
Supplementary Materials: “Provable Self-Play Algorithms for Competitive
Reinforcement Learning”

Yu Bai * 1 Chi Jin * 2

A. Proofs for Section 3
A.1. Proof of Theorem 2

Notation: To be clear from the context, we denote the upper bound and lower bound Qup and Qlow computed at the k-th
episode as Qup,k and Qlow,k, and policies computed and used at the k-th episode as µk and νk.

Choice of bonus: βt = c
√
SH2ι/t for sufficient large absolute constant c.

Lemma 1 (ULCB). With probability at least 1− p, we have following bounds for any (s, a, b, h, k):

V up,k
h (s) ≥ sup

µ
V µ,ν

k

h (s), Qup,k
h (s, a, b) ≥ sup

µ
Qµ,ν

k

h (s, a, b) (1)

V low,k
h (s) ≤ inf

ν
V µ

k,ν
h (s), Qlow,k

h (s, a, b) ≤ inf
ν
Qµ

k,ν
h (s, a, b) (2)

Proof. By symmetry, we only need to prove the statement (1). For each fixed k, we prove this by induction from h = H + 1

to h = 1. For base case, we know at the (H + 1)-th step, V up,k
H+1(s) = supµ V

µ,νk

H+1 (s) = 0.

Now, assume the left inequality in (1) holds for (h+ 1)-th step, for the h-th step, we first recall the updates for Q functions
respectively:

Qup,k
h (s, a, b) = min

{
rh(s, a, b) + [P̂khV

up,k
h+1](s, a, b) + βt, H

}
sup
µ
Qµ,ν

k

h (s, a, b) =rh(s, a, b) + [Ph sup
µ
V µ,ν

k

h+1](s, a, b)

In case of Qup,k
h (s, a, b) = H , the right inequality in (1) clearly holds. Otherwise, we have:

Qup,k
h (s, a, b)− sup

µ
Qµ,ν

k

h (s, a, b) =[P̂khV
up,k
h+1](s, a, b)− [Pkh sup

µ
V µ,ν

k

h+1](s, a, b) + βt

=[P̂kh(V up,k
h+1 − sup

µ
V µ,ν

k

h+1)](s, a, b)− [(P̂kh − Ph) sup
µ
V µ,ν

k

h+1](s, a, b) + βt

Since P̂kh preserves the positivity, by induction assumption, we know the first term is positive. By Lemma 2, we know the
second term ≥ −βt. This finishes the proof of the right inequality in (1).

To prove the left inequality in (1), again recall the updates for V functions respectively:

V up,k
h (s) =µkh(s)>Qup,k

h (s, ·, ·)νkh(s) = max
φ∈∆A

φ>Qup,k
h (s, ·, ·)νkh(s)

sup
µ
V µ,ν

k

h (s) = max
φ∈∆A

φ>[sup
µ
Qµ,ν

k

h (s, ·, ·)]νkh(s)

*Equal contribution 1Salesforce Research 2Princeton University. Correspondence to: Yu Bai <yu.bai@salesforce.com>, Chi Jin
<chij@princeton.edu>.

Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

Provable Self-Play Algorithms

where the first equation is by the definition of policy µk the algorithm picks. Therefore:

V up,k
h (s)− sup

µ
V µ,ν

k

h (s) ≥ max
φ∈∆A

φ>[Qup,k
h − sup

µ
Qµ,ν

k

h](s, ·, ·)νkh(s) ≥ 0.

This finishes the proof.

Lemma 2 (Uniform Concentration). Consider value function class

Vh+1 = {V : Sh+1 → R | V (s) ∈ [0, H] for all s ∈ Sh+1}.

There exists an absolute constant c, with probability at least 1− p, we have:∣∣∣[(P̂kh − Ph)V](s, a, b)
∣∣∣ ≤ c√SH2ι/Nk

h (s, a, b) for all (s, a, b, k, h) and all V ∈ Vh+1.

Proof. We show this for one (s, a, b, k, h); the rest follows from a union bound over these indices (and results in a larger
logarithmic factor.) Throughout this proof we let c > 0 to be an absolute constant that may vary from line to line.

Let Vε be an ε-covering of Vh+1 in the∞ norm (that is, for any V ∈ Vh+1 there exists V̂ ∈ Vε such that sups |V (s) −
V̂ (s)| ≤ ε.) We have |Vε| ≤ (1/ε)S , and by Hoeffding inequality and a union bound (over both V̂ and Nk

h ∈ [K]), we have
with probability at least 1− p that∣∣∣∣∣ sup

V̂ ∈Vε

[
(P̂kh − Ph)V̂

]∣∣∣∣∣ ≤
√
H2(S log(1/ε) + log(K/p))

Nk
h (s, a, b)

.

Taking ε = c
√
H2Sι/K, the above implies that∣∣∣∣∣ sup

V̂ ∈Vε

[
(P̂kh − Ph)V̂

]∣∣∣∣∣ ≤ c
√

H2Sι

Nk
h (s, a, b)

.

Meanwhile, with this choice of ε, for any V ∈ Vh+1, there exists V̂ ∈ Vε such that sups |V (s)− V̂ (s)| ≤ ε, and therefore

∣∣∣[(P̂kh − Ph)V
]
−
[
(P̂kh − Ph)V̂

]∣∣∣ ≤ 2ε = c

√
H2Sι

K
≤ c

√
H2Sι

Nk
h (s, a, b)

.

Combining the preceding two bounds, we have that the desired concentration holds for all V ∈ Vh+1.

Proof of Theorem 2. By Lemma 1, we know the regret,

Regret(K) =

K∑
k=1

[
sup
µ
V µ,ν

k

1 (sk1)− inf
ν
V µ

k,ν
1 (sk1)

]
≤

K∑
k=1

[V up,k
1 (sk1)− V low,k

1 (sk1)]

On the other hand, by the updates in Algorithm 1, we have:

[V up,k
h − V low,k

h](skh) =µkh(skh)>[Qup,k
h −Qlow,k

h](skh, ·, ·)νkh(skh),

=[Qup,k
h −Qlow,k

h](skh, a
k
h, b

k
h) + ξkh

≤[P̂kh(V up,k
h+1 − V

low,k
h+1)](skh, a

k
h, b

k
h) + 2βkh + ξkh

≤[P(V up,k
h+1 − V

low,k
h+1)](skh, a

k
h, b

k
h) + 4βkh + ξkh

=(V up,k
h+1 − V

low,k
h+1)(skh+1) + 4βkh + ξkh + ζkh

Provable Self-Play Algorithms

the last inequality is due to Lemma 2. (Recall that βkh := βNk
h (skh,a

k
h,b

k
h) = c

√
H2Sι/Nk

h (skh, a
k
h, b

k
h) when Nk

h ≥ 1.

In the case when Nk
h = 0, we can still define βkh = β0 := c

√
H2Sι, and the above inequality still holds as we have

Qup,k
h −Qlow,k

h = H ≤ β0.) Above, ξkh and ζkh are defined as

ξkh =Ea∼µk
h(skh),b∼νk

h(skh)[Q
up,k
h −Qlow,k

h](skh, a, b)− [Qup,k
h −Qlow,k

h](skh, a
k
h, b

k
h)

ζkh =Es∼Ph(·|skh,a
k
h,b

k
h)[(V

up,k
h+1 − V

low,k
h+1)](s)− [V up,k

h+1 − V
low,k
h+1)](skh+1)

Both ξkh and ζkh are martingale difference sequence, therefore by the Azuma-Hoeffding inequality we have with probability
1− p that ∑

k,h

ξkh ≤ O(
√
HTι) and

∑
k,h

ζkh ≤ O(
√
HTι).

Therefore, by our choice of bonus βt and the Pigeonhole principle, we have

K∑
k=1

[
V up,k

1 (sk1)− V low,k
1 (sk1)

]
≤
∑
k,h

(
4βkh + ξkh + ζkh

)

≤
∑

h,s∈Sh,a∈Ah,b∈Bh

c ·
NK

h (s,a,b)∑
t=1

√
H2Sι

t
+O(

√
HTι)

=
∑

h,s∈Sh,a∈Ah,b∈Bh

O
(√

H2Sι ·NK
h (s, a, b)

)
+O(

√
HTι)

≤
∑
h∈[H]

O
(√

H2S2AhBhKι
)
≤ O

(√
H4S2

[
max
h

AhBh

]
Kι

)
= O

(√
H3S2

[
max
h

AhBh

]
Tι

)
.

This finishes the proof.

A.2. Proof of Corollary 3

The proof is based on a standard online-to-batch conversion (e.g. (Section 3.1, Jin et al., 2018).) Let (µ̂k, ν̂k) denote the
policies deployed by the VI-ULCB algorithm in episode k. We sample µ̂, ν̂ uniformly as

µ̂ ∼ Unif
{
µ1, . . . , µK

}
and ν̂ ∼ Unif

{
ν1, . . . , νK

}
.

Taking expectation with respect to this sampling gives

Eµ̂,ν̂
[
V †,ν̂(s1)− V µ̂,†(s1)

]
=

1

K

K∑
k=1

[
V †,ν

k

(s1)− V µ
k,†(s1)

]
=

1

K
Regret(K) ≤ Õ

(√
H3S2ABT

K

)
≤ Õ

(√
H4S2AB

K

)
,

where we have applied Theorem 2 to bound the regret with high probability. Choosing K ≥ Õ(H4S2AB/ε2), the right
hand side is upper bounded by ε, which finishes the proof.

B. Proofs for Section 4
In this section, we prove Theorem 5 and Corollary 6 based on the following lemma about subroutine RE-
WARD FREE EXPLORATION. We will defer the proof of this Lemma to Appendix D.

Lemma 3. Under the preconditions of Theorem 5, with probability at least 1− p, for any policy µ, ν, we have:

|V̂ µ,ν1 (s1)− V µ,ν1 (s1)| ≤ ε/2 (3)

where V̂ , V are the value functions of MG(P̂, r̂) and MG(P, r).

Provable Self-Play Algorithms

B.1. Proof of Theorem 5

Since both inf and sup are contractive maps, by Lemma 3, we have:

| inf
ν
V µ̂,ν1 (s1)− inf

ν
V̂ µ̂,ν1 (s1)| ≤ ε/2

| sup
µ
V µ,ν̂1 (s1)− sup

µ
V̂ µ,ν̂1 (s1)| ≤ ε/2

Since (µ̂, ν̂) are the Nash Equilibria for MG(P̂, r̂), we have infν V̂
µ̂,ν
1 (s1) = supµ V̂

µ,ν̂
1 (s1). This gives:

sup
µ
V µ,ν̂1 (s1)− inf

ν
V µ̂,ν1 (s1) ≤| sup

µ
V µ,ν̂1 (s1)− sup

µ
V̂ µ,ν̂1 (s1)|+ | sup

µ
V̂ µ,ν̂1 (s1)− inf

ν
V̂ µ̂,ν1 (s1)|

+ | inf
ν
V̂ µ̂,ν1 (s1)− inf

ν
V µ̂,ν1 (s1)| ≤ ε.

which finishes the proof.

B.2. Proof of Corollary 6

Recall that Theorem 5 requires T0 = c(H5S2ABι/ε2 + H7S4ABι3/ε) episodes to obtain an ε-optimal policies in the
sense:

sup
µ
V µ,ν̂1 (s1)− inf

ν
V µ̂,ν1 (s1) ≤ ε.

Therefore, if the agent plays the Markov game for T episodes, it can use first T0 episodes to explore to find ε-optimal
policies (µ̂, ν̂), and use the remaining T − T0 episodes to exploit (always play (µ̂, ν̂)). Then, the total regret will be upper
bounded by:

Regret(K) ≤ T0 × 1 + (T − T0)× ε

Finally, choose

ε = max

{(
H5S2ABι

T

) 1
3

,

(
H7S4ABι3

T

) 1
2

}
we finishes the proof.

C. Proofs for Section 5
C.1. Proof of Theorem 9

The theorem is almost an immediate consequence of the general result on mirror descent (Rakhlin & Sridharan, 2013).
However, for completeness, we provide a self-contained proof here. The main ingredient in our proof is to show that a
“natural” loss estimator satisfies desirable properties—such as unbiasedness and bounded variance—for the standard analysis
of mirror descent type algorithms to go through.

Special case of S = 1 We first deal with the case of S = 1. As the game only has one step (H = 1), it reduces to a
zero-sum matrix game with a noisy bandit feedback, i.e. there is an unknown payoff matrix R ∈ [0, 1]A×B , the algorithm
plays policies (µk, νk) ∈ ∆A ×∆B , observes feedback r(ak, bk) = Rak,bk where (ak, bk) ∼ µk × νk, and the weak regret
has form

WeakRegret(T) = max
µ

T∑
k=1

µ>Rνk −min
ν

K∑
k=1

µ>kRν.

Note that this regret can be decomposed as

WeakRegret(T) = max
µ

T∑
k=1

µ>Rνk −
T∑
k=1

µ>kRνk︸ ︷︷ ︸
I

+

T∑
k=1

µ>kRνk −min
ν

T∑
k=1

µ>kRν︸ ︷︷ ︸
II

.

Provable Self-Play Algorithms

We now describe the mirror descent algorithm for the max-player and show that it achieves bound I ≤ Õ(
√
AT) regardless

of the strategy of the min-player. A similar argument on the min-player will yield a regret bound II ≤ Õ(
√
BT) on the

second part of the above regret and thus show WeakRegret(T) ≤ Õ(
√

(A+B)T).

For all k ∈ [T], define the loss vector `k ∈ RA for the max-player as

`k(a) := e>aRνk, for all a ∈ A.

With this definition the regret I can be written as

I = max
a

T∑
k=1

`k(a)−
T∑
k=1

µk(a)`k(a).

Now, define the loss estimate ˜̀k(a) as

˜̀
k(a) := 1−

1
{
ak = a

}
µk(a)

[
1− r(a, bk)

]
.

We now show that this loss estimate satisfies the following properties:

(1) Computable: the reward r(a, bk) is seen when a = ak, and the loss estimate is equal to 1 for all a 6= ak.

(2) Bounded: we have ˜̀k(a) ≤ 1 almost surely for all k and a.

(3) Unbiased estimate of `k(a). For any fixed state a ∈ A, we have

E
[˜̀
k(a)|Fk−1

]
= 1− µk(a) · 1

µk(a)
Ebk∼νk

[
1− r(a, bk)

]
= 1−

(
1− Ebk∼νk [r(a, bk)]

)
= Ebk∼νk [r(a, bk)] = e>aRνk = `k(a).

(4) Bounded variance: one can check that

E

[∑
a∈A

µk(a)˜̀k(a)2
∣∣Fk−1

]

= Ebk∼νk

[∑
a∈A

µk(a)
(
1− 2

(
1− r(a, bk)

))
+
∑
a∈A

(1− r(a, bk))2

]
.

Letting ya := 1− r(a, bk), we have ya ∈ [0, 1] almost surely (though it is random), and thus∑
a

µk(a)(1− 2ya) +
∑
a

y2
a ≤ 1− 2 min

a
ya +

∑
a

y2
a =

∑
a6=a∗

y2
a + (ya? − 1)2 ≤ A,

where a? = arg mina∈A ya.

Therefore, adapting the proof of standard regret-based bounds for the mirror descent (EXP3) algorithm (e.g. (Lattimore &
Szepesvári, 2018, Theorem 11.1)), using the loss estimate ˜̀k(a) and taking the step-size to be η+ ≡

√
logA/AT , we have

the regret bound

WeakRegret+ ≤ C ·
√
AT logA,

where C > 0 is an absolute constant. This shows the desired bound Õ(
√
AT) for term I in the regret, and a similar bound

Õ(
√
BT) holds for term II by using the same algorithm on the min-player.

Provable Self-Play Algorithms

Algorithm 1 Mirror descent for one-step turn-based game
input Learning rate schedule (η+,k(s), η−,k(s)).

Initialize: Set (µ, ν) to be uniform: µ(a|s1) = 1
A for all (s1, a) and ν(b|s2) = 1

B for all (s2, b).
for episode k = 1, . . . ,K do

Receive s1.
Play action a ∼ µ(·|s1). Observe reward r1(s1, a) and next state s2.
Play action b ∼ ν(·|s2). Observe reward r2(s2, b).
Compute

{
Q̃k1(sk1 , a)

}
a∈A

according to (4) and update

µk+1(a|sk1) ∝ µk(a|sk1) · exp(η+,k(sk1)Q̃k1(sk1 , a)).

Compute
{
Q̃k2(sk2 , b)

}
b∈B

according to (5) and update

νk+1(b|sk2) ∝ νk(b|sk2) · exp(−η−,k(sk2)Q̃k2(sk2 , b)).

end for

Case of S > 1 The case of S > 1 can be viewed as S independent zero-sum matrix games. We can let both players
play the each matrix game independently using an adaptive step-size sequence (such as the EXP3++ algorithm of Seldin &
Slivkins (2014)) so that on the game with initial state s ∈ S they achieve regret bound

Õ(
√

(A+B)Ts),

where Ts denotes the number of games that has context s. Summing the above over s ∈ S gives the regret bound

WeakRegret(T) ≤
∑
s

Õ(
√

(A+B)Ts) ≤ Õ(
√
S(A+B)T),

as
∑
s Ts = T and thus

∑
s

√
Ts ≤

√
ST by Cauchy-Schwarz.

C.2. Proof of Theorem 10

We first describe our algorithm for one-step turn-based games (H = 2.) Note that this is not equivalent to a zero-sum matrix
game, as there is an unknown transition dynamics involved.

As both the max and min player only have one turn to play: µ = {µ1} and ν = {ν2}, in this section we will abuse notation
slightly and use (µ, ν) to denote (µ1, ν2). We will also use (A,B) to denote (A1,B2) for similar reasons.

We now present our mirror descent based algorithm for one-step turn-based games. Define the loss estimates

Q̃k1(sk1 , a) := 2−
1
{
ak = a

}
µk(a|sk1)

·
[
2− (r(sk1 , a) + r(sk2 , b

k))
]

for all a ∈ A, (4)

Q̃k2(sk2 , b) := 1−
1
{
bk = b

}
νk(b|sk2)

·
[
1− r(sk2 , b)

]
for all b ∈ B. (5)

The full algorithm is described in Algorithm 1.

We are now in position to prove the theorem.

Provable Self-Play Algorithms

Proof of Theorem 10 We begin by decomposing the weak regret into two parts:

WeakRegret(T) = max
µ

K∑
k=1

V µ,ν
k

1 (sk1)−min
ν

K∑
k=1

V µ
k,ν

1 (sk1)

= max
µ

K∑
k=1

V µ,ν
k

1 (sk1)−
K∑
k=1

V µ
k,νk

1 (sk1)︸ ︷︷ ︸
WeakRegret+

+

K∑
k=1

V µ
k,νk

1 (sk1)−min
ν

K∑
k=1

V µ
k,ν

1 (sk1)︸ ︷︷ ︸
WeakRegret−

.

In the following, we show that both WeakRegret+ ≤ O(
√
SATι) and WeakRegret− ≤ O(

√
SBTι), which when

combined gives the desired result.

Bounding WeakRegret+ We first consider the case that the initial state is fixed, i.e. sk1 ≡ s1 for some fixed s1 ∈ S1 and
all k. In this case, we have for any µ that

V µ,ν
k

1 (s1) =
∑
a∈A

µ(a|s1)Qµ,ν
k

1 (s1, a) =
〈
Qµ,ν

k

1 (s, ·), µ(·|s1)
〉
a

=
〈
Q·,ν

k

1 (s1, ·), µ(·|s1)
〉
a
.

Above, the last equality follows by the fact the max player will not play again after the initial action in one-step games, i.e.
Qµ,ν1 (s, a) does not depend on µ. Applying the above expression, WeakRegret+ can be rewritten as

WeakRegret+ = max
µ

K∑
k=1

〈
Q·,ν

k

1 (s1, ·), µ(·|s1)
〉
a
−

K∑
k=1

〈
Q·,ν

k

1 (s1, ·), µk(·|s1)
〉
a
,

Therefore, bounding WeakRegret+ reduces to solving an online linear optimization problem over ∆A with bandit feedback,

where at each step we play µk and then suffer a linear loss with loss vector
{
Q·,ν

k

1 (s1, ·)
}
a∈A

.

Now, recall that our loss estimate in (4), adapted to the setting that sk1 ≡ s1 can be written as:

Q̃k1(s1, a) = 2−
1
{
ak = a

}
µk(a|s1)

·
[
2− (r(s1, a) + r(sk2 , b

k))
]
.

We now show that this loss estimate satisfies the following properties:

(1) Computable: the reward r(s1, a) is seen when a = ak, and the loss estimate is equal to 2 for all other a 6= ak.

(2) Bounded: we have Q̃k1(s1, a) ≤ 2 for all k and a.

(3) Unbiased estimate of Q·,ν
k

1 (s1, ·). For any fixed state a, when ak = a happens, sk2 is drawn from the MDP transition
P1(·|s1, a). Therefore, letting Fk−1 be the σ-algebra that encodes all the information observed at the end of episode
k − 1, we have that

Q̃k1(s1, a)|Fk−1
d
= 2−

1
{
ak = a

}
µk(a|s1)

·
[
2− r(s1, a)− r(s(a)

2 , b(a))
]
,

where d
= denotes equal in distribution, s(a)

2 ∼ P1(·|s1, a) is an “imaginary” state had we played action a at step 1, and
b(a) ∼ νk(·|s(a)

2). Therefore we have

E
[
Q̃k1(s1, a)

∣∣∣Fk−1

]
= Ea∼µk(·|s1)

[
2− 1 {a = a}

µk(a|s1)
E
s
(a)
2 ,b(a)

[
2− r(s1, a)− r(s(a)

2 , b(a))
]]

= E
s
(a)
2 ,b(a)

[
2− µk(a|s1)

µk(a|s1)
·
[
2− (r(s1, a) + r(s

(a)
2 , b(a)))

]]
= E

s
(a)
2 ,b(a) [r(s1, a) + r(s

(a)
2 , b(a))] = Q·,ν

k

1 (s1, a).

Provable Self-Play Algorithms

(4) Bounded variance: one can check that

E

[∑
a∈A

µk(a|s1)Q̃k1(s1, a)2
∣∣Fk−1

]
= 4

∑
a∈A

µk(a|s1)
(

1− E
s
(a)
2 ,b(a) [2− r(s1, a)− r(s(a)

2 , b(a))]
)

+
∑
a∈A

E
s
(a)
2 ,b(a) [(2− r(s1, a)− r(s(a)

2 , b(a)))2]

Letting pa := µK(a|s1) and ya := 2− r(s1, a)− r(s(a)
2 , b

(a)
2), we have ya ∈ [0, 2] almost surely (though it is random),

and thus

4
∑
a

pa(1− ya) +
∑
a

y2
a ≤ 4(1−min

a
ya) +

∑
a

y2
a =

∑
a 6=a∗

y2
a + (ya∗ − 2)2 ≤ 4A,

where a∗ = arg mina∈A ya.

Therefore, adapting the proof of standard regret-based bounds for the mirror descent (EXP3) algorithm (e.g. (Lattimore &
Szepesvári, 2018, Theorem 11.1)), taking η+ ≡

√
logA/AT , we have the regret bound

WeakRegret+ ≤ C ·
√
AT logA,

where C > 0 is an absolute constant.

In the general case where sk1 are not fixed and can be (in the worst case) adversarial, the design of Algorithm 1 guarantees that
for any s ∈ S, µ(·|s) gets updated after the k-th episode only if sk1 = s; otherwise the µ(·|s) is left unchanged. Therefore,
the algorithm behaves like solving S bandit problems independently, so we can sum up all the one-state regret bounds of the
above form and obtain that

WeakRegret+ ≤
∑
s∈S

C
√
ATs logA

(i)

≤ C
√
SAT logA = O(

√
SATι).

where Ts := #
{
k : sk1 = s

}
denotes the number of occurrences of s among all the initial states, and (i) uses that

∑
s Ts = T

and the Cauchy-Schwarz inequality (or pigeonhole principle). Note that we does not know {Ts}s∈S before the algorithm
starts to play and thus cannot use η+(s) =

√
logA/ATs. We instead use the EXP3++ algorithm (Seldin & Slivkins, 2014)

whose step-size η+,k(s) =
√

logA/ANk(s) is computable at each episode k.

Bounding WeakRegret− For any ν define r(s2, ν(s2)) := Eb∼ν(·|s2)[r(s2, b)] for convenience. We have

WeakRegret− =

K∑
k=1

V µ
k,νk

(sk1)−min
ν

K∑
k=1

V µ
k,ν(sk1)

=

K∑
k=1

Ea∼µk(·|s1)

[
r(sk1 , a) + P1[r(s2, ν

k(s2))](sk1 , a)
]

−min
ν

K∑
k=1

Ea∼µk(·|s1)

[
r(sk1 , a) + P1[r(s2, ν(s2))](sk1 , a)

]
(i)
= Ea∼µk(·|s1)

[
K∑
k=1

r(sk1 , a) + P1[r(s2, ν
k(s2))](sk1 , a)

]

−
K∑
k=1

Ea∼µk(·|s1)

[
r(sk1 , a) + P1[r(s2, ν

?(s2))](sk1 , a)
]

=

K∑
k=1

Ea∼µk(·|s1),s2∼P1(·|sk1 ,a)[r(s2, ν
k(s2))− r(s2, ν

?(s2))],

Provable Self-Play Algorithms

where (i) follows from the fact that if we define ν?(s2) = arg minb′ r(s2, b
′), then ν? is optimal at every state s2 and thus

also attains the minimum outside. Defining fk(s2) = r(s2, ν
k(s2))− r(s2, ν

?(s2)), we have that fk(s2) ∈ [0, 1] and is a
fixed function of s2 before playing episode k. Thus, if we define

∆k = Ea,s2 [fk(s2)]− fk(sk2),

then ∆k is a bounded martingale difference sequence adapted to Fk−1, so by the Azuma-Hoeffding inequality we have with
probability at least 1− δ that ∣∣∣∣∣

K∑
k=1

∆k

∣∣∣∣∣ ≤ C√K log(1/δ) = C
√
T log(1/δ).

On this event, we have

WeakRegret− =

K∑
k=1

fk(sk2) +

K∑
k=1

∆k

≤
K∑
k=1

[
r(sk2 , ν

k(s2))− r(s2, ν
?(s2))

]
︸ ︷︷ ︸

I

+C
√
K log(1/δ).

The first term above is the regret for the contextual bandit problem (with context s2) that the min player faces. Further,
the min player in Algorithm 1 plays the mirror descent (EXP3) algorithm independently for each context s2. Therefore,
by standard regret bounds for mirror descent (e.g. Theorem 11.1, (Lattimore & Szepesvári, 2018)) we have (choosing
η− ≡

√
logB/T in the fixed s2 case, and using the EXP3++ scheduling (Seldin & Slivkins, 2014)) for the contextual case),

we have
I ≤

∑
s∈S2

C
√
BTs logB ≤ C

√
SBT logB,

which combined with the above bound gives that with high probability

WeakRegret− ≤ O(
√
SBTι),

where ι = log(SABT/δ).

D. Subroutine REWARD FREE EXPLORATION

In this section, we present the REWARD FREE EXPLORATION algorithm, as well as the proofs for Lemma 3. The algorithm
and results presented in this section is simple adaptation of the algorithm in Jin et al. (2020), which studies reward-free
exploration in the single-agent MDP setting.

Since the guarantee of Lemma 3 only involves the evaluation of the value under fixed policies, it does not matter whether
players try to maximize the reward or minimize the reward. Therefore, to prove Lemma 3 in this section, with out loss of
generality, we will treat this Markov game as a single player MDP, where the agent take control of both players’ actions in
MG. For simplicity, prove for the case S1 = S2 = · · · = SH , A1 = A2 = · · · = AH = A. It is straightforward to extend
the proofs in this section to the setting where those sets are not equal.

The algorithm is described in Algorithm 2, which consists of three loops. The first loop computes a set of policies Ψ. By
uniformly sampling policy within set Ψ, one is guaranteed visit all “significant” states with reasonable probabilities. The
second loop simply collecting data from such sampling procedure for N episodes. The third loop computes empirical
transition and empirical reward by averaging the observation data collected in the second loop. We note Algorithm 2 use
subroutine EULER, which is the algorithm presented in Zanette & Brunskill (2019).

We can prove the following lemma, where Lemma 3 is a direct consequence of Lemma 4.

Provable Self-Play Algorithms

Algorithm 2 REWARD FREE EXPLORATION

1: Input: iteration number N0, N .
2: set policy class Ψ← ∅, and dataset D ← ∅.
3: for all (s, h) ∈ S × [H] do
4: rh′(s

′, a′)← 1[s′ = s and h′ = h] for all (s′, a′, h′) ∈ S ×A× [H].
5: Φ(s,h) ← EULER(r,N0).
6: πh(·|s)← Uniform(A) for all π ∈ Φ(s,h).
7: Ψ← Ψ ∪ Φ(s,h).
8: end for
9: for n = 1 . . . N do

10: sample policy π ∼ Uniform(Ψ).
11: playM using policy π, and observe the trajectory zn = (s1, a1, r1, . . . , sH , aH , rH , sH+1).
12: D ← D ∪ {zn}
13: end for
14: for all (s, a, h) ∈ S ×A× [H] do
15: Nh(s, a)←

∑
(sh,ah)∈D 1[sh = s, ah = a].

16: Rh(s, a)←
∑

(sh,ah,rh)∈D rh1[sh = s, ah = a].
17: r̂h(s, a)← Rh(s, a)/Nh(s, a).
18: for all s′ ∈ S do
19: Nh(s, a, s′)←

∑
(sh,ah,sh+1)∈D 1[sh = s, ah = a, sh+1 = s′].

20: P̂h(s′|s, a)← Nh(s, a, s′)/Nh(s, a).
21: end for
22: end for
23: Return: empirical transition P̂, empirical reward r̂.

Lemma 4. There exists absolute constant c > 0, for any ε > 0, p ∈ (0, 1), if we set N0 ≥ cS3AH6ι3/ε, and N ≥
cH5S2Aι/ε2 where ι := log(SAH/(pε)), then with probability at least 1− p, for any policy π:

|V̂ π1 (s1)− V π1 (s1)| ≤ ε/2

where V̂ , V are the value functions of MG(P̂, r̂) and MG(P, r), and (P̂, r̂) is the output of the algorithm 2.

Proof. The proof is almost the same as the proof of Lemma 3.6 in Jin et al. (2020) except that there is no error in estimating
r in Jin et al. (2020). We note the error introduced by the difference of r̂ and r is a same or lower order term compared to
the error introduced by the difference of P̂ and P. We can bound the former error using the similar treatment as in bounding
the latter error. This finishes the proof.

E. Connection to Algorithms against Adversarial Opponents and R-MAX

Similar to the standard arguments in online learning, we can use any algorithm with low regret against adversarial opponent
in Markov games to design a provable self-play algorithm with low regret.

Formally, suppose algorithm A has the following property. The max-player runs algorithm A and has following guarantee:

max
µ

K∑
k=1

V µ,ν
k

1 (sk1)−
K∑
k=1

V µ
k,νk

1 (sk1) ≤ f(S,A,B, T) (6)

where {µk}Kk=1 are strategies played by the max-player, {νk}Kk=1 are the possibly adversarial strategies played by the
opponent, and function f is a regret bound depends on S,A,B, T . Then, by symmetry, we can also let min-player runs the
same algorithm A and obtain following guarantee:

K∑
k=1

V µ
k,νk

1 (sk1)−min
ν

K∑
k=1

V µ
k,ν

1 (sk1) ≤ f(S,B,A, T).

Provable Self-Play Algorithms

This directly gives a self-play algorithm with following regret guarantee

WeakRegret(T) = max
µ

K∑
k=1

V µ,ν
k

1 (sk1)−min
ν

K∑
k=1

V µ
k,ν

1 (sk1)

= max
µ

K∑
k=1

V µ,ν
k

1 (sk1)−
K∑
k=1

V µ
k,νk

1 (sk1) +

K∑
k=1

V µ
k,νk

1 (sk1)−min
ν

K∑
k=1

V µ
k,ν

1 (sk1) ≤ f(S,A,B, T) + f(S,B,A, T)

However, we note there are two notable cases, despite they are also results with guarantees against adversarial opponent,
their regret are not in the form (6), thus can not be used to give self-play algorithm, and obtain regret bound in our setting.

The first case is R-MAX algorithm (Brafman & Tennenholtz, 2002), which studies Markov games, with guarantees in the
following form.

K∑
k=1

V µ
?,ν?

1 (sk1)−
K∑
k=1

V µ
k,νk

1 (sk1) ≤ g(S,A,B, T)

where {µk}Kk=1 are strategies played by the max-player, {νk}Kk=1 are the adversarial strategies played by the opponent,
(µ?, ν?) are the Nash equilibrium of the Markov game, g is a bound depends on S,A,B, T . We note this guarantee is
weaker than (6), and thus can not be used to obtain regret bound in the setting of this paper.

The second case is algorithms designed for adversarial MDP (see e.g. Zimin & Neu, 2013; Rosenberg & Mansour, 2019; Jin
et al., 2019), whose adversarial opponent can pick adversarial reward function. We note in Markov games, the action of the
opponent not only affects the reward received but also affects the transition to the next state. Therefore, these results for
adversaril MDP with adversarial rewards do not directly apply to the setting of Markov game.

References
Brafman, R. I. and Tennenholtz, M. R-max-a general polynomial time algorithm for near-optimal reinforcement learning.

Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is Q-learning provably efficient? In Advances in Neural Information
Processing Systems, pp. 4868–4878, 2018.

Jin, C., Jin, T., Luo, H., Sra, S., and Yu, T. Learning adversarial markov decision processes with bandit feedback and
unknown transition. arXiv preprint arXiv:1912.01192, 2019.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T. Reward-free exploration for reinforcement learning. arXiv preprint
arXiv:2002.02794, 2020.

Lattimore, T. and Szepesvári, C. Bandit algorithms. 2018.

Rakhlin, S. and Sridharan, K. Optimization, learning, and games with predictable sequences. In Advances in Neural
Information Processing Systems, pp. 3066–3074, 2013.

Rosenberg, A. and Mansour, Y. Online convex optimization in adversarial markov decision processes. arXiv preprint
arXiv:1905.07773, 2019.

Seldin, Y. and Slivkins, A. One practical algorithm for both stochastic and adversarial bandits. In ICML, pp. 1287–1295,
2014.

Zanette, A. and Brunskill, E. Tighter problem-dependent regret bounds in reinforcement learning without domain knowledge
using value function bounds. arXiv preprint arXiv:1901.00210, 2019.

Zimin, A. and Neu, G. Online learning in episodic markovian decision processes by relative entropy policy search. In
Advances in neural information processing systems, pp. 1583–1591, 2013.

