Learning De-biased Representations with Biased Representations
— Appendix -

A. Statistical Independence is Equivalent to Functional Orthogonality for Linear Maps

We provide a proof for the following lemma in §3.2.

Lemma 1. Assume that f and g are affine mappings f(r) = Ar+aand g(z) = Bx+b where A € R™*" and B € R\*",
Assume further that X is a normal distribution with mean p and covariance matrix 3. Then, f(X) 1L g(X) if and only if
ker(A)* Ly ker(B)*. IL denotes the independence. For a positive semi-definite matrix ¥, we define (r, s)x = (r, ¥s).
The orthogonality V' Ly, W of two subspaces V and W is defined likewise.

Proof. Due to linearity and normality, the independence f(X) 1 ¢(X) is equivalent to the covariance condition
Cov(f(X), g(X)) = 0. The covariance is computed as:

Cov(f(X),9(X)) = ExA(X — 2°)(X — 2°)"BT = AxB” (A1)
Note that
AYBT =0 < (v,AXBTw) =0V v,w <= (ATv,BTw)y =0V v,w
— im(AT) Ly im(BT) <= ker(A)* Ly ker(B)* (A2)
O
B. Algorithm

Algorithm 1 shows the detailed algorithm for solving the minimax problem in equation 3 of the main paper.

Algorithm 1 ReBias training

repeat
for each mini-batch samples z, y do
update f by solving arg min £(f, z,y) + AHSIC; (f(x), g(x)).
fer

update g by solving arg min £(g, z,y) — Ay HSIC: (f(2), g(x)).
geG

end for
until converge.

L(f,x,y) denotes the original loss for the main task, e.g., the cross entropy loss. We solve the minimax problem in a
mini-batch by employing the unbiased finite-sample estimator of HSIC, HSIC’f’l (U, V) (Song et al., 2012), to measure the
independence of f(X) and g(X) in the mini-batch, defined as
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Unbiased HSIC estimator: HSICY (U, V) =
m(m — 3)
C. Implementation Details

Training setup. We solve the minimax problem in algorithm 1 through alternating stochastic gradient descents with the
ADAM optimiser (Kingma & Ba, 2015). The regularisation parameters A and ), are set to 1.0 in all experiments. We used
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the batch sizes (256, 128, 128) for (Biased MNIST, ImageNet, action recognition) experiments. For Biased MNIST, the
learning rate is initially set to 0.001 and is decayed by factor 0.1 every 20 epochs. For ImageNet and action recognition,
learning rates are initially set to 0.001 and 0.1, respectively, and are decayed by cosine annealing. For action recognition,
we use f(x) and g(x) as the output logits for the sake of stable training. For each dataset, we train every method (vanilla,
biased, comparison methods, and ReBias) for the same number of epochs. We train the models with (80, 120, 120) epochs

for (Biased MNIST, ImageNet, action recognition) experiments. All experiments are implemented using PyTorch (Paszke
etal., 2019).

In addition, we observe that a better optimiser than ADAM, e.g. AdamP (Heo et al., 2020), helps performance improvements
in Biased MNIST and ImageNet experiments. Table A1 shows the results from the reference paper (Heo et al., 2020). For
future researches, we recommend using AdamP for better optimisation stability.

Table Al. AdamP experiments. Biased MNIST and 9-Class ImageNet benchmarks with AdamP (Heo et al., 2020).

Optimi Biased MNIST Unbiased acc. at p 9-Class ImageNet
ptimizer

999 997 995 990 avg. Biased UnBiased IN-A
Adam (Kingma & Ba, 2015) 22.9 63.0 74.9 87.0 61.9 93.8 92.6 31.2

AdamP (Heo et al., 2020) 30.5 +7.5) 70.9 (+7.9) 80.9 (+6.0) 89.6 (+2.6) 68.0 (+6.0)  95.2 (+1.4) 94.5 (+1.8) 32.9 (+1.7)

Architecture details for action recognition. The 3D-ResNet (Tran et al., 2019; Feichtenhofer et al., 2019) architecture
is widely used in various video understanding tasks. We choose 3D-ResNet 18 and 2D-ResNet 18 as F and G of our
method, respectively. The architectural details are in Table A2.

Training details for comparison methods. For training LearnedMixin, we pre-train and fix G before training F,
as done in the original paper. We pre-train G for 5 epochs for Biased MNIST, and 30 epochs for ImageNet and action
recognition. For training RUB1, we update F' and G simultaneously without pre-training G, as done in the original paper.
For training HEX, we substitute G with the neural grey-level co-occurrence matrix (NGLCM) to represent the “superficial

statistics”. For StylisedImageNet, we augment 9-class ImageNet with its stylised version (i.e., twice the original
dataset size), while maintaining the training setup as identical.

D. Standard Errors in Experimental Results

We report the standard errors of the main paper results in Table A3 (Biased MNIST), Table A4 (ImageNet) and Table A5
(action recognition).

E. Decision Boundary Visualisation for Toy Experiment

We show the decision boundaries of the toy experiment (§3.2) in Figure Al.
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Figure Al. Decision boundaries of toy data. GIF animations are at anonymous link.
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layer name | 3D-ResNetl8 | 2D-ResNetl8 | outputsize (TxCxHXW)
input | input video | input video | 8x3x224x224
convl 3 :tzizgz’sz 1 :512;232 8x32x112x112
pooll lxsfr>i<d7e;=r§ax 1><s?r>i<d7e‘,’=rgax 8x32x56x56
resplocky | [ 3332 1oy | [ 13332, 8x32x 5656
resblock3 | | ?igig o lea |] }igig 2 [ 8x64x28%28
resblockd | | ?igig 128 L2 | | }igig 3 [ 8x 128x 14 14
resblocks | | ?igig 230 l2 | | }igig 3 [ 8x256x7x7
final global eil%lg. pool global e;zg. pool # classes

Table A2. Network architecture for action recognisers. The kernel dimensions of convolution layers are denoted as [T x W x H, C]
along temporal (T), width (W), height (H), and channel (C) axes, respectively. The main difference between 3D-ResNet 18 and
2D-ResNet 18 is the temporal kernel size.

p Vanilla Biased HEX LearnedMixin RUBi ReBias (ours)
.999 104+0.5 10.+£0. 10.8+04 12.1 £0.8 137 +£0.7 227+ 04
997 334+ 12.1 10. £0. 16.6 0.8 50.2 +4.5 43.0+ 1.1 64.2 + 0.8
995 721+£19 10.+£0. 197+ 1.9 782 +0.7 90.4 + 0.4 76.0 + 0.6
.990 89.1+0.1 10.£0. 247+1.6 88.3 £ 0.7 93.6 + 0.4 88.1 + 0.6
avg. 51.2 10. 18.0 57.2 60.2 62.7

Table A3. Unbiased accuracy on Biased MNIST. Unbiased accuracies on varying train correlation p. Means and standard errors are
computed over three independent runs.

Model description Biased Unbiased IN-A
Vanilla (ResNet18) 90.8 £0.6 888+£06 249+1.1
Biased (BagNet 18) 67.7+03 659+03 188+1.1

StylisedIN (Geirhos et al., 2019) 884 +05 86606 246+14
LearnedMixin (Clark et al., 2019) 64.1+40 627+31 150+1.6
RUB1 (Cadene et al., 2019) 90.5£ 03 88.6+04 27.7+2.1
ReBias (ours) 91917 905+£17 29.6+1.6

Table A4. ImageNet results. We show results corresponding to /' = ResNet18 and G = BagNet18. IN-A indicates ImageNet-A.
Means and standard errors are computed over three independent runs.

Biased Unbiased

Model description (Kinetics) (Mimetics)
Vanilla (3D-ResNet 18) 545432 189+04
Biased (2D-ResNet 18) 50.7 £33 184 +23
LearnedMixin (Clark et al., 2019) 1234+23 1144+04
RUB1 (Cadene et al., 2019) 224+20 134+£1.5
ReBias (ours) 558 +3.1 224+1.3

Table A5. Action recognition results. We show results corresponding to F' = 3D-ResNet 18 and G = 2D-ResNet 18 with baseline
comparisons. Top-1 accuracies are reported. Means and standard errors are computed over three independent runs.
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F. Texture Clustering on ImageNet

In our ImageNet experiments (§4.3), we have obtained the proxy ground truths for texture bias using texture feature
clustering. We extract the texture features from images by computing the gram matrices of low-layer feature maps, as done
in texturisation methods (Gatys et al., 2015; Johnson et al., 2016), to capture the edge and colour cues. Specifically, we use
the feature maps from layer relul_2 of the ImageNet pre-trained VGG16 (Simonyan & Zisserman, 2015).

To approximate the texture ground truth labels, we cluster the texture features of 9-Class ImageNet data. We use the
mini-batch k-means algorithm with £ = 9 and batch size 1024. As k-means clustering is non-convex, we repeat the
ImageNet experiments with three different texture clustering results, each with different initialisation. We report the
averaged performances across the three trials.

We show an example texture clustering in Figure A2. Clusters capture similar texture patterns. The texture clusters exhibit
strong correlations with semantic classes. See Figure A3 for the top-3 correlated classes per cluster. For example, the “water”
texture is strongly associated with the turtle, fish, and bird classes. In the presence of such bias-class correlations, the model
is motivated to take the bias shortcut by utilising the texture cue for recognition. In this case, the model shows sub-optimal
performances on unusual class-texture combinations (e.g., crab on grass texture).

3 4 > g}
“Face” “Water” “Mammal”

Figure A2. Texture clusters. Example images from texture clusters. Each cluster is named according to the common texture pattern.

dog cat monkey turtle fish bird dog turtle monkey

(a) “Face” cluster samples (c) “Grass” cluster samples

Figure A3. Dominant texture-class correlations. For each cluster, we visualise its top-3 correlated classes.
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G. Further Analysis on Texture Bias of ImageNet-Trained Models

We further analyse the texture bias of the models trained on ImageNet (§4.3). Figure A4 shows the texture-class-wise
accuracies of the vanilla-trained ResNet 18 and ReBias-trained ResNet 1 8. To quantitatively measure the texture biases,
we count the number of samples for each texture-class pair (¢, y) (“population” Pop(c, y) in the main paper). For each class,
we define the dominant texture cluster as the largest cluster that contains > 30% of the class samples. 4 out of 9 classes
have the dominant texture cluster: (“Dog”, “Face”), (“Cat”, “Face”), (“Bird”, “Eye”), and (“Monkey”, ‘“Face”).

We measure the average accuracy over classes with dominant texture clusters (biased classes) and the average over the other
classes. We observe that ResNet 18 shows higher accuracy on biased classes (90.6%) than on less biased classes (86.3%),
signifying its bias towards texture. On the other hand, ReBias achieves similar accuracies 94.8% (biased classes) and
90.4% (unbiased classes). We stress that ReBias overcomes the bias and enhances generalisation across distributions even
if the training dataset itself is biased.
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(a) Vanilla trained ResNet 18. (b) ReBias trained ResNet 18.

Figure A4. Texture-class-wise accuracies on ImageNet. For every texture-class pair (B,Y) = (b,y), corresponding accuracy is
visualised. We ignore cells with population less than 10 (masked in gray).
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Figure AS. Kinetics and Mimetics datasets. We show examples of two classes, “canoeing or kayaking” and “surfing water”. Kinetics
samples are biased towards certain scene contexts (e.g. ocean), but Mimetics is relatively free from such context biases.

H. Action Recognition Datasets

We provide an overview of the action recognition datasets. Kinetics dataset (Carreira & Zisserman, 2017) has 300K videos
with 400 action classes. Mimetics dataset (Weinzaepfel & Rogez, 2019) has 713 videos with 50 action classes (subset of the
Kinetics classes). To simplify our investigation, we have sub-sampled 10 common classes from Kinetics and Mimetics:
“canoeing or kayaking”, “climbing a rope”, “driving car”, “golf driving”, “opening bottle”, “playing piano”, “playing
volleyball”, “shooting goal (soccer)”, “surfing water”, and “writing”. Examples of Kinetics and Mimetics are shown in
Figure AS. While Kinetics samples are biased towards static cues like scene and objects, Mimetics are relatively free of

such correlations. Mimetics is thus a suitable benchmark for validating the cross-bias generalisation performances.
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