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A. Background on MDP
A Markov decision process (MDP; Puterman, 1990) is a tuple (X ,A, P, r, γ), with X being the state space, A being
the action space, P the state-transition distribution maps each state-action tuple (x, a) to a probability distribution over
states (with P (y|x, a) denoting the probability of transitioning to state y from x by choosing action a), the reward function
r ∈ RX×A and γ ∈]0, 1[ the discount factor. A stochastic policy π maps each state to a distribution over actions (π(a|x)
denotes the probability of choosing action a in state x). A deterministic policy πD ∈ XA can also be represented by a
distribution over actions π such that π(πD(x)|x) = 1. We will use one or the other concept with the same notation π in
the remaining when the context is clear.

Let T (x, a, π) be the distribution over trajectories τ = (Xt, At, Rt, Xt+1)t∈N generated by a policy π, with (X0, A0) =
(x, a), ∀t ≥ 1, At ∼ π(.|Xt), ∀t ≥ 0, Rt = r(Xt, At) and ∀t ≥ 0, Xt+1 ∼ P (.|Xt, At). Then, the state-action value
function Qπr (x, a) for the policy π and the state-action tuple (x, a) is defined as:

Qπr (x, a) = Eτ∼T (x,a,π)

∑
t≥0

Rt

 .
The optimal state-action value function Q∗ is defined as:

Q∗r(x, a) = max
π

Qπr (x, a).

where the max is taken over all stochastic policies.

Let define the one-step evaluation Bellman operator Tπr , for all functions Q ∈ RX×A and for all state-action tuples
(x, a) ∈ X ×A, as:

Tπr Q(x, a) = r(x, a) + γ
∑
b∈A

∑
x′∈X

π(b|x)P (x′|x, a)Q(x′, b).

The one-step evaluation Bellman operator can also be written with vectorial notations:

Tπr Q = r + γPπQ,

where Pπ is a transition matrix representing the effect of acting according to π in a MDP with dynamics P . The evaluation
Bellman operator is a contraction and its fixed point is Qπr .

Finally let define the greedy operator G, for all functions Q ∈ RX×A and for all state x ∈ X , as:

G(Q)(x) = argmax
a∈A

Q(x, a).

Then, one can show (Puterman, 1990), via a fixed point argument, that the following discrete scheme:

∀k ≥ 0,

{
πk = G (Qk) ,
Qk+1 = Tπk

r Qk,

whereQ0 can be initialized arbitrarily, converges toQ∗r . This discrete scheme is called the one-step value iteration scheme.

Throughout the article, we also use transformed Bellman operators (see Sec. C.2). The one-step transformed evaluation
Bellman operator Tπr,h, for all functions Q ∈ RX×A and for all state-action tuples (x, a) ∈ X ×A, can be defined as:

Tπr,hQ(x, a) = h

(
r(x, a) + γ

∑
b∈A

∑
x′∈X

π(b|x)P (x′|x, a)h−1(Q(x′, b))

)
,

where h is a monotonically increasing and invertible squashing function that scales the state-action value function to make
it easier to approximate for a neural network. In particular, we use the function h:

∀z ∈ R, h(z) = sign(z)(
√
|z|+ 1− 1) + εz,

∀z ∈ R, h−1(z) = sign(z)

((√
1 + 4ε(|z|+ 1 + ε)− 1

2ε

)
− 1

)
,
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with ε a small number. The one-step transformed evaluation Bellman operator can also be written with vectorial notations:

Tπr,hQ = h
(
r + γPπh−1(Q)

)
.

Under some conditions on h (Pohlen et al., 2018) and via a contraction argument, one can show that the transformed
one-step value iteration scheme:

∀k ≥ 0,

{
πk = G (Qk) ,
Qk+1 = Tπk

r,hQk,

where Q0 can be initialized arbitrarily, converges. We note this limit Q∗r,h.

B. Extrinsic-Intrinsic Decomposition
For an intrinsically-motivated agent, the reward function r is a linear combination of the intrinsic reward ri and the extrinsic
reward re:

r = re + βri.

One can compute the optimal state-action value function Q∗r via the value iteration scheme:

∀k ≥ 0,

{
πk = G (Qk) ,
Qk+1 = Tπk

r Qk,

where Q0 can be initialized arbitrarily.

Now, we want to show how we can also converge to Q∗r using separate intrinsic and extrinsic state-action value functions.
Indeed, let us consider the following discrete scheme:

∀k ≥ 0,


π̃k = G

(
Qek + βQik

)
,

Qik+1 = T π̃k

ri Q
i
k,

Qek+1 = T π̃k
re Q

e
k,

where the functions (Qe0, Q
i
0) can be initialized arbitrarily.

Our goal is simply to show that the linear combination of extrinsic and intrinsic state-action value function Q̃k:

∀k ≥ 0, Q̃k = Qek + βQik.

verifies a one-step value iteration scheme with respect to the reward r = re + βri and therefore converges to Q∗r . To show
that let us rewrite Q̃k+1:

Q̃k+1 = Qek+1 + βQik+1,

= T π̃k
re Q

e
k + βT π̃k

ri Q
i
k,

= re + βri + γP π̃k(Qek + βQik),

= T π̃k

re+βri(Q
e
k + βQik),

= T π̃k
r Q̃k.

Therefore we have that Q̃k satisfies a value iteration scheme with respect to the reward r = re + βri:

∀k ≥ 0,

{
π̃k = G

(
Q̃k

)
,

Q̃k+1 = T π̃k
r Q̃k,

and by the contraction property:
lim

k−→∞
Q̃k = Q∗r .

This result means that we can compute separately Qek and Qik and then mix them to obtain the same behavior than if we
had computed Qk directly with the mixed reward re + βri. This implies that we can separately compute the extrinsic
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and intrinsic component. Each architecture will need to learn their state-action value for different mixtures β and then
act according to the greedy policy of the mixture of the state-action value functions. This result could also be thought as
related to Barreto et al. (2017) which may suggest potential future research directions.

The same type of result holds for the transformed state-action value functions. Indeed let us consider the optimal trans-
formed state-action value function Q∗r,h that can be computed via the following discrete scheme:

∀k ≥ 0,

{
πk = G (Qk) ,
Qk+1 = Tπk

r,hQk,

where Q0 can be initialized arbitrarily.

Now, we show how we can compute Q∗r,h differently using separate intrinsic and extrinsic state-action value functions.
Indeed, let us consider the following discrete scheme:

∀k ≥ 0,


π̃k = G

(
h
(
h−1(Qek) + βh−1(Qik)

))
,

Qik+1 = T π̃k

ri,hQ
i
k,

Qek+1 = T π̃k

re,hQ
e
k,

where the functions (Qe0, Q
i
0) can be initialized arbitrarily.

We want to show that Q̃k defines as:

∀k ≥ 0, Q̃k = h
(
h−1(Qek) + βh−1(Qik)

)
,

verifies the one-step transformed value iteration scheme with respect to the reward r = re + βri and therefore converges
to Q∗r,h. To show that let us rewrite Q̃k+1:

Q̃k+1 = h
(
h−1(Qek+1) + βh−1(Qik+1)

)
,

= h
(
h−1(T π̃k

re,hQ
e
k) + βh−1(T π̃k

ri,hQ
i
k)
)
,

= h
(
re + γP π̃kh−1(Qek) + βri + γP π̃kβh−1(Qik)

)
,

= h
(
re + βri + γP π̃k(h−1(Qek) + βh−1(Qik))

)
,

= h
(
r + γP π̃kh−1(Q̃k)

)
= T π̃k

r,hQ̃k.

Thus we have that Q̃k satisfies the one-step transformed value iteration scheme with respect to the reward r = re + βri:

∀k ≥ 0,

{
π̃k = G

(
Q̃k

)
,

Q̃k+1 = T π̃k

r,hQk,

and by contraction:
lim

k−→∞
Q̃k = Q∗r,h.

One can remark that when the transformation h is the identity, we recover the linear mix between intrinsic and extrinsic
state-action value functions.

C. Retrace and Transformed Retrace
Retrace (Munos et al., 2016) is an off-policy RL algorithm for evaluation or control. In the evaluation setting the goal
is to estimate the state-action value function Qπ of a target policy π from trajectories drawn from a behaviour policy µ.
In the control setting the goal is to build a sequence of target policies πk and state-action value functions Qk in order to
approximate Q∗.
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The evaluation Retrace operator Tµ,πr , that depends on µ and π, is defined as follows, for all functions Q ∈ RX×A and for
all state-action tuples (x, a) ∈ X ×A:

Tµ,πr Q(x, a) = Eτ∼T (x,a,µ)

Q(x, a) +
∑
t≥0

γt

(
t∏

s=1

cs

)
δt

 ,
where the temporal difference δt is defined as:

δt = rt + γ
∑
a∈A

π(a|Xt+1)Q(Xt+1, a)−Q(Xt, At),

and the trace coefficients cs as:

cs = λmin

(
1,
π(As|Xs)

µ(As|Xs)

)
,

where λ is a fixed parameter ∈ [0, 1]. The operator Tµ,πr is a multi-step evaluation operator that corrects the behaviour of
µ to evaluate the policy π. It has been shown in Theorem 1 of Munos et al. (2016) that Qπr is the fixed point of Tµ,πr . In
addition, Theorem 2 of Munos et al. (2016) explains in which conditions the Retrace value iteration scheme:

∀k ≥ 0,

{
πk = G (Qk) ,
Qk+1 = Tµk,πk

r Qk,

converges to the optimal state-action value function Q∗, where Q0 is initialized arbitrarily and {µk}k∈N is an arbitrary
sequence of policies that may depend on Qk.

As in the case of the one-step Bellman operator, we can also define a transformed counterpart to the Retrace operator.
More specifically, we can define the transformed Retrace operator Tµ,πr,h , for all functions Q ∈ RX×A and for all state-
action tuples (x, a) ∈ X ×A:

Tµ,πr,h Q(x, a) = h

Eτ∼T (x,a,µ)

h−1(Q(x, a)) +
∑
t≥0

γt

(
t∏

s=1

cs

)
δht

 ,

where the temporal difference δht is defined as:

δht = rt + γ
∑
a∈A

π(a|Xt+1)h
−1(Q(Xt+1, a))− h−1(Q(Xt, At)).

As in the case of the Retrace operator, we can define the transformed Retrace value iteration scheme:

∀k ≥ 0,

{
πk = G (Qk) ,
Qk+1 = Tµk,πk

r,h Qk,

where Q0 is initialized arbitrarily and {µk}k∈N is an arbitrary sequence of policies.

C.1. Extrinsic-Intrinsic Decomposition for Retrace and Transformed Retrace

Following the same methodology than App .B, we can also show that the state-action value function can be decomposed
in extrinsic and intrinsic components for the Retrace and transformed Retrace value iteration schemes when the reward is
of the form r = re + βri.

Indeed if we define the following discrete scheme:

∀k ≥ 0,


π̃k = G

(
Qek + βQik

)
,

Qik+1 = T µ̃k,π̃k

ri Qik,

Qek+1 = T µ̃k,π̃k
re Qek,

where the functions (Qe0, Q
i
0) can be initialized arbitrarily and {µ̃k}k∈N is an arbitrary sequence of policies. Then, it is

straightforward to show that the linear combination Q̃k:

∀k ≥ 0, Q̃k = Qek + βQik,
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verifies the Retrace value iteration scheme:

∀k ≥ 0,

{
π̃k = G

(
Q̃k

)
,

Q̃k+1 = T µ̃k,π̃k
r Q̃k,

Likewise, if we define the following discrete scheme:

∀k ≥ 0,


π̃k = G

(
h
(
h−1(Qek) + βh−1(Qik)

))
,

Qik+1 = T µ̃k,π̃k

ri,h Qik,

Qek+1 = T µ̃k,π̃k

re,h Qek,

where the functions (Qe0, Q
i
0) can be initialized arbitrarily and {µ̃k}k∈N is an arbitrary sequence of policies. Then, it is

also straightforward to show that Q̃k defines as:

∀k ≥ 0, Q̃k = h
(
h−1(Qek) + βh−1(Qik)

)
,

verifies the transformed Retrace value iteration scheme:

∀k ≥ 0,

{
π̃k = G

(
Q̃k

)
,

Q̃k+1 = T µ̃k,π̃k

r,h Qk,

C.2. Retrace and Transformed Retrace Losses for Neural Nets.

In this section, we explain how we approximate with finite data and neural networks the Retrace value iteration scheme.
To start, one important thing to remark is that we can rewrite the evaluation step:

Qk+1 = Tµk,πk
r Qk,

with:
Qk+1 = argmin

Q∈RX×A
‖Tµk,πk

r Qk −Q‖,

where ‖.‖ can be any norm over the function space RX×A. This means that the evaluation step can be seen as an opti-
mization problem over a functional space where the optimization consists in finding a function Q that matches the target
Tµk,πk
r Qk.

In practice, we face two important problems. The search space RX×A is too big and we cannot evaluate Tµk,πk
r Qk

everywhere because we have a finite set of data. To tackle the former, a possible solution is to use function approximation
such as neural networks. Thus, we parameterize the state action value function Q(x, a; θ) (where θ is the set of parameters
of the neural network) also called online network. Concerning the latter, we are going to build sampled estimates of
Tµk,πk
r Qk and use them as targets for our optimization problem. In practice, the targets are built from a previous and fixed

set of parameters θ− of the neural network. Q(x, a; θ−) is called the target network. The target network is updated to the
value of the online network at a fixed frequency during the learning.

More precisely, let us consider a batch of size B of finite sampled sequences of size H: D = {(xbs, abs, µbs =
µ(abs|xbs), rbs, xbs+1)

t+H−1
s=t }B−1b=0 starting from (xbt , a

b
t) and then following the behaviour policy µ. Then, we can define

the finite sampled-Retrace targets as:

T̂µ,πr Q(xbs, a
b
s; θ
−) = Q(xbs, a

b
s; θ
−) +

t+H−1∑
j=s

γj−s

(
j∏

i=s+1

ci,b

)
δj,b

ci,b = λmin

(
1,
π(abi |xbi )
µbi

)
,

δj,b = rbj + γ
∑
a∈A

π(a|xbj+1)Q(xbj+1, a; θ
−)−Q(xbj , a

b
j ; θ
−),
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where π(a|x) is the target policy.

Once the targets are computed, the goal is to find a parameter θ that fits those targets by minimizing the following loss
function:

L(D, θ, θ−, π, µ, r) =

B−1∑
b=0

t+H−1∑
s=t

(
Q(xbs, a

b
s; θ)− T̂µ,πr Q(xbs, a

b
s; θ
−)
)2
.

This is done by an optimizer such as gradient descent for instance. Once θ is updated by the optimizer, a new loss with
new targets is computed and minimized until convergence.

Therefore in practice the evaluation step of the Retrace value iteration scheme Qk+1 = Tµk,πk
r Qk is approximated by

minimizing the loss L(D, θ, π, µ) with an optimizer. The greedy step πk = G (Qk) is realized by simply being greedy with
respect to the online network and choosing the target policy as follows: π = G (Q(x, a; θ)).

In the case of a transformed Retrace operator, we have the following targets:

T̂µ,πr,h Q(xbs, a
b
s; θ
−) = h

h−1(Q(xbs, a
b
s; θ
−)) +

t+H−1∑
j=s

γj−t

(
j∏

i=s+1

ci,b

)
δhs,b


ci,b = λmin

(
1,
π(abi |xbi )
µbi

)
,

δj,b = rbj + γ
∑
a∈A

π(a|xbj+1)h
−1(Q(xbj+1, a; θ

−))− h−1Q(xbj , a
b
j ; θ
−).

And the transformed Retrace loss function is:

L(D, θ, θ−π, µ, r, h) =

B−1∑
b=0

t+H−1∑
s=t

(
Q(xbs, a

b
s; θ)− T̂

µ,π
r,h Q(xbs, a

b
s; θ
−)
)2
.

D. Multi-arm Bandit Formalism
This section describes succinctly the multi-arm bandit (MAB) paradigm, upper confidence bound (UCB) algorithm and
sliding-window UCB algorithm. For a more thorough explanation and analysis we refer the reader to Garivier & Moulines
(2008).

At each time k ∈ N, a MAB algorithm chooses an arm Ak among the possible arms {0, . . . , N − 1} according to a policy
π that is conditioned on the sequence of previous actions and rewards. Doing so, it receives a reward Rk(Ak) ∈ R. In
the stationary case, the rewards {Rk(a)}k≥0 for a given arm a ∈ {0, . . . , N − 1} are modelled by a sequence of i.i.d
random variables. In the non-stationary case, the rewards {Rk(a)}k≥0 are modelled by a sequence of independent random
variables but whose distributions could change through time.

The goal of a MAB algorithm is to find a policy π that maximizes the expected cumulative reward for a given horizon K:

Eπ

[
K−1∑
k=0

Rk(Ak)

]
.

In the stationary case, the UCB algorithm has been well studied and is commonly used. Let us define the number of times
an arm a has been played after k steps:

Nk(a) =

k−1∑
m=0

1{Am=a}.

Let us also define the empirical mean of an arm a after k steps:

µ̂k(a) =
1

Nk(a)

k−1∑
m=0

Rk(a)1{Am=a}.
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The UCB algorithm is then defined as follows:{
∀0 ≤ k ≤ N − 1, Ak = k

∀N ≤ k ≤ K − 1, Ak = argmax1≤a≤N µ̂k−1(a) + β
√

log (k−1)
Nk−1(a)

In the non-stationary case, the UCB algorithm cannot adapt to the change of reward distribution and one can use a sliding-
window UCB in that case. It is commonly understood that the window length τ ∈ N∗ should be way smaller that the
horizon K. Let us define the number of times an arm a has been played after k steps for a window of length τ :

Nk(a, τ) =

k−1∑
m=0∨k−τ

1{Am=a},

where 0 ∨ k − τ means max(0, k − τ). Let define the empirical mean of an arm a after k steps for a window of length τ :

µ̂k(a, τ) =
1

Nk(a, τ)

k−1∑
m=0∨k−τ

Rk(a)1{Am=a}.

Then , the sliding window UCB can be defined as follows:{
∀0 ≤ k ≤ N − 1, Ak = k

∀N ≤ k ≤ K − 1, Ak = argmax1≤a≤N µ̂k−1(a, τ) + β
√

log (k−1∧τ)
Nk−1(a,τ)

where k − 1 ∧ τ means min(k − 1, τ).

In our experiments, we use a simplified sliding window UCB with εUCB-greedy exploration:
∀0 ≤ k ≤ N − 1, Ak = k

∀N ≤ k ≤ K − 1 and Uk ≥ εUCB, Ak = argmax0≤a≤N−1 µ̂k−1(a, τ) + β
√

1
Nk−1(a,τ)

∀N ≤ k ≤ K − 1 and Uk < εUCB, Ak = Yk

where Uk is a random value drawn uniformly from [0, 1] and Yk a random action drawn uniformly from {0, . . . , N − 1}.

E. Implementation details of the distributed setting
Replay buffer: it stores fixed-length sequences of transitions ξ = (ωs)

t+H−1
s=t along with their priorities pξ. A transition

is of the form ωs = (res−1, r
i
s−1, as−1, hs−1, xs, as, hs, µs, js, r

e
s, r

i
s, xs+1) . Such transitions are also called timesteps

and the length of a sequence H is called the trace length. In addition, adjacent sequences in the replay buffer overlap by
a number of timesteps called the replay period and the sequences never cross episode boundaries. Let us describe each
element of a transition:

• res−1: extrinsic reward at the previous time.

• ris−1: intrinsic reward at the previous time.

• as−1: action done by the agent at the previous time.

• hs−1: recurrent state (in our case hidden state of the LSTM) at the previous time.

• xs: observation provided by the environment at the current time.

• as: action done by the agent at the current time.

• hs: recurrent state (in our case hidden state of the LSTM) at the current time.

• µs: the probability of choosing the action as.
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• js = j: index of the pair (γj , βj) chosen at a beginning of an episode in each actor by the multi-arm bandit algorithm
(fixed for the whole sequence).

• res: extrinsic reward at the current time.

• ris: intrinsic reward at the current time

• xs+1: observation provided by the environment at the next time.

In our experiment, we choose a trace length of 160 with a replay period of 80 or a trace length of 80 with a replay period of
40. Please refer to (Kapturowski et al., 2018) for a detailed experimental of trade-offs on different treatments of recurrent
states in the replay. Finally, concerning the priorities, we followed the same prioritization scheme proposed by Kapturowski
et al. (2018) using a mixture of max and mean of the TD-errors in the sequence with priority exponent η = 0.9.

Actors: each of the L actors shares the same network architecture as the learner but with different weights θl, with
0 ≤ l ≤ L − 1. The l-th actor updates its weights θl every 400 frames by copying the weights of the learner. At the
beginning of each episode, each actor chooses, via a multi-arm bandit algorithm, an index j that represents a pair (γj , βj)
in the family of pairs ({βj , γj)}N−1j=0 . In addition, the recurrent state is initialized to zero. To act, an actor will need to do
a forward pass on the network in order to compute the state-action value for all actions, noted Q(xt, ., j; θl). To do so the
inputs of the network are :

• xt: the observation at time t.

• ret−1: the extrinsic reward at the previous time, initialized with re−1 = 0.

• rit−1: the intrinsic reward at the previous time, initialized with ri−1 = 0.

• at−1: the action at the previous time, a−1 is initialized randomly.

• ht−1: recurrent state at the previous time, is initialized with h−1 = 0.

• jt−1 = j: a one-hot index of the pair (βj , γj) chosen by the multi-arm bandit algorithm (fixed for all the episode).

At time t, the l−th actor acts εl-greedy with respect to Q(xt, ., j; θl):{
If: Ut < εl, at = Yt,
Else: at = argmaxa∈AQ(xt, a, j; θl),

where Ut is a random value drawn uniformly from [0, 1] and Yt a random action drawn uniformly fromA. The probability
µt associated to at is therefore: {

If: Ut < εl, µt =
εl
|A| ,

Else: µt = 1− εl |A|−1|A| ,

where |A| is the cardinal number of the action space, 18 in the case of Atari games. Then, the actor plays the action at and
computes the intrinsic reward rit and the environment produces the next observation xt+1 and the extrinsic reward ret . This
process goes on until the end of the episode.

The value of the noise εl is chosen according to the same formula established by Horgan et al. (2018):

εl = ε1+α
l

L−1

where ε = 0.4 and α = 8. In our experiments, we fix the number of actors to L = 256. Finally, the actors send the data
collected to the replay along with the priorities.

Evaluator: the evaluator shares the same network architecture as the learner but with different weights θe. The evaluator
updates its weights θl every 5 episodes frames by copying the weights of the learner. Unlike the actors, the experience
produced by the evaluator is not sent to the replay buffer. The evaluator alternates between the following states every 5
episodes:



Agent57: Outperforming the Atari Human Benchmark

• Training bandit algorithm: the evaluator chooses, via a multi-arm bandit algorithm, an index j that represents a pair
(γj , βj) in the family of pairs ({βj , γj)}N−1j=0 . Then it proceeds to act in the same way as the actors, described above.
At the end of the episode, the undiscounted returns are used to train the multi-arm bandit algorithm.

• Evaluation: the evaluator chooses the greedy choice of index j, argmax1≤a≤N µ̂k−1(a), so it acts with (γj , βj).
Then it proceeds to act in the same way as the actors, described above. At the end of 5 episodes and before switching
to the other mode, the results of those 5 episodes are average and reported.

Learner: The learner contains two identical networks called the online and target networks with different weights θ and
θ− respectively (Mnih et al., 2015). The target network’s weights θ− are updated to θ every 1500 optimization steps. For
our particular architecture, the weights θ = θe ∪ θi can be decomposed in a set of intrinsic weights θe and θi that have the
same architecture. Likewise, we have θ− = θ−,e ∪ θ−,i. The intrinsic and extrinsic weights are going to be updated by
their own transformed Retrace loss. θe and θi are updated by executing the following sequence of instructions:

• First, the learner samples a batch of sizeB of fixed-length sequences of transitionsD = {ξb = (ωbs)
t+H−1
s=t }B−1b=0 from

the replay buffer.

• Then, a forward pass is done on the online network and the target with in-
puts {(xbs, r

e,b
s−1, r

i,b
s−1, j

b, abs−1, h
b
s−1)

t+H
s=t }B−1b=0 in order to obtain the state-action values

{(Q(xbs, ., j
b; θe), Q(xbs, ., j

b; θ−,e), Q(xbs, ., j
b; θi), Q(xbs, ., j

b; θ−,i))t+Hs=t }B−1b=0 .

• Once the state-action values are computed, it is now easy to compute the transformed Retrace losses
L(D, θe, θ−,e, π, µ, re, h) and L(D, θi, θ−,i, π, µ, ri, h) for each set of weights θe and θi, respectively, as shown
in Sec .C. The target policy π is greedy with respect to Q(xbs, ., j

b; θe) + βjbsQ(xbs, ., j
b; θi) or with respect to

h
(
h−1(Q(xbs, ., j

b; θe)) + βjbsh
−1(Q(xbs, ., j

b; θi))
)

in the case where we want to apply a transform h to the mix-
ture of intrinsic and extrinsic state-action value functions.

• The transformed Retrace losses are optimized with an Adam optimizer.

• Like NGU, the inverse dynamics model and the random network distillation losses necessary to compute the intrinsic
rewards are optimized with an Adam optimizer.

• Finally, the priorities are computed for each sampled sequence of transitions ξb and updated in the replay buffer.

Computation used: in terms of hardware we train the agent with a single GPU-based learner, performing approximately
5 network updates per second (each update on a mini-batch of 64 sequences of length 160. We use 256 actors, with each
one performing ∼ 260 environment steps per second on Atari.
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F. Network Architectures
Both extrinsic and intrinsic networks use a dueling head (Wang et al., 2015).

Figure 9. Sketch of the Agent57.
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Figure 10. Detailed Agent57.
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G. Hyperparameters
G.1. Values of β and γ

The intuition between the choice of the set {(βj , γj)}N−1j=0 is the following. Concerning the βj we want to encourage
policies which are very exploitative and very exploratory and that is why we choose a sigmoid as shown in Fig. 11(a).
Concerning the γj we would like to allow for long term horizons (high values of γj) for exploitative policies (small values
of βj) and small term horizons (low values of γj) for exploratory policies (high values of βj). This is mainly due to the
sparseness of the extrinsic reward and the dense nature of the intrinsic reward. This motivates the choice done in Fig. 11(b).

(a) Values taken by the {βi}N−1
i=0 (b) Values taken by the {γi}N−1

i=0

Figure 11. Values taken by the {βi}N−1
i=0 and the {γi}N−1

i=0 for N = 32 and β = 0.3.

βj =


0 if j = 0
β = 0.3 if j = N − 1

β · σ(10 2j−(N−2)
N−2 ) otherwise

, γj =


γ0 if j = 0
γ1 + (γ0 − γ1)σ(10 2i−6

6 ) if j ∈ {1, . . . , 6}
γ1 if j = 7

1− exp

(
(N−9) log(1−γ1)+(j−8) log(1−γ2)

N−9

)
otherwise

where N = 32, γ0 = 0.9999, γ1 = 0.997 and γ2 = 0.99.

G.2. Atari pre-processing hyperparameters

In this section we detail the hyperparameters we use to pre-process the environment frames received from the Arcade
Learning Environment. On Tab. 2 we detail such hyperparameters. ALE is publicly available at https://github.
com/mgbellemare/Arcade-Learning-Environment.

Hyperparameter Value
Max episode length 30min
Num. action repeats 4
Num. stacked frames 1
Zero discount on life loss false
Random noops range 30
Sticky actions false
Frames max pooled 3 and 4
Grayscaled/RGB Grayscaled
Action set Full

Table 2. Atari pre-processing hyperparameters.
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G.3. Hyperparameters Used

The hyperparameters that we used in all experiments are exactly like those of NGU. However, for completeness, we detail
them below in Tab. 3. We also include the hyperparameters we use for the windowed UCB bandit.

Hyperparameter Value
Number of mixtures N 32
Optimizer AdamOptimizer (for all losses)
Learning rate (R2D2) 0.0001
Learning rate (RND and Action prediction) 0.0005
Adam epsilon 0.0001
Adam beta1 0.9
Adam beta2 0.999
Adam clip norm 40
Discount ri 0.99
Discount re 0.997
Batch size 64
Trace length 160
Replay period 80
Retrace λ 0.95

R2D2 reward transformation sign(x) · (
√
|x|+ 1− 1) + 0.001 · x

Episodic memory capacity 30000
Embeddings memory mode Ring buffer
Intrinsic reward scale β 0.3
Kernel ε 0.0001
Kernel num. neighbors used 10
Replay capacity 5e6
Replay priority exponent 0.9
Importance sampling exponent 0.0
Minimum sequences to start replay 6250
Actor update period 100
Target Q-network update period 1500
Embeddings target update period once/episode
Action prediction network L2 weight 0.00001
RND clipping factor L 5
Evaluation ε 0.01
Target ε 0.01
Bandit window size 90
Bandit UCB β 1
Bandit ε 0.5

Table 3: Agent57 hyperparameters.

G.4. Hyperparameters Search Range

The ranges we used to select the hyperparameters of Agent57 are displayed on Tab. 4.

Hyperparameter Value
Bandit window size τ {160, 224, 320, 640}
Bandit εUCB {0.3, 0.5, 0.7}

Table 4. Range of hyperparameters sweeps.
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H. Experimental Results
H.1. Atari 10: Table of Scores for the Ablations

Games R2D2 (Retrace) long trace R2D2 (Retrace) high gamma NGU sep. nets NGU Bandit NGU + sep. nets + bandit

beam rider 287326.72 ± 5700.31 349971.96 ± 5595.38 151082.57 ± 8666.19 249006.62 ± 19662.62 244491.89 ± 25348.14
freeway 33.91 ± 0.09 32.84 ± 0.06 32.91 ± 0.58 26.43 ± 1.66 32.87 ± 0.12

montezuma revenge 566.67 ± 235.70 1664.89 ± 1177.26 11539.69 ± 1227.71 7619.70 ± 3444.76 7966.67 ± 2531.58
pitfall 0.00 ± 0.00 0.00 ± 0.00 15195.27 ± 8005.22 2979.57 ± 2919.08 16402.61 ± 10471.27
pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 20.56 ± 0.28 21.00 ± 0.00

private eye 21729.91 ± 9571.60 22480.31 ± 10362.99 63953.38 ± 26278.51 43823.40 ± 4808.23 80581.86 ± 28331.16
skiing -10784.13 ± 2539.27 -4596.26 ± 601.04 -19817.99 ± 7755.19 -4051.99 ± 569.78 -4278.86 ± 270.96
solaris 52500.89 ± 2910.14 14814.76 ± 11361.16 44771.13 ± 4920.53 43963.59 ± 5765.41 17254.14 ± 5840.70

surround 10.00 ± 0.00 10.00 ± 0.00 9.77 ± 0.23 -7.57 ± 0.05 9.60 ± 0.20
venture 2100.00 ± 0.00 1774.89 ± 83.79 3249.01 ± 544.19 2228.04 ± 305.50 2576.98 ± 394.84
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H.2. Backprop window length comparison

Figure 12. Performance comparison for short and long backprob window length on the 10-game challenging set.

H.3. Identity versus h-transform mixes comparison

Figure 13. Performance comparison for identity versus h-transform mixes on the 10-game challenging set.

As shown in Fig H.3, choosing an identity or an h-transform mix does not seem to make a difference in terms of perfor-
mance. The only real important thing is that a combination between extrinsic and intrinsic happens whether it is linear or
not. In addition, one can remark that for extreme values of β (β = 0, β >> 1), the quantities Qek(x, a) + βQik(x, a) and
h−1(Qek(x, a)) + βh−1(Qik(x, a)) have the same argmaxa∈A because h−1 is strictly increasing. Therefore, this means
that on the extremes values of β, the transform and normal value iteration schemes converge towards the same policy. For
in between values of β, this is not the case. But we can conjecture that when a transform operator and identity mix are
used, the value iteration scheme approximates a state-action value function that is optimal with respect to a non-linear
combination of the intrinsic and extrinsic rewards ri, re, respectively.
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H.4. Atari 57 Table of Scores
Games Average Human Random Agent57 R2D2 (Bandit) MuZero
alien 7127.70 227.80 297638.17 ± 37054.55 464883.72 ± 65894.16 741812.63

amidar 1719.50 5.80 29660.08 ± 880.39 31125.16 ± 728.63 28634.39
assault 742.00 222.40 67212.67 ± 6150.59 108428.85 ± 2116.98 143972.03
asterix 8503.30 210.00 991384.42 ± 9493.32 999174.84 ± 171.58 998425.00

asteroids 47388.70 719.10 150854.61 ± 16116.72 430848.49 ± 5250.10 678558.64
atlantis 29028.10 12850.00 1528841.76 ± 28282.53 1655915.92 ± 10333.29 1674767.20

bank heist 753.10 14.20 23071.50 ± 15834.73 26030.12 ± 1760.95 1278.98
battle zone 37187.50 2360.00 934134.88 ± 38916.03 993532.51 ± 1593.45 848623.00
beam rider 16926.50 363.90 300509.80 ± 13075.35 384466.78 ± 12163.43 454993.53

berzerk 2630.40 123.70 61507.83 ± 26539.54 75327.00 ± 4347.40 85932.60
bowling 160.70 23.10 251.18 ± 13.22 195.32 ± 94.32 260.13
boxing 12.10 0.10 100.00 ± 0.00 100.00 ± 0.00 100.00

breakout 30.50 1.70 790.40 ± 60.05 863.82 ± 0.11 864.00
centipede 12017.00 2090.90 412847.86 ± 26087.14 858609.27 ± 69946.39 1159049.27

chopper command 7387.80 811.00 999900.00 ± 0.00 999900.00 ± 0.00 991039.70
crazy climber 35829.40 10780.50 565909.85 ± 89183.85 704871.91 ± 79819.90 458315.40

defender 18688.90 2874.50 677642.78 ± 16858.59 730014.57 ± 1192.36 839642.95
demon attack 1971.00 152.10 143161.44 ± 220.32 143854.95 ± 112.12 143964.26
double dunk -16.40 -18.60 23.93 ± 0.06 24.00 ± 0.00 23.94

enduro 860.50 0.00 2367.71 ± 8.69 2379.88 ± 4.44 2382.44
fishing derby -38.70 -91.70 86.97 ± 3.25 91.00 ± 2.83 91.16

freeway 29.60 0.00 32.59 ± 0.71 34.00 ± 0.00 33.03
frostbite 4334.70 65.20 541280.88 ± 17485.76 406665.87 ± 262725.94 631378.53
gopher 2412.50 257.60 117777.08 ± 3108.06 129540.81 ± 268.58 130345.58
gravitar 3351.40 173.00 19213.96 ± 348.25 18868.69 ± 3136.73 6682.70

hero 30826.40 1027.00 114736.26 ± 49116.60 47331.28 ± 4662.63 49244.11
ice hockey 0.90 -11.20 63.64 ± 6.48 86.81 ± 0.74 67.04
jamesbond 302.80 29.00 135784.96 ± 9132.28 158734.23 ± 1116.23 41063.25
kangaroo 3035.00 52.00 24034.16 ± 12565.88 18038.22 ± 753.41 16763.60

krull 2665.50 1598.00 251997.31 ± 20274.39 225260.19 ± 49729.04 269358.27
kung fu master 22736.30 258.50 206845.82 ± 11112.10 267487.46 ± 2437.72 204824.00

montezuma revenge 4753.30 0.00 9352.01 ± 2939.78 3000.00 ± 0.00 0.00
ms pacman 6951.60 307.30 63994.44 ± 6652.16 60152.05 ± 3138.09 243401.10

name this game 8049.00 2292.30 54386.77 ± 6148.50 137023.58 ± 4928.28 157177.85
phoenix 7242.60 761.40 908264.15 ± 28978.92 992489.75 ± 7436.02 955137.84
pitfall 6463.70 -229.40 18756.01 ± 9783.91 0.00 ± 0.00 0.00
pong 14.60 -20.70 20.67 ± 0.47 21.00 ± 0.00 21.00

private eye 69571.30 24.90 79716.46 ± 29515.48 40700.00 ± 0.00 15299.98
qbert 13455.00 163.90 580328.14 ± 151251.66 788781.26 ± 159574.70 72276.00

riverraid 17118.00 1338.50 63318.67 ± 5659.55 96331.50 ± 27876.09 323417.18
road runner 7845.00 11.50 243025.80 ± 79555.98 585363.97 ± 1576.09 613411.80

robotank 11.90 2.20 127.32 ± 12.50 144.00 ± 0.00 131.13
seaquest 42054.70 68.40 999997.63 ± 1.42 999999.00 ± 0.00 999976.52
skiing -4336.90 -17098.10 -4202.60 ± 607.85 -3682.75 ± 485.24 -29968.36
solaris 12326.70 1236.30 44199.93 ± 8055.50 62021.43 ± 651.94 56.62

space invaders 1668.70 148.00 48680.86 ± 5894.01 67619.96 ± 1660.12 74335.30
star gunner 10250.00 664.00 839573.53 ± 67132.17 998270.32 ± 1070.75 549271.70
surround 6.50 -10.00 9.50 ± 0.19 10.00 ± 0.00 9.99

tennis -8.30 -23.80 23.84 ± 0.10 24.00 ± 0.00 0.00
time pilot 5229.20 3568.00 405425.31 ± 17044.45 461687.66 ± 2991.91 476763.90
tutankham 167.60 11.40 2354.91 ± 3421.43 467.52 ± 35.58 491.48
up n down 11693.20 533.40 623805.73 ± 23493.75 703949.97 ± 10411.25 715545.61

venture 1187.50 0.00 2623.71 ± 442.13 2237.20 ± 36.56 0.40
video pinball 17667.90 0.00 992340.74 ± 12867.87 999231.39 ± 429.53 981791.88
wizard of wor 4756.50 563.50 157306.41 ± 16000.00 182733.67 ± 12412.89 197126.00
yars revenge 54576.90 3092.90 998532.37 ± 375.82 999775.14 ± 7.89 553311.46

zaxxon 9173.30 32.50 249808.90 ± 58261.59 361955.14 ± 17904.80 725853.90
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Games Agent57 NGU R2D2 (Retrace) R2D2
alien 297638.17 ± 37054.55 312024.15 ± 91963.92 228483.74 ± 111660.11 399709.08 ± 106191.42

amidar 29660.08 ± 880.39 18369.47 ± 2141.76 28777.05 ± 803.90 30338.91 ± 1087.62
assault 67212.67 ± 6150.59 42829.17 ± 7452.17 46003.71 ± 8996.65 124931.33 ± 2627.16
asterix 991384.42 ± 9493.32 996141.15 ± 3993.26 998867.54 ± 191.35 999403.53 ± 76.75

asteroids 150854.61 ± 16116.72 248951.23 ± 7561.86 345910.03 ± 13189.10 394765.73 ± 16944.82
atlantis 1528841.76 ± 28282.53 1659575.47 ± 4140.68 1659411.83 ± 9934.57 1644680.76 ± 5784.97

bank heist 23071.50 ± 15834.73 20012.54 ± 20377.89 16726.07 ± 10992.11 38536.66 ± 11645.73
battle zone 934134.88 ± 38916.03 813965.40 ± 94503.50 845666.67 ± 51527.68 956179.17 ± 31019.66
beam rider 300509.80 ± 13075.35 75889.70 ± 18226.52 123281.81 ± 4566.16 246078.69 ± 3667.61

berzerk 61507.83 ± 26539.54 45601.93 ± 5170.98 73475.91 ± 8107.24 64852.56 ± 17875.17
bowling 251.18 ± 13.22 215.38 ± 13.27 257.88 ± 4.84 229.39 ± 24.57
boxing 100.00 ± 0.00 99.71 ± 0.25 100.00 ± 0.00 99.27 ± 0.35

breakout 790.40 ± 60.05 625.86 ± 42.66 859.60 ± 2.04 863.25 ± 0.34
centipede 412847.86 ± 26087.14 596427.16 ± 7149.84 737655.85 ± 25568.85 693733.73 ± 74495.81

chopper command 999900.00 ± 0.00 999900.00 ± 0.00 999900.00 ± 0.00 999900.00 ± 0.00
crazy climber 565909.85 ± 89183.85 351390.64 ± 62150.96 322741.20 ± 23024.88 549054.89 ± 39413.08

defender 677642.78 ± 16858.59 684414.06 ± 3876.41 681291.73 ± 3469.95 692114.71 ± 4864.99
demon attack 143161.44 ± 220.32 143695.73 ± 154.88 143899.22 ± 53.78 143830.91 ± 107.18
double dunk 23.93 ± 0.06 -12.63 ± 5.29 24.00 ± 0.00 23.97 ± 0.03

enduro 2367.71 ± 8.69 2095.40 ± 80.81 2372.77 ± 3.50 2380.22 ± 5.47
fishing derby 86.97 ± 3.25 34.62 ± 4.91 87.83 ± 2.78 87.81 ± 1.28

freeway 32.59 ± 0.71 28.71 ± 2.07 33.48 ± 0.16 32.90 ± 0.11
frostbite 541280.88 ± 17485.76 284044.19 ± 227850.49 12290.11 ± 7936.49 446703.01 ± 63780.51
gopher 117777.08 ± 3108.06 119110.87 ± 463.03 119803.94 ± 3197.88 126241.97 ± 519.70
gravitar 19213.96 ± 348.25 14771.91 ± 843.17 14194.45 ± 1250.63 17352.78 ± 2675.27

hero 114736.26 ± 49116.60 71592.84 ± 12109.10 54967.97 ± 5411.73 39786.01 ± 7638.19
ice hockey 63.64 ± 6.48 -3.15 ± 0.47 86.56 ± 1.21 86.89 ± 0.88
jamesbond 135784.96 ± 9132.28 28725.27 ± 2902.52 32926.31 ± 3073.94 28988.32 ± 263.79
kangaroo 24034.16 ± 12565.88 37392.82 ± 6170.95 15185.87 ± 931.58 14492.75 ± 5.29

krull 251997.31 ± 20274.39 150896.04 ± 33729.56 149221.98 ± 17583.30 291043.06 ± 10051.59
kung fu master 206845.82 ± 11112.10 215938.95 ± 22050.67 228228.90 ± 5316.74 252876.65 ± 10424.57

montezuma revenge 9352.01 ± 2939.78 19093.74 ± 12627.66 2300.00 ± 668.33 2666.67 ± 235.70
ms pacman 63994.44 ± 6652.16 48695.12 ± 1599.94 45011.73 ± 1822.30 50337.02 ± 4004.55

name this game 54386.77 ± 6148.50 25608.90 ± 1943.41 74104.70 ± 9053.70 74501.48 ± 11562.26
phoenix 908264.15 ± 28978.92 966685.41 ± 6127.24 937874.90 ± 22525.79 876045.70 ± 25511.04
pitfall 18756.01 ± 9783.91 15334.30 ± 15106.90 -0.45 ± 0.50 0.00 ± 0.00
pong 20.67 ± 0.47 19.85 ± 0.31 20.95 ± 0.01 21.00 ± 0.00

private eye 79716.46 ± 29515.48 100314.44 ± 291.22 34601.01 ± 5266.39 18765.05 ± 16672.27
qbert 580328.14 ± 151251.66 479024.20 ± 98094.39 434753.72 ± 99793.58 771069.21 ± 152722.56

riverraid 63318.67 ± 5659.55 40770.82 ± 748.42 43174.10 ± 2335.12 54280.32 ± 1245.60
road runner 243025.80 ± 79555.98 151326.54 ± 77209.43 116149.17 ± 18257.21 613659.42 ± 397.72

robotank 127.32 ± 12.50 11.62 ± 0.67 143.59 ± 0.29 130.72 ± 9.75
seaquest 999997.63 ± 1.42 999999.00 ± 0.00 999999.00 ± 0.00 999999.00 ± 0.00
skiing -4202.60 ± 607.85 -24271.33 ± 6936.26 -14576.05 ± 875.96 -17797.59 ± 866.55
solaris 44199.93 ± 8055.50 7254.03 ± 3653.55 6566.03 ± 2209.91 11247.88 ± 1999.22

space invaders 48680.86 ± 5894.01 48087.13 ± 11219.39 36069.75 ± 23408.12 67229.37 ± 2316.31
star gunner 839573.53 ± 67132.17 450096.08 ± 158979.59 420337.48 ± 8309.08 923739.89 ± 69234.32
surround 9.50 ± 0.19 -9.32 ± 0.67 9.96 ± 0.01 10.00 ± 0.00

tennis 23.84 ± 0.10 11.06 ± 6.10 24.00 ± 0.00 7.93 ± 11.36
time pilot 405425.31 ± 17044.45 368520.34 ± 70829.26 452966.67 ± 5300.62 454055.63 ± 2205.07
tutankham 2354.91 ± 3421.43 197.90 ± 7.47 466.59 ± 38.40 413.80 ± 3.89
up n down 623805.73 ± 23493.75 630463.10 ± 31175.20 679303.61 ± 4852.85 599134.12 ± 3394.48

venture 2623.71 ± 442.13 1747.32 ± 101.40 2013.31 ± 11.24 2047.51 ± 20.83
video pinball 992340.74 ± 12867.87 973898.32 ± 20593.14 964670.12 ± 4015.52 999697.05 ± 53.37
wizard of wor 157306.41 ± 16000.00 121791.35 ± 27909.14 134017.82 ± 11871.88 179376.15 ± 6659.14
yars revenge 998532.37 ± 375.82 997642.09 ± 455.73 998474.20 ± 589.50 999748.54 ± 46.19

zaxxon 249808.90 ± 58261.59 129330.99 ± 56872.31 114990.68 ± 56726.18 366028.59 ± 49366.03
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H.5. Atari 57 Learning Curves

Figure 14. Learning curves for Agent57 on Atari57.
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H.6. Videos

We provide several videos in https://sites.google.com/corp/view/agent57. We show

• Agent57 on all 57 games: We provide an example video for each game in the Atari 57 sweep in which Agent57
surpasses the human baseline.

• State-action Value Function Parameterization: To illustrate the importance of the value function parametrization
we show videos in two games Ice Hockey and Surround. We show videos for exploitative and exploratory policies
for both NGU and Agent57. In Ice Hockey, exploratory and exploitative policies are quite achieving very different
scores. Specifically the exploratory policy does not aim to score goals, it prefers to move around the court exploring
new configurations. On the other hand, NGU with a single architecture is unable to learn both policies simultaneously,
while Agent57 show very diverse performance. In the case of Surround NGU is again unable to learn. We conjecture
that the exploratory policy chooses to loose a point in order to start afresh increasing the diversity of the observations.
Agent57 is able to overcome this problem and both exploitative and exploratory policies are able to obtain scores
surpassing the human baseline.

• Adaptive Discount Factor: We show example videos for R2D2 (bandit) and R2D2 (retrace) in the game James Bond.
R2D2 (retrace) learns to clear the game with a final score in the order of 30,000 points. R2D2 (bandit) in contrast,
learns to delay the end of the game to collect significantly more rewards with a score around 140,000 points. To
achieve this, the adaptive mechanism in the meta-controller selects policies with very high discount factors.

• Backprop Through Time Window Size: We provide videos showing example episodes for NGU and Agent57 on
the game of Solaris. In order to achieve high scores, the agent needs to learn to move around the grid screen and look
for enemies. This is a long term credit assignment problem as the agent needs to bind the actions taken on the grid
screen with the reward achieved many time steps later.

I. Intrinsic reward computation
We begin by providing a general overview of the computation of the proposed intrinsic reward rit. The reward is com-
posed of two blocks: an episodic novelty module and an (optional) life-long novelty module, represented in red and green
respectively in Fig. 15 (right).

embedding
network

classifier

embedding network

RND prediction network

RND random network

episodic memory

k-nearest
neighbors

controllable state

episodic novelty
 module

life-long novelty
 module multiplicative

modulation

Figure 15. (left) Training architecture for the embedding network (right) Reward computation.

The episodic novelty module computes our episodic intrinsic reward and is composed of an episodic memory, M , and an
embedding function f , mapping the current observation to a learned representation that we refer to as controllable state. At
the beginning of each episode, the episodic memory starts completely empty. At every step, the agent computes an episodic
intrinsic reward, repisodic

t , and appends the controllable state corresponding to the current observation to the memory M .
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To determine this episodic reward, the current observation is compared to the content of the episodic memory. Larger
differences produce larger episodic intrinsic rewards.

A life-long (or inter-episodic) novelty module provides a long-term novelty signal to control the amount of exploration
across episodes. We do so by multiplicatively modulating the exploration bonus repisodic

t with a life-long curiosity factor,
αt. Note that this modulation will vanish over time, reducing our method to using the non-modulated reward. Specifically,
we combine αt with repisodic

t as follows (see also Fig. 15 (right)):

rit = repisodic
t ·min {max {αt, 1} , L}

where L is a chosen maximum reward scaling.

Embedding network: f : O → Rp maps the current observation to a p-dimensional vector corresponding to its control-
lable state. Given a triplet {xt, at, xt+1} composed of two consecutive observations, xt and xt+1, and the action taken by
the agent at, we parameterise the conditional likelihood as p(a|xt, xt+1) = h(f(xt), f(xt+1)), where h is a one hidden
layer MLP followed by a softmax. The parameters of both h and f are trained via maximum likelihood. This architecture
can be thought of as a Siamese network with a one-layer classifier on top, see Fig. 15 (left) for an illustration.

Episodic memory and intrinsic reward: The episodic memory M is a dynamically-sized slot-based memory that stores
the controllable states in an online fashion (Pritzel et al., 2017). At time t, the memory contains the controllable states of all
the observations visited in the current episode, {f(x0), f(x1), . . . , f(xt−1)}. Inspired by theoretically-justified exploration
methods turning state-action counts into a bonus reward (Strehl & Littman, 2008), we define our intrinsic reward as

repisodic
t =

1√
n(f(xt))

≈ 1√∑
fi∈Nk

K(f(xt), fi) + c

where n(f(xt)) is the counts for the visits to the abstract state f(xt). We approximate these counts n(f(xt)) as the sum
of the similarities given by a kernel function K : Rp × Rp → R, over the content of M . In practice, pseudo-counts are
computed using the k-nearest neighbors of f(xt) in the memory M , denoted by Nk = {fi}ki=1. The constant c guarantees
a minimum amount of pseudo-counts (fixed to 0.001 in all our experiments). Note that when K is a Dirac delta function,
the approximation becomes exact but consequently provides no generalisation of exploration required for very large state
spaces. Following (Blundell et al., 2016; Pritzel et al., 2017), we use the inverse kernel for K,

K(x, y) =
ε

d2(x,y)
d2m

+ ε

where ε is a small constant (fixed to 10−3 in all our experiments), d is the Euclidean distance and d2m is a running average
of the squared Euclidean distance of the k-th nearest neighbors. This running average is used to make the kernel more
robust to the task being solved, as different tasks may have different typical distances between learnt embeddings.

Integrating life-long curiosity: The RND (Burda et al., 2018) modulator αt is defined by introducing a random, untrained
convolutional network g : O → Rk, and training a predictor network ĝ : O → Rk that attempts to predict the outputs of
g on all the observations that are seen during training by minimizing err(xt) = ||ĝ(xt; θ) − g(xt)||2 with respect to the
parameters of ĝ, θ. We then define the modulator αt as a normalized mean squared error, as done in (Burda et al., 2018):
αt = 1 + err(xt)−µe

σe
, where σe and µe are running standard deviation and mean for err(xt).

Now, we present the algorithm for computing the episodic reward in Alg. 1, provide the values of the common hyperpa-
rameters in Tab. 5 and recall some useful notations:

• f(xt) is the embedding for the observation at time t. The embedding network f is trained by minimizing an inverse
dynamics loss.

• M the episodic memory containing at time t the previous embeddings {f(x0), f(x1), . . . , f(xt−1)}.

• k is the number of nearest neighbours.

• Nk = {fi}ki=1 is the set of k-nearest neighbours of f(xt) in the memory M .
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• K the kernel defined as K(x, y) = ε
d2(x,y)

d2m
+ε

where ε is a small constant, d is the Euclidean distance and d2m is a

running average of the squared Euclidean distance of the k-nearest neighbors.

• c is the pseudo-counts constant.

• ξ cluster distance.

• sm maximum similarity.

Algorithm 1 Computation of the episodic intrinsic reward at time t: repisodic
t .

Input : M ; k; f(xt); c; ε; ξ; sm; d2m
Output: repisodic

t

1 Compute the k-nearest neighbours of f(xt) in M and store them in a list Nk Create a list of floats dk
of size k /* The list dk will contain the distances between the embedding f(xt) and
its neighbours Nk. */

2 for i ∈ {1, . . . , k} do

3 dk[i]← d2(f(xt), Nk[i])

4 end
5 Update the moving average d2m with the list of distances dk /* Normalize the distances dk with the

updated moving average d2m. */

6 dn ← dk
d2m

/* Cluster the normalized distances dn i.e. they become 0 if too small

and 0k is a list of k zeros. */
7 dn ← max(dn − ξ, 0k) /* Compute the Kernel values between the embedding f(xt) and its

neighbours Nk. */
8 Kv ← ε

dn+ε
/* Compute the similarity between the embedding f(xt) and its neighbours

Nk. */

9 s←
√∑k

i=1Kv[i] + c /* Compute the episodic intrinsic reward at time t: rit. */

10 if s > sm then
11 repisodic

t ← 0
12 else
13 repisodic

t ← 1
s

Hyperparameter Value
Learning rate (RND and Action prediction) 0.0005
Adam epsilon 0.0001
Adam beta1 0.9
Adam beta2 0.999
Adam clip norm 40
Batch size 64
Episodic memory capacity 30000
Embeddings memory mode Ring buffer
Intrinsic reward scale β 0.3
Kernel ε 0.0001
Kernel num. neighbors used k 10
Kernel cluster distance ξ 0.008
Kernel pseudo-counts constant c 0.001
Kernel maximum similarity sm 8
Embeddings target update period once/episode
Action prediction network L2 weight 0.00001
RND clipping factor L 5

Table 5: Common hyperparameters for the reward computation.


