, we now
present our results for one-step games. Their proofs can be
found in Appendix C.

Theorem 9 (Weak regret for one-step simultaneous game,
adapted from Rakhlin & Sridharan (2013)). For one-step
simultaneous games (H = 1), there exists a mirror de-
scent type algorithm that achieves weak regret bound
WeakRegret(T ) ≤ Õ(

√
S(A+B)T ) with high proba-

bility.

Theorem 10 (Weak regret for two-step turn-based game).
For one-step turn-based games (H = 2), there exists a
mirror descent type algorithm that achieves weak regret
bound WeakRegret(T ) ≤ Õ(

√
S(A+B)T ) with high

probability.

Proof insights; bottleneck in multi-step case The im-
proved regret bounds in Theorem 9 and 10 are possible due
to availability of unbiased estimates of counterfactual Q
values, which in turn can be used in mirror descent type
algorithms with guarantees. Such unbiased estimates are
only achievable in one-step games as the two policies are
“not intertwined” in a certain sense. In contrast, in multi-
step games (where each player plays more than once), such
unbiased estimates of counterfactual Q values are no longer
available, and it is unclear how to construct a mirror de-
scent algorithm there. We believe it would be an important
open question to close the gap in multi-step games (as well
as the gap between regret and weak regret) for a further
understanding of exploration in games.
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6. Conclusion
In this paper, we studied the sample complexity of finding
the equilibrium policy in the setting of competitive rein-
forcement learning, i.e. zero-sum Markov games with two
players. We designed a self-play algorithm for zero-sum
games and showed that it can efficiently find the Nash equi-
librium policy in the exploration setting through establishing
a regret bound. Our algorithm—Value Iteration with Up-
per and Lower Confidence Bounds—builds on a principled
extension of UCB/optimism into the two-player case by
constructing upper and lower bounds on the value functions
and iteratively solving general sum subgames.

Towards investigating the optimal runtime and sample com-
plexity in two-player games, we provided accompanying
results showing that (1) the computational efficiency of our
algorithm can be improved by explore-then-exploit type al-
gorithms, which has a slightly worse regret; (2) the state
and action space dependence in the regret can be reduced
in the special case of one-step games via alternative mirror
descent type algorithms.

We believe this paper opens up many interesting directions
for future work. For example, can we design a computa-
tionally efficient algorithms that achieves Õ(

√
T ) regret?

What are the optimal dependence of the regret on (S,A,B)
in multi-step games? Also, the present results only work in
tabular games, and it would be of interest to investigate if
similar results can hold in presence of function approxima-
tion.
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