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Abstract

Atari games have been a long-standing bench-
mark in the reinforcement learning (RL) commu-
nity for the past decade. This benchmark was
proposed to test general competency of RL al-
gorithms. Previous work has achieved good av-
erage performance by doing outstandingly well
on many games of the set, but very poorly in
several of the most challenging games. We pro-
pose Agent57, the first deep RL agent that out-
performs the standard human benchmark on all
57 Atari games. To achieve this result, we train a
neural network which parameterizes a family of
policies ranging from very exploratory to purely
exploitative. We propose an adaptive mechanism
to choose which policy to prioritize throughout
the training process. Additionally, we utilize a
novel parameterization of the architecture that al-
lows for more consistent and stable learning.

1. Introduction

The Arcade Learning Environment (ALE; Bellemare et al.,
2013) was proposed as a platform for empirically assess-
ing agents designed for general competency across a wide
range of games. ALE offers an interface to a diverse set
of Atari 2600 game environments designed to be engaging
and challenging for human players. As Bellemare et al.
(2013) put it, the Atari 2600 games are well suited for eval-
uating general competency in Al agents for three main rea-
sons: (i) varied enough to claim generality, (ii) each inter-
esting enough to be representative of settings that might be
faced in practice, and (iii) each created by an independent
party to be free of experimenter’s bias.

Agents are expected to perform well in as many games as
possible making minimal assumptions about the domain
at hand and without the use of game-specific information.
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Figure 1. Number of games where algorithms are better than the
human benchmark throughout training for Agent57 and state-of-
the-art baselines on the 57 Atari games.

Deep Q-Networks (DQN ; Mnih et al., 2015) was the first
algorithm to achieve human-level control in a large num-
ber of the Atari 2600 games, measured by human nor-
malized scores (HNS). Subsequently, using HNS to assess
performance on Atari games has become one of the most
widely used benchmarks in deep reinforcement learning
(RL), despite the human baseline scores potentially under-
estimating human performance relative to what is possi-
ble (Toromanoff et al., 2019). Nonetheless, human bench-
mark performance remains an oracle for “reasonable per-
formance” across the 57 Atari games. Despite all efforts,
no single RL algorithm has been able to achieve over 100%
HNS on all 57 Atari games with one set of hyperparam-
eters. Indeed, state of the art algorithms in model-based
RL, MuZero (Schrittwieser et al., 2019), and in model-free
RL, R2D2 (Kapturowski et al., 2018) surpass 100% HNS
on 51 and 52 games, respectively. While these algorithms
achieve well above average human-level performance on
a large fraction of the games (e.g. achieving more than
1000% HNS), in the games they fail to do so, they often
fail to learn completely. These games showcase particu-
larly important issues that a general RL algorithm should be
able to tackle. Firstly, long-term credit assignment: which
decisions are most deserving of credit for the positive (or
negative) outcomes that follow? This problem is particu-
larly hard when rewards are delayed and credit needs to
be assigned over long sequences of actions, such as in the
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games of Skiing or Solaris. The game of Skiing is a canon-
ical example due to its peculiar reward structure. The goal
of the game is to run downhill through all gates as fast as
possible. A penalty of five seconds is given for each missed
gate. The reward, given only at the end, is proportional to
the time elapsed. Therefore long-term credit assignment
is needed to understand why an action taken early in the
game (e.g. missing a gate) has a negative impact in the
obtained reward. Secondly, exploration: efficient explo-
ration can be critical to effective learning in RL. Games
like Private Eye, Montezuma’s Revenge, Pitfall! or Venture
are widely considered hard exploration games (Bellemare
et al., 2016; Ostrovski et al., 2017) as hundreds of actions
may be required before a first positive reward is seen. In or-
der to succeed, the agents need to keep exploring the envi-
ronment despite the apparent impossibility of finding pos-
itive rewards. These problems are particularly challenging
in large high dimensional state spaces where function ap-
proximation is required.

Exploration algorithms in deep RL generally fall into three
categories: randomized value functions (Osband et al.,
2016; Fortunato et al., 2017; Salimans et al., 2017; Plap-
pert et al., 2017; Osband et al., 2018), unsupervised policy
learning (Gregor et al., 2016; Achiam et al., 2018; Eysen-
bach et al., 2018) and intrinsic motivation (Schmidhuber,
1991; Oudeyer et al., 2007; Barto, 2013; Bellemare et al.,
2016; Ostrovski et al., 2017; Fu et al., 2017; Tang et al.,
2017; Burda et al., 2018; Choi et al., 2018; Savinov et al.,
2018; Puigdomenech Badia et al., 2020). Other work com-
bines handcrafted features, domain-specific knowledge or
privileged pre-training to side-step the exploration prob-
lem, sometimes only evaluating on a few Atari games (Ay-
tar et al., 2018; Ecoffet et al., 2019). Despite the encourag-
ing results, no algorithm has been able to significantly im-
prove performance on challenging games without deterio-
rating performance on the remaining games without relying
on human demonstrations (Pohlen et al., 2018). Notably,
amongst all this work, intrinsic motivation, and in partic-
ular, Never Give Up (NGU; Puigdomenech Badia et al.,
2020) has shown significant recent promise in improving
performance on hard exploration games. NGU achieves
this by augmenting the reward signal with an internally
generated intrinsic reward that is sensitive to novelty at two
levels: short-term novelty within an episode and long-term
novelty across episodes. It then learns a family of policies
for exploring and exploiting (sharing the same parameters),
with the end goal of obtaining the highest score under the
exploitative policy. However, NGU is not the most gen-
eral agent: much like R2D2 and MuZero are able to per-
form strongly on all but few games, so too NGU suffers
in that it performs strongly on a smaller, different set of
games to agents such as MuZero and R2D2 (despite be-
ing based on R2D2). For example, in the game Surround

R2D2 achieves the optimal score while NGU performs sim-
ilar to a random policy. One shortcoming of NGU is that it
collects the same amount of experience following each of
its policies, regardless of their contribution to the learning
progress. Some games require a significantly different de-
gree of exploration to others. Intuitively, one would want
to allocate the shared resources (both network capacity and
data collection) such that end performance is maximized.
We propose allowing NGU to adapt its exploration strategy
over the course of an agent’s lifetime, enabling specializa-
tion to the particular game it is learning. This is the first
significant improvement we make to NGU to allow it to be
a more general agent.

Recent work on long-term credit assignment can be cate-
gorized into roughly two types: ensuring that gradients cor-
rectly assign credit (Ke et al., 2017; Weber et al., 2019; For-
tunato et al., 2019) and using values or targets to ensure cor-
rect credit is assigned (Arjona-Medina et al., 2019; Hung
etal., 2019; Liu et al., 2019; Harutyunyan et al., 2019; Fer-
ret et al., 2020). NGU is also unable to cope with long-term
credit assignment problems such as Skiing or Solaris where
it fails to reach 100% HNS. Advances in credit assignment
in RL often involve a mixture of both approaches, as val-
ues and rewards form the loss whilst the flow of gradients
through a model directs learning.

In this work, we propose tackling the long-term credit as-
signment problem by improving the overall training sta-
bility, dynamically adjusting the discount factor, and in-
creasing the backprop through time window. These are
relatively simple changes compared to the approaches pro-
posed in previous work, but we find them to be effective.
Much recent work has explored this problem of how to dy-
namically adjust hyperparameters of a deep RL agent, e.g.,
approaches based upon evolution (Jaderberg et al., 2017),
gradients (Xu et al., 2018) or multi-armed bandits (Schaul
et al., 2019). Inspired by Schaul et al. (2019), we propose
using a simple non-stationary multi-armed bandit (Garivier
& Moulines, 2008) to directly control the exploration rate
and discount factor to maximize the episode return, and
then provide this information to the value network of the
agent as an input. Unlike Schaul et al. (2019), 1) it controls
the exploration rate and discount factor (helping with long-
term credit assignment), and 2) the bandit controls a family
of state-action value functions that back up the effects of
exploration and longer discounts, rather than linearly tilt-
ing a common value function by a fixed functional form.

In summary, our contributions are as follows:

1. A new parameterization of the state-action value func-
tion that decomposes the contributions of the intrinsic
and extrinsic rewards. As a result, we significantly in-
crease the training stability over a large range of intrinsic
reward scales.
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2. A meta-controller: an adaptive mechanism to select
which of the policies (parameterized by exploration rate
and discount factors) to prioritize throughout the train-
ing process. This allows the agent to control the ex-
ploration/exploitation trade-off by dedicating more re-
sources to one or the other.

3. Finally, we demonstrate for the first time performance
that is above the human baseline across all Atari 57
games. As part of these experiments, we also find that
simply re-tuning the backprop through time window to
be twice the previously published window for R2D2
led to superior long-term credit assignment (e.g., in So-
laris) while still maintaining or improving overall per-
formance on the remaining games.

These improvements to NGU collectively transform it into
the most general Atari 57 agent, enabling it to outperform
the human baseline uniformly over all Atari 57 games.
Thus, we call this agent: Agent57.

2. Background: Never Give Up (NGU)

Our work builds on top of the NGU agent, which combines
two ideas: first, the curiosity-driven exploration, and sec-
ond, distributed deep RL agents, in particular R2D2.

NGU computes an intrinsic reward in order to encourage
exploration. This reward is defined by combining per-
episode and life-long novelty. The per-episode novelty,
rPedic rapidly vanishes over the course of an episode, and
it is computed by comparing observations to the contents
of an episodic memory. The life-long novelty, o, slowly
vanishes throughout training, and it is computed by using a
parametric model (in NGU and in this work Random Net-
work Distillation (Burda et al., 2018) is used to this end).
With this, the intrinsic reward ri is defined as follows:

ri = r?is"dic -min {max {ay,1}, L},

where L = 5 is a chosen maximum reward scaling. This
leverages the long-term novelty provided by oy, while
P continues to encourage the agent to explore within
an episode. For a detailed description of the computation
of P54 and ay, see (Puigdomenech Badia et al., 2020)
or App. I. At time ¢, NGU adds NN different scales of the
same intrinsic reward 3;7{ (3; € R*, j € 0,...N — 1)
to the extrinsic reward provided by the environment, 7§, to
form N potential total rewards r;; = r{ + 3;ri. Conse-
quently, NGU aims to learn the N different associated op-
timal state-action value functions Q7. associated with each
reward function 7; ;. The exploration rates /3; are param-
eters that control the degree of exploration. Higher val-
ues will encourage exploratory policies and smaller values
will encourage exploitative policies. Additionally, for pur-
poses of learning long-term credit assignment, each Qij

has its own associated discount factor «y; (for background
and notations on Markov Decision Processes (MDP) see
App. A). Since the intrinsic reward is typically much more
dense than the extrinsic reward, {(8;,7;)}}," are chosen
so as to allow for long term horizons (high values of +y;) for
exploitative policies (small values of 3;) and small term
horizons (low values of «y;) for exploratory policies (high
values of ;).

To learn the state-action value function Q7 , NGU trains
a recurrent neural network Q(z, a, j; 0), where j is a one-
hot vector indexing one of N implied MDPs (in particular
(Bj , ’yj)), x is the current observation, a is an action, and 6
are the parameters of the network (including the recurrent
state). In practice, NGU can be unstable and fail to learn
an appropriate approximation of Q;ﬁj for all the state-action
value functions in the family, even in simple environments.
This is especially the case when the scale and sparseness
of r¢ and { are both different, or when one reward is more
noisy than the other. We conjecture that learning a common
state-action value function for a mix of rewards is difficult
when the rewards are very different in nature. Therefore, in
Sec. 3.1, we propose an architectural modification to tackle
this issue.

Our agent is a deep distributed RL agent, in the lineage
of R2D2 and NGU. As such, it decouples the data col-
lection and the learning processes by having many actors
feed data to a central prioritized replay buffer. A learner
can then sample training data from this buffer, as shown
in Fig. 2 (for implementation details and hyperparameters
refer to App. E). More precisely, the replay buffer con-
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Figure 2. A schematic depiction of a distributed deep RL agent.

tains sequences of transitions that are removed regularly
in a FIFO-manner. These sequences come from actor pro-
cesses that interact with independent copies of the envi-
ronment, and they are prioritized based on temporal dif-
ferences errors (Kapturowski et al., 2018). The priorities
are initialized by the actors and updated by the learner with
the updated state-action value function Q(z,a,j;0). Ac-
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cording to those priorities, the learner samples sequences
of transitions from the replay buffer to construct an RL
loss. Then, it updates the parameters of the neural net-
work Q(z, a, j; ) by minimizing the RL loss to approxi-
mate the optimal state-action value function. Finally, each
actor shares the same network architecture as the learner
but with different weights. We refer as 6; to the parameters
of the [—th actor. The learner weights 6 are sent to the ac-
tor frequently, which allows it to update its own weights 6;.
Each actor uses different values ¢;, which are employed to
follow an ¢;-greedy policy based on the current estimate of
the state-action value function Q(z, a, j; ;). In particular,
at the beginning of each episode and in each actor, NGU
uniformly selects a pair (;,7;). We hypothesize that this
process is sub-optimal and propose to improve it in Sec. 3.2
by introducing a meta-controller for each actor that adapts
the data collection process.

3. Improvements to NGU
3.1. State-Action Value Function Parameterization

The proposed architectural improvement consists in split-
ting the state-action value function in the following way:

Q(z,a,5;0) = Q(z,a,7;0°) + B;Q(x, a, j; 0%,

where Q(x, a, j;0°) and Q(z, a, j; 6?) are the extrinsic and
intrinsic components of Q(x, a, j; #) respectively. The sets
of weights #° and # separately parameterize two neural
networks with identical architecture and 6§ = 6° U 6°. Both
Q(z,a,j;0°) and Q(x,a,j;0%) are optimized separately
with rewards ¢ and r? respectively, but with the same tar-
get policy m(xz) = argmax,c 4 Q(x,a,j;6). More pre-
cisely, to train the weights #° and 6%, we use the same se-
quence of transitions sampled from the replay, but with two
different transformed Retrace loss functions (Munos et al.,
2016). For Q(z,a,j;0¢) we compute an extrinsic trans-
formed Retrace loss on the sequence transitions with re-
wards ¢ and target policy 7, whereas for Q(z, a, j; 6%) we
compute an intrinsic transformed Retrace loss on the same
sequence of transitions but with rewards r* and target pol-
icy m. A reminder of how to compute a transformed Retrace
loss on a sequence of transitions with rewards r and target
policy 7 is provided in App. C.

In addition, in App. B, we show that this optimization of
separate state-action values is equivalent to the optimiza-
tion of the original single state-action value function with
reward r¢ + B;r" (under a simple gradient descent opti-
mizer). Even though the theoretical objective being opti-
mized is the same, the parameterization is different: we use
two different neural networks to approximate each one of
these state-action values (a schematic and detailed figures
of the architectures used can be found in App. F). By doing
this, we allow each network to adapt to the scale and vari-

ance associated with their corresponding reward, and we
also allow for the associated optimizer state to be separated
for intrinsic and extrinsic state-action value functions.

Moreover, when a transformed Bellman operator (Pohlen
et al., 2018) with function h is used (see App. A), we can
split the state-action value function in the following way:

Q(.ﬁ, a, J; 6) =
h (P~ HQ(x,a,;6) + Bk~ (Q(z, a, j;6"))) -

In App. B, we also show that the optimization of sepa-
rated transformed state-action value functions is equivalent
to the optimization of the original single transformed state-
action value function. In practice, choosing a simple or
transformed split does not seem to play an important role
in terms of performance (empirical evidence and an intu-
ition behind this result can be found in App. H.3). In our
experiments, we choose an architecture with a simple split
which corresponds to h being the identity, but still use the
transformed Retrace loss functions.

3.2. Adaptive Exploration over a Family of Policies

The core idea of NGU is to jointly train a family of poli-
cies with different degrees of exploratory behaviour using a
single network architecture. In this way, training these ex-
ploratory policies plays the role of a set of auxiliary tasks
that can help train the shared architecture even in the ab-
sence of extrinsic rewards. A major limitation of this ap-
proach is that all policies are trained equally, regardless
of their contribution to the learning progress. We propose
to incorporate a meta-controller that can adaptively select
which policies to use both at training and evaluation time.
This carries two important consequences. Firstly, by se-
lecting which policies to prioritize during training, we can
allocate more of the capacity of the network to better rep-
resent the state-action value function of the policies that
are most relevant for the task at hand. Note that this is
likely to change throughout the training process, naturally
building a curriculum to facilitate training. As mentioned
in Sec. 2, policies are represented by pairs of exploration
rate and discount factor, (;,;), which determine the dis-
counted cumulative rewards to maximize. It is natural to
expect policies with higher 3; and lower y; to make more
progress early in training, while the opposite would be ex-
pected as training progresses. Secondly, this mechanism
also provides a natural way of choosing the best policy in
the family to use at evaluation time. Considering a wide
range of values of y; with 3; ~ 0, provides a way of auto-
matically adjusting the discount factor on a per-task basis.
This significantly increases the generality of the approach.

We propose to implement the meta-controller using a non-
stationary multi-arm bandit algorithm running indepen-
dently on each actor. The reason for this choice, as op-
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Figure 3. Capped human normalized score where we observe at
which point the agent surpasses the human benchmark on the last
6 games.

posed to a global meta-controller, is that each actor follows
a different ¢;-greedy policy which may alter the choice of
the optimal arm. Each arm j from the N-arm bandit is
linked to a policy in the family and corresponds to a pair
(Bj,7v;)- At the beginning of each episode, say, the k-
th episode, the meta-controller chooses an arm Jj, setting
which policy will be executed. Note here that the arm Jj,
is a random variable. Then the [-th actor acts ¢;-greedily
with respect to the corresponding state-action value func-
tion, Q(x,a, Ji;6;), for the whole episode. The undis-
counted extrinsic episode returns, noted Ri(Jk), are used
as a reward signal to train the multi-arm bandit algorithm
of the meta-controller.

The reward signal Rf(Jy) is non-stationary, as the agent
changes throughout training. Thus, a classical bandit algo-
rithm such as Upper Confidence Bound (UCB; Garivier &
Moulines, 2008) will not be able to adapt to the changes
of the reward through time. Therefore, we employ a sim-
plified sliding-window UCB with eycp-greedy exploration.
With probability 1 — eycp, this algorithm runs a slight mod-
ification of classic UCB on a sliding window of size 7 and
selects a random arm with probability eycp (details of the
algorithms are provided in App. D).

Note that the benefit of adjusting the discount factor
through training and at evaluation could be applied even
in the absence of intrinsic rewards. To show this, we pro-
pose augmenting a variant of R2D2 with a meta-controller.
In order to isolate the contribution of this change, we eval-
uate a variant of R2D2 which uses the same RL loss as
Agent57. Namely, a transformed Retrace loss as opposed
to a transformed n-step loss as in the original paper. We re-
fer to this variant as R2D2 (Retrace) throughout the paper.
The reason for choosing this different loss is that it worked
better than the n-step loss for NGU, as described in Puig-
domenech Badia et al. (2020). In all other aspects, R2D2
(Retrace) is exactly the same algorithm as R2D2. We incor-
porate the joint training of several policies parameterized
by {v; ;V:f)l to R2D2 (Retrace). We refer to this algorithm
as R2D?2 (bandit).

10

4. Experiments

We begin this section by describing our experimental setup.
Following NGU, Agent57 uses a family of coefficients
{85, fyj)}j.\’:_ol of size N = 32. The choice of discounts

{7} ;V: " differs from that of NGU to allow for higher val-
ues, ranging from 0.99 to 0.9999 (see App. G.1 for de-
tails). The meta-controller uses a window size of 7 = 160
episodes and € = 0.5 for the actors and a window size of
7 = 3600 episodes and ¢ = 0.01. All the other hyper-
parameters are identical to those of NGU, including the
standard preprocessing of Atari frames. For a complete
description of the hyperparameters and preprocessing we
use, please see App. G.3. For all agents we run (that is,
all agents except MuZero where we report numbers pre-
sented in Schrittwieser et al. (2019)), we employ a separate
evaluator process to continuously record scores. We record
the undiscounted episode returns averaged over 3 seeds and
using a windowed mean over 50 episodes. For our best al-
gorithm, Agent57, we report the results averaged over 6
seeds on all games to strengthen the significance of the re-
sults. On that average, we report the maximum over train-
ing as their final score, as done in Fortunato et al. (2017);
Puigdomenech Badia et al. (2020). Further details on our
evaluation setup are described in App. E.

In addition to using human normalized scores HNS =
Agent. . —Randomgcore t th d h 1
.Humangcorc—Random,curc » We repor ¢ cappe uman r.10rma B
ized scores, CHNS = max{min{HNS, 1},0}. This mea-
sure is a better descriptor for evaluating general perfor-
mance, as it puts an emphasis in the games that are below
the average human performance benchmark. Furthermore,
and avoiding any issues that aggregated metrics may have,
we also provide all the scores that all the ablations obtain
in all games we evaluate in App. H.1.

We structure the rest of this section in the following way:
firstly, we show an overview of the results that Agent57
achieves. Then we proceed to perform ablations on each
one of the improvements we propose for our model.

4.1. Summary of the Results

Tab. 1 shows a summary of the results we obtain on all 57
Atari games when compared to baselines. MuZero obtains
the highest uncapped mean and median human normalized
scores, but also the lowest capped scores. This is due to the
fact that MuZero performs remarkably well in some games,
such as Beam Rider, where it shows an uncapped score of
27469%, but at the same time catastrophically fails to learn
in games such as Venture, achieving a score that is on par
with a random policy. We see that the meta-controller im-
provement successfully transfers to R2D2: the proposed
variant R2D2 (bandit) shows a mean, median, and CHNS
that are much higher than R2D2 with the same Retrace
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Table 1. Number of games above human, mean capped, mean and median human normalized scores for the 57 Atari games.

Statistics Agent57 R2D2 (bandit) NGU R2D2 (Retrace) R2D2 MuZero
Capped mean 100.00 96.93 95.07 94.20 94.33 89.92
Number of games > human 57 54 51 52 52 51
Mean 4766.25 5461.66 3421.80 3518.36 4622.09 | 4998.51
Median 1933.49 2357.92 1359.78 1457.63 1935.86 2041.12
40th Percentile 1091.07 1298.80 610.44 817.77 1176.05 1172.90
30th Percentile 614.65 648.17 267.10 420.67 529.23 503.05
20th Percentile 324.78 303.61 226.43 267.25 215.31 171.39
10th Percentile 184.35 116.82 107.78 116.03 115.33 75.74
5th Percentile 116.67 93.25 64.10 48.32 50.27 0.03

loss. Finally, Agent57 achieves a median and mean that is
greater than NGU and R2D2, but also its CHNS is 100%.
This shows the generality of Agent57: not only it obtains
a strong mean and median, but also it is able to obtain
strong performance on the tail of games in which MuZero
and R2D2 catastrophically fail. This is more clearly ob-
served when looking at different percentiles: up to the
20th percentile, Agent57 shows much greater performance,
only slightly surpassed by R2D2 (bandit) when we exam-
ine higher percentiles. In Fig. 3 we report the performance
of Agent57 in isolation on the 57 games. We show the last
6 games (in terms of number of frames collected by the
agents) in which the algorithm surpasses the human perfor-
mance benchmark. As shown, the benchmark over games
is beaten in a long-tailed fashion, where Agent57 uses the
first 5 billion frames to surpass the human benchmark on
51 games. After that, we find hard exploration games, such
as Montezuma’s Revenge, Pitfall!, and Private Eye. Lastly,
Agent57 surpasses the human benchmark on Skiing after
78 billion frames. To be able to achieve such performance
on Skiing, Agent57 uses a high discount (as we show in
Sec. 4.4). This naturally leads to high variance in the re-
turns, which leads to needing more data in order to learn
to play the game. One thing to note is that, in the game
of Skiing, the human baseline is very competitive, with a
score of —4336.9, where —17098.1 is random and —3272
is the optimal score one can achieve.

In general, as performance in Atari keeps improving, it
seems natural to concentrate on the tail of the distribution,
i.e., pay attention to those games for which progress in the
literature has been historically much slower than average.
‘We now present results for a subset of 10 games that we call
the challenging set. It consists of the six hard exploration
games as defined in (Bellemare et al., 2016), plus games
that require long-term credit assignment. More concretely,
the games we use are: Beam Rider, Freeway, Montezuma’s
Revenge, Pitfall!, Pong, Private Eye, Skiing, Solaris, Sur-
round, and Venture.

In Fig. 4 we can see the performance progression obtained
from incorporating each one of the improvements we make
on top of NGU. Such performance is reported on the se-
lection of 10 games mentioned above. In the notation of
the legend, NGU + bandit + separate nets + long trace is
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Figure 4. Performance progression on the 10-game challenging
set obtained from incorporating each one of the improvements.

equivalent to Agent57. We observe that each one of the
improvements results in an increment in final performance.
Further, we see that each one of the improvements that is
part of Agent57 is necessary in order to obtain the consis-
tent final performance of 100% CHNS.

4.2. State-Action Value Function Parameterization

We begin by evaluating the influence of the state-action
value function parametrization on a minimalistic gridworld
environment, called “random coin”. It consists of an empty
room of size 15 x 15 where a coin and an agent are
randomly placed at the start of each episode. The agent
can take four possible actions (up, down, left right) and
episodes are at most 200 steps long. If the agent steps over
the coin, it receives a reward of 1 and the episode termi-
nates. In Fig. 5 we see the results of NGU with and with-
out the new parameterization of its state-action value func-
tions. We report performance after 150 million frames. We
compare the extrinsic returns for the policies that are the
exploitative (3; = 0) and the most exploratory (with the
largest ; in the family). Even for small values of the
exploration rates (max; /3;), this setting induces very dif-
ferent exploratory and exploitative policies. Maximizing
the discounted extrinsic returns is achieved by taking the
shortest path towards the coin (obtaining an extrinsic re-
turn of one), whereas maximizing the augmented returns
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is achieved by avoiding the coin and visiting all remaining
states (obtaining an extrinsic return of zero). In principle,
NGU should be able to learn these policies jointly. How-
ever, we observe that the exploitative policy in NGU strug-
gles to solve the task as intrinsic motivation reward scale
increases. As we increase the scale of the intrinsic reward,
its value becomes much greater than that of the extrinsic re-
ward. As a consequence, the conditional state-action value
network of NGU is required to represent very different val-
ues depending on the 3; we condition on. This implies that
the network is increasingly required to have more flexible
representations. Using separate networks dramatically in-
creases its robustness to the intrinsic reward weight that is
used. Note that this effect would not occur if the episode
did not terminate after collecting the coin. In such case,
exploratory and exploitative policies would be allowed to
be very similar: both could start by collecting the coin as
quickly as possible. In Fig. 4 we can see that this improve-
ment also translates to the challenging set. NGU achieves a
much lower average CHNS than its separate network coun-
terpart. We also observe this phenomenon when we incor-
porate the meta-controller. Agent57 suffers a drop of per-
formance that is greater than 20% when the separate net-
work improvement is removed.

We can also see that it is a general improvement: it does
not show worse performance on any of the 10 games of
the challenging set. More concretely, the largest improve-
ment is seen in the case of Surround, where NGU obtains
a score on par with a random policy, whereas with the new
parametrization it reaches a score that is nearly optimal.
This is because Surround is a case that is similar to the “ran-
dom coin” environment mentioned above: as the player
makes progress in the game, they have the choice to sur-
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Figure 6. Solaris learning curves with small and long backprop
through time window sizes for both R2D2 and Agent57.

round the opponent snake, receive a reward, and start from
the initial state, or keep wandering around without captur-
ing the opponent, and thus visiting new states in the world.

4.3. Backprop Through Time Window Size

In this section we analyze the impact of having a backprop
through time window size. More concretely, we analyze its
impact on the base algorithm R2D2 to see its effect with-
out NGU or any of the improvements we propose. Further,
we also analyze its effect on Agent57, to see if any of the
improvements on NGU overlap with this change. In both
cases, we compare using backprop through time window
sizes of 80 (default in R2D2) versus 160, higher values en-
able credit assignment further back.

In aggregated terms over the challenging set, its effect
seems to be the same for both R2D2 and Agent57: us-
ing a longer backprop through time window appears to be
initially slower, but results in better overall stability and
slightly higher final score. A detailed comparison over
those 10 games is shown in App. H.2. This effect can be
seen clearly in the game of Solaris, as observed in Fig. 6.
This is also the game showing the largest improvement in
terms of final score. This is again general improvement, as
it enhances performance on all the challenging set games.
For further details we report the scores in App. H.1.

4.4. Adaptive Exploration

In this section, we analyze the effect of using the meta-
controller described in Sec. 3.1 in both the actors and the
evaluator. To isolate the contribution of this improvement,
we evaluate two settings: R2D2 and NGU with separate
networks, with and without meta-controller. Results are
shown in Fig. 7. Again, we observe that this is a general
improvement in both comparisons. Firstly, we observe that
there is a great value in this improvement on its own, en-
hancing the final performance of R2D2 by close to 20%
CHNS. Secondly, we observe that the benefit on NGU with
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Figure 7. Performance comparison for adaptive exploration on the
10-game challenging set.

separate networks is more modest than for R2D2. This in-
dicates that there is a slight overlap in the contributions of
the separate network parameterization and the use of the
meta-controller. The bandit algorithm can adaptively de-
crease the value of 5 when the difference in scale between
intrinsic and extrinsic rewards is large. Using the meta-
controller allows to include very high discount values in
the set {v;}7_,. Specifically, running R2D2 with a high
discount factor, v = 0.9999 surpasses the human baseline
in the game of Skiing. However, using that hyperparameter
across the full set of games, renders the algorithm very un-
stable and damages its end performance. All the scores in
the challenging set for a fixed high discount (v = 0.9999)
variant of R2D2 are reported in App. H.1. When using a
meta-controller, the algorithm does not need to make this
compromise: it can adapt it in a per-task manner.

Finally, the results and discussion above show why it is
beneficial to use different values of 3 and v on a per-task
basis. At the same time, in Sec. 3 we hypothesize it would
also be useful to vary those coefficients throughout train-
ing. In Fig. 8 we can see the choice of (5}, 7;) produc-
ing highest returns on the meta-controller of the evaluator
across training for several games. Some games clearly have
a preferred mode: on Skiing the high discount combination
is quickly picked up when the agent starts to learn, and on
Hero ahigh [ and low + is generally preferred at all times.
On the other hand, some games have different preferred
modes throughout training: on Gravitar, Crazy Climber,
Beam Rider, and Jamesbond, Agent57 initially chooses to
focus on exploratory policies with low discount, and, as
training progresses, the agent shifts into producing experi-
ence from higher discount and more exploitative policies.

5. Conclusions

We present the first deep reinforcement learning agent with
performance above the human benchmark on all 57 Atari
games. The agent is able to balance the learning of differ-
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Figure 8. Best arm chosen by the evaluator of Agent57 over train-
ing for different games.
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ent skills that are required to be performant on such diverse
set of games: exploration and exploitation and long-term
credit assignment. To do that, we propose simple improve-
ments to an existing agent, Never Give Up, which has good
performance on hard-exploration games, but in itself does
not have strong overall performance across all 57 games.
These improvements are i) using a different parameteri-
zation of the state-action value function, ii) using a meta-
controller to dynamically adapt the novelty preference and
discount, and iii) the use of longer backprop-through time
window to learn from using the Retrace algorithm.

This method leverages a great amount of computation to its
advantage: similarly to NGU, it is able to scale well with
increasing amounts of computation. This has also been the
case with the many recent achievements in deep RL (Sil-
ver et al., 2016; Andrychowicz et al., 2018; Vinyals et al.,
2019). While this enables our method to achieve strong
performance, an interesting research direction is to pursue
ways in which to improve the data efficiency of this agent.
Additionally, this agent shows an average capped human
normalized score of 100%. However, in our view this by
no means marks the end of Atari research, not only in terms
of efficiency as above, but also in terms of general perfor-
mance. We offer two views on this: firstly, analyzing the
performance among percentiles gives us new insights on
how general algorithms are. While Agent57 achieves great
results on the first percentiles of the 57 games and holds
better mean and median performance than NGU or R2D2,
as MuZero shows, it could still obtain much better average
performance. Secondly, as pointed out by Toromanoff et al.
(2019), all current algorithms are far from achieving opti-
mal performance in some games. To that end, key improve-
ments to use might be enhancements in the representations
that Agent57 and NGU use for exploration, planning (as
suggested by the results achieved by MuZero) as well as
better mechanisms for credit assignment (as highlighted by
the results seen in Skiing).
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