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Abstract
The Optimal Transport (a.k.a. Wasserstein) dis-
tance is an increasingly popular similarity mea-
sure for rich data domains, such as images or
text documents. This raises the necessity for fast
nearest neighbor search algorithms according to
this distance, which poses a substantial compu-
tational bottleneck on massive datasets. In this
work we introduce Flowtree, a fast and accurate
approximation algorithm for the Wasserstein-1
distance. We formally analyze its approxima-
tion factor and running time. We perform ex-
tensive experimental evaluation of nearest neigh-
bor search algorithms in the W1 distance on real-
world dataset. Our results show that compared to
previous state of the art, Flowtree achieves up to
7.4 times faster running time.

1. Introduction
Given a finite metric spaceM = (X, dX) and two distri-
butions µ and ν on X , the Wasserstein-1 distance (a.k.a.
Earth Mover’s Distance or Optimal Transport) between µ
and ν is defined as

W1(µ, ν) = min
τ

∑
x1,x2∈X

τ(x1, x2) · dX(x1, x2), (1)

where the minimum is taken over all distributions τ on
X × X whose marginals are equal to µ and ν. The
Wasserstein-1 distance and its variants are heavily used in
applications to measure similarity in structured data do-
mains, such as images (Rubner et al., 2000) and natural
language text (Kusner et al., 2015). In particular, (Kusner
et al., 2015) proposed the Word Mover Distance (WMD)
for text documents. Each document is seen as a uniform
distribution over the words it contains, and the underlying
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metric between words is given by high-dimensional word
embeddings such as word2vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014). It is shown in (Kusner
et al., 2015) (see also (Le et al., 2019; Yurochkin et al.,
2019; Wu et al., 2018)) that the Wasserstein-1 distance be-
tween the two distributions is a high-quality measure of
similarity between the associated documents.

To leverage the Wasserstein-1 distance for classification
tasks, the above line of work uses the k-nearest neigh-
bor classifier. This poses a notorious bottleneck for large
datasets, necessitating the use of fast approximate similar-
ity search algorithms. While such algorithms are widely
studied for `p distances (chiefly `2; see (Andoni et al.,
2018a) for a survey), much less is known for Wasser-
stein distances, and a comprehensive study appears to be
lacking. In particular, two properties of the W1 distance
make the nearest neighbor search problem very challeng-
ing. First, the W1 distance is fairly difficult to compute
(the most common approaches are combinatorial flow algo-
rithms (Kuhn, 1955) or approximate iterative methods (Cu-
turi, 2013)). Second, the W1 distance is strongly incom-
patible with Euclidean (and more generally, with `p) ge-
ometries (Bourgain, 1986; Khot & Naor, 2006; Naor &
Schechtman, 2007; Andoni et al., 2008; 2015; 2018b),
which renders many of the existing techniques for nearest
neighbor search inadequate (e.g., random projections).

In this work, we systematically study the k-nearest neigh-
bor search (k-NNS) problem with respect to the W1 dis-
tance. In accordance with the above applications, we focus
on the case where the ground set X is a finite subset of
Rd, endowed with the Euclidean distance, where d can be
a high dimension, and each distribution over X has finite
support of size at most s.1 Given a dataset of n distribu-
tions µ1, µ2, . . . , µn, the goal is to preprocess it, such that
given a query distribution ν (also supported on X), we can
quickly find the k distributions µi closest to ν in the W1

distance. To speed up search, the algorithms we consider
rely on efficient estimates of the distances W1(µi, ν). This
may lead to retrieving approximate nearest neighbors rather
than the exact ones, which is often sufficient for practical

1In the application to (Kusner et al., 2015), X is the set word
embeddings of (say) all terms in the English language, and s is
the maximum number of terms per text document.
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applications.

1.1. Prior work

(Kusner et al., 2015) sped up k-NNS for WMD by design-
ing two approximations of W1. The first algorithm esti-
mates W1(µ, ν) as the Euclidean distance between their
respective means. The second algorithm, called “Relaxed
WMD” (abbrev. R-WMD), assigns every point in the sup-
port of µ to its closest point in the support of ν, and vice
versa, and returns the maximum of the two assignments.
Both of these methods produce an estimate no larger than
the true distance W1(µ, ν). The former is much faster to
compute, while the latter has a much better empirical qual-
ity of approximation. The overall k-NNS pipeline in (Kus-
ner et al., 2015) consists of the combination of both al-
gorithms, together with exact W1 distance computation.
Recently, (Atasu & Mittelholzer, 2019) proposed modifi-
cations to R-WMD by instating additional capacity con-
straints, resulting in more accurate estimates that can be
computed almost as efficiently as R-WMD.

(Indyk & Thaper, 2003) studied the approximate NNS
problem for the W1 distance in the context of image re-
trieval. Their approach capitalizes on a long line of work
of tree-based methods, in which the given metric space is
embedded at random into a tree metric. This is a famously
fruitful approach for many algorithmic and structural state-
ments (Bartal, 1996; 1998; Charikar et al., 1998; Indyk,
2001; Gupta et al., 2003; Fakcharoenphol et al., 2004; Ca-
linescu et al., 2005; Mendel & Naor, 2006). It is useful
in particular for Wasserstein distances, since the optimal
flow (τ in (1)) on a tree can be computed in linear time,
and since a tree embedding of the underlying metric yields
an `1-embedding of the Wasserstein distance, as shown
by (Kleinberg & Tardos, 2002; Charikar, 2002). This al-
lowed (Indyk & Thaper, 2003) to design an efficient NNS
algorithm forW1 based on classical locality-sensitive hash-
ing (LSH). Recently, (Le et al., 2019) introduced a ker-
nel similarity measure based on the same approach, and
showed promising empirical results for additional applica-
tion domains.

1.2. Our results

Flowtree. The tree-based method used in (Indyk &
Thaper, 2003; Le et al., 2019) is a classic algorithm
called Quadtree, described in detail Section 2. In this
method, the ground metric X is embedded into a random
tree of hypercubes, and the cost of the optimal flow is com-
puted with respect to the tree metric. We suggest a modi-
fication to this algorithm, which we call Flowtree: It com-
putes the optimal flow on the same random tree, but evalu-
ates the cost of that flow in the original ground metric.

While this may initially seem like a small modification, it in

fact leads to an algorithm with vastly different properties.
On one hand, while both algorithms run asymptotically in
time O(s), Quadtree is much faster in practice. The reason
is that the cost of the optimal flow on the tree can be com-
puted very efficiently, without actually computing the flow
itself. On the other hand, Flowtree is dramatically more
accurate. Formally, we prove it has an asymptotically bet-
ter approximation factor than Quadtree. Empirically, our
experiments show that Flowtree is as accurate as state-of-
the-art O(s2) time methods, while being much faster.

Theoretical results. A key difference between Flowtree
and Quadtree is that the approximation quality of Flowtree
is independent of the dataset size, i.e., of the number
n of distributions µ1, . . . , µn that need to be searched.
Quadtree, on the other hand, degrades in quality as n
grows. We expose this phenomenon in two senses:

• Worst-case analysis: We prove that Flowtree reports an
O(log2 s)-approximate nearest neighbor w.h.p if the in-
put distributions are uniform, and an O(log(dΦ) · log s)-
approximate nearest neighbor (where d is the dimension
and Φ is the coordinate range of X) even if they are
non-uniform. Quadtree, on the other hand, reports an
O(log(dΦ) · log(sn))-approximate nearest neighbor, and
we show the dependence on n is necessary.

• Random model: We analyze a popular random data
model, in which both Flowtree and Quadtree recover the
exact nearest neighbor with high probability. Nonetheless,
here too, we show that Flowtree’s success probability is
independent of n, while Quadtree’s degrades as n grows.

Empirical results. We evaluate Flowtree, as well as
several baselines and state-of-the-art methods, for nearest
neighbor search in the W1 distance on real-world datasets.

Our first set of experiments evaluates each algorithm indi-
vidually. Our results yield a sharp divide among existing
algorithms: The linear time ones are very fast in practice
but only moderately accurate, while the quadratic time ones
are much slower but far more accurate. Flowtree forms an
intermediate category: it is slower and more accurate than
the other linear time algorithms, and is at least 5.5 (and up
to 30) times faster than the quadratic time algorithms, while
attaining similar or better accuracy.

The above results motivate a sequential combination of al-
gorithms, that starts with a fast and coarse algorithm to fo-
cus on the most promising candidates nearest neighbors,
and gradually refines the candidate list by slower and more
accurate algorithms. Such pipelines are commonly used in
practice, and in particular were used in (Kusner et al., 2015)
(termed “prefetch and prune”). Our second set of experi-
ments evaluates pipelines of various algorithms. We show
that incorporating Flowtree into pipelines substantially im-
proves the overall running times, by a factor of up to 7.4.
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2. Preliminaries: Quadtree
In this section we describe the classic Quadtree algo-
rithm. Its name comes from its original use in two di-
mensions (cf. (Samet, 1984)), but it extends to—and has
been successfully used in—various high-dimensional set-
tings (e.g. (Indyk, 2001; Indyk et al., 2017; Backurs et al.,
2019)). It enjoys a combination of appealing theoretical
properties and amenability to fast implementation. As it
forms the basis for Flowtree, we now describe it in detail.

Generic Quadtree. Let X ⊂ Rd be a finite set of points.
Our goal is to embed X into a random tree metric, so as
to approximately preserve each pairwise distance in X . To
simplify the description, suppose that the minimum pair-
wise distance in X is exactly 1, and that all points in X
have coordinates in [0,Φ].2

The first step is to obtain a randomly shifted hypercube that
encloses all points inX . To this end, letH0 = [−Φ,Φ]d be
the hypercube with side length 2Φ centered at the origin.
Let σ ∈ Rd be a random vector with i.i.d. coordinates uni-
formly distributed in [0,Φ]. We shift H0 by σ, obtaining
the hypercubeH = [−Φ,Φ]d+σ. Observe thatH has side
length 2Φ and encloses X . The random shift is needed in
order to obtain formal guarantees for arbitrary X .

Now, we construct a tree of hypercubes by letting H be the
root, halvingH along each dimension, and recursing on the
resulting sub-hypercubes. We add to the tree only those hy-
percubes that are non-empty (i.e., contain at least one point
from X). Furthermore, we do not partition hypercubes that
contain exactly one point fromX; they become leaves. The
resulting tree has at most O(log(dΦ)) levels and exactly
|X| leaves, one per point in X .3 We number the root level
as log Φ + 1, and the rest of the levels are numbered down-
ward accordingly (log Φ, log Φ− 1, . . .). We set the weight
of each tree edge between level `+ 1 and level ` to be 2`.

The resulting quadtree has O(|X|d · log(dΦ)) nodes, and it
is straightforward to build it in time Õ(|X|d · log(dΦ)).4

Wasserstein-1 on Quadtree. The tree distance between
each pair x, x′ ∈ X is defined as the total edge weight
on the unique path between their corresponding leaves
in the quadtree. Given two distributions µ, ν on X , the

2This is without loss of generality, as we can set the minimum
distance to 1 by scaling, and we can shift all the points to have
non-negative coordinates without changing internal distances.

3This is since the diameter of the root hypercube H is
√
dΦ,

and the diameter of a leaf is no less than 1/2, since by scaling
the minimal distance in X to 1 we have assured that a hyper-
cube of diameter 1/2 contains a single point and thus becomes a
leaf. Since the diameter is halved in each level, there are at most
O(log(dΦ)) levels.

4Note that although the construction partitions each hypercube
into 2d sub-hypercubes, eliminating empty hypercubes ensures
that the tree size does not depend exponentially on d.

Wasserstein-1 distance with this underlying metric (as a
proxy for the Euclidean metric on X) admits the closed-
form

∑
v 2`(v)|µ(v)− ν(v)|, where v ranges over all nodes

in the tree, `(v) is the level of v, µ(v) is the total µ-mass
of points enclosed in the hypercube associated with v, and
ν(v) is defined similarly for the ν-mass. If µ, ν have sup-
ports of size at most s, then this quantity can be computed
in time O(s · log(dΦ)).

The above closed-form implies, in particular, that W1 on
the quadtree metric embeds isometrically into `1, as orig-
inally observed by (Charikar, 2002) following (Kleinberg
& Tardos, 2002). Namely, the `1 space has a coordinate
associated with each tree node v, and a distribution µ is
embedded in that space by setting the value of each co-
ordinate v to 2`(v)µ(v), where µ(v) is defined as above.
Furthermore, observe that if µ has support size at most s,
then its corresponding `1 embedding w.r.t the tree metric
has at most sh non-zero entries, where h is the height of
the tree. Thus, computing W1 on the tree metric amounts
to computing the `1 distance between sparse vectors, which
further facilitates fast implementation in practice.

3. Flowtree
The Flowtree algorithm for k-NNS w.r.t. theW1 distance is
as follows. In the preprocessing stage, we build a quadtree
T on the ground set X , as described in Section 2. Let
t(x, x′) denote the quadtree distance between every pair
x, x′ ∈ X . In the query stage, in order to estimateW1(µ, ν)
between two distributions µ, ν, we compute the optimal
flow f w.r.t. the tree metric, that is,

f = argminf̃

∑
x,x′∈X

f̃(x, x′) · t(x, x′),

where the argmin is taken over all distributions on X ×
X with marginals µ, ν. Then, the estimate of the distance
between µ and ν is given by

W̃1(µ, ν) =
∑

x,x′∈X
f(x, x′) · ‖x− x′‖.

Note that if the support sizes of µ and ν are upper-bounded
by s, then the Flowtree estimate of their distance can be
computed in time linear in s (see proof in appendix).

Lemma 1. W̃1(µ, ν) can be computed in time O(s(d +
log(dΦ))).

Unlike Quadtree, Flowtree does not reduce to sparse `1
distance computation. Instead, one needs to compute the
optimal flow tree f explicitly by bottom-up greedy algo-
rithm, and then use it to compute W̃1(µ, ν). On the other
hand, Flowtree has the notable property mentioned ear-
lier: its NNS approximation factor is independent of the
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dataset size n. In comparison, the classic Quadtree does not
possess this property, and its accuracy deteriorates as the
dataset becomes larger. We formally establish this distinc-
tion in two senses: first by analyzing worst-case bounds,
and then by analyzing a popular random data model.

3.1. Worst-case bounds

We start with an analytic worst-case bound on the perfor-
mance of quadtree. Let us recall notation: X is a finite
subset of Rd, and Φ > 0 is the side length of a hyper-
cube enclosingX . We are given a dataset of n distributions
µ1, . . . , µn, and a query distribution ν, where each of these
distributions is supported on a subset ofX of size at most s.
Our goal is to find a near neighbor of ν among µ1, . . . µn.
A distribution µi is called a c-approximate nearest neigh-
bor of ν if W1(µi, ν) ≤ c ·mini∗W1(µi∗ , ν).

The following theorem is an adaptation of a result by (An-
doni et al., 2008) (where it is proven for a somewhat dif-
ferent algorithm, with similar analysis). All proofs are de-
ferred to the appendix.

Theorem 1 (Quadtree upper bound). With probability ≥
0.99, the nearest neighbor of ν among µ1, . . . µn in the
Quadtree distance is an O(log(min{sn, |X|}) log(dΦ))-
approximate nearest neighbor in the W1 distance.

Next, we show that the log n factor in the above upper
bound is necessary for Quadtree.

Theorem 2 (Quadtree lower bound). Suppose c is such that
Quadtree is guaranteed to return a c-approximate nearest
neighbor, for any dataset, with probability more than (say)
1/2. Then c = Ω(log n).

In contrast, Flowtree attains an approximation factor that
does not depend on n.

Theorem 3 (Flowtree upper bound). With probability ≥
0.99, the nearest neighbor of ν among µ1, . . . µn in the
Flowtree distance is an O(log(s) log(dΦ))-approximate
nearest neighbor for the W1 distance.

Finally, we combine ideas from (Andoni et al., 2008)
and (Bačkurs & Indyk, 2014) to prove another upper bound
for Flowtree, which is also independent of the dimension d
and the numerical range Φ. No such result is known for
Quadtree (nor does it follow from our techniques).

Theorem 4 (Flowtree upper bound for uniform distribu-
tions5). For an integer s, assume that for every distribu-
tion there exists an integer s′ ≤ s such that the weights
of all elements in the support are integer multiples of

5For simplicity, Theorem 4 is stated for uniform distribution
(or close to uniform), such as documents in (Kusner et al., 2015).
A similar result holds for any distribution, with additional depen-
dence on the numerical range of mass values.

Figure 1: Random model illustration with s = 4. Left: The
blue points are the N random data points. The data distri-
butions are all subsets of 4 points. Right: The red points
form a query distribution whose planted nearest neighbor
is the distribution supported on {x1, x2, x3, x4}.

1/s′. With probability ≥ 0.99, the nearest neighbor of ν
among µ1, . . . µn in the Flowtree distance is an O(log2 s)-
approximate nearest neighbor for the W1 distance.

3.2. Random model

The above worst-case results appear to be overly pes-
simistic for real data. Indeed, in practice we observe that
Quadtree and especially Flowtree often recover the exact
nearest neighbor. This motivates us to study their perfor-
mance on a simple model of random data, which is standard
in the study of nearest neighbor search.

The data is generated as follows. We choose a ground setX
ofN points i.i.d. uniformly at random on the d-dimensional
unit sphere Sd−1. For each subset of N of size s, we form
a uniform distribution supported on that subset. These dis-
tributions make up the dataset µ1, . . . , µn (so n =

(
N
s

)
).

To generate a query, pick any µi as the “planted” near-
est neighbor, and let x1, . . . , xs denote its support. For
k = 1, . . . , s, choose a uniformly random point yk among
the points on Sd−1 at distance at most ε from xk, where ε
is a model parameter. The query distribution ν is defined
as the uniform distribution over y1, . . . , ys. By known con-
centration of measure results, the distance from yk to every
point in X except xk is

√
2 − o(1) with high probability.

Thus, the optimal flow from ν to µi is the perfect match-
ing {(xk, yk)}sk=1, and µi is the nearest neighbor of ν. The
model is illustrated in Figure 1.

Theorem 5. In the above model, the success probability
of Quadtree in recovering the planted nearest neighbor de-
cays exponentially with N , while the success probability of
Flowtree is independent of N .

4. Experiments
In this section we empirically evaluate Flowtree and com-
pare it to various existing methods.
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Table 1: Dataset properties. Avg. s is the average support
size of the distributions in the dataset.

Name Size Queries Underlying metric Avg. s

20news 11, 314 1, 000 Word embedding 115.9
Amazon 10, 000 1, 000 Word embedding 57.44
MNIST 60, 000 10, 000 2D Euclidean 150.07

4.1. Synthetic data

We implement the random model from Section 3.2. The re-
sults are in Figure 2. The x-axis is N (the number of points
in the ground metric), and the y-axis is the fraction of suc-
cesses over 100 independent repetitions of planting a query
and recovering its nearest neighbor. As predicted by The-
orem 5, Quadtree’s success rate degrades as N increases
(and we recall that n =

(
N
s

)
), while Flowtree’s does not.

4.2. Real data

Datasets. We use three datasets from two application do-
mains. Their properties are summarized in Table 1.

• Text documents: We use the standard benchmark 20news
dataset of news-related online discussion groups, and a
dataset of Amazon reviews split evenly over 4 product cat-
egories. Both have been used in (Kusner et al., 2015) to
evaluate the Word-Move Distance. Each document is in-
terpreted as a uniform distribution supported on the terms
it contains (after stopword removal). For the underly-
ing metric, we use GloVe word embeddings (Pennington
et al., 2014) with 400, 000 terms and 50 dimensions.

• Image recognition: We use the MNIST dataset of hand-
written digits. As in (Cuturi, 2013), each image is inter-
preted as a distribution over 28 × 28 pixels, with mass
proportional to the greyscale intensity of the pixel (nor-
malized so that the mass sums to 1). Note that the dis-
tribution is supported on only the non-white pixels in the
image. The underlying metric is the 2-dimensional Eu-
clidean distance between the 28 × 28 pixels, where they
are identified with the points {(i, j)}28i,j=1 on the plane.

Algorithms. We evaluate the following algorithms:

• Mean: W1(µ, ν) is estimated as the Euclidean distance
between the means of µ and ν. This method has been
suggested and used in (Kusner et al., 2015).6

• Overlap: A simple baseline that estimates W1(µ, ν) by
the size of the intersection of their supports.

• TF-IDF: A well-known similarity measure for text docu-
ments. It is closely related to Overlap.7 For MNIST we
omit this baseline since it is not a text dataset.

6There it is called Word Centroid Distance (WCD).
7Namely, it is a weighted variant of Overlap, where terms are

weighted according to their frequency in the dataset.

• Quadtree: See Section 2.

• Flowtree: See Section 3.

• R-WMD: The Relaxed WMD method of (Kusner et al.,
2015), described in Section 1.1. We remark that this
method does not produce an admissible flow (i.e., it does
not adhere to the capacity and demand constraints of W1).

• ACT-1: The Approximate Constrained Transfers method
of (Atasu & Mittelholzer, 2019) gradually adds constraints
to R-WMD over i iterations, for a parameter i. The i = 0
case is identical to R-WMD, and increasing i leads to in-
creasing both the accuracy and the running time. Like R-
WMD, this method does not produce an admissible flow.
In our experiments, the optimal setting for this method is
i = 1,8 which we denote by ACT-1. The appendix con-
tains additional results for larger i.

• Sinkhorn with few iterations: The iterative Sinkhorn
method of (Cuturi, 2013) is designed to converge to a
near-perfect approximation of W1. Nonetheless, it can be
adapted into a fast approximation algorithm by invoking it
with a fixed small number of iterations. We use 1 and 3 it-
erations, referred to as Sinkhorn-1 and Sinkhorn-3 respec-
tively. Since the Sinkhorn method requires tuning certain
parameters (the number of iterations as well as the regu-
larization parameter), the experiments in this section eval-
uate the method at its optimal setting, and the appendix
includes experiments with other parameter settings.

As mentioned in Section 1.2, these methods can be grouped
by their running time dependence on s:

• “Fast” linear-time: Mean, Overlap, TF-IDF, Quadtree

• “Slow” linear-time: Flowtree

• Quadratic time: R-WMD, ACT-1, Sinkhorn

The difference between “fast” and “slow” linear time is
that the former algorithms reduce to certain simple cache-
efficient operations, and furthermore, Mean greatly bene-
fits from SIMD vectorization. In particular, Overlap, TF-
IDF and Quadtree require computing a single `1 distance
between sparse vectors, while Mean requires computing a
single Euclidean distance in the ground metric. This ren-
ders them an order of magnitude faster than the other meth-
ods, as our empirical results will show.

Runtime measurement. All running times are mea-
sured on a “Standard F72s v2” Microsoft Azure instance
equipped with Intel Xeon Platinum 8168 CPU. In our im-
plementations, we use NumPy linked with OpenBLAS,
which is used in a single-threaded mode.

Implementation. We implement R-WMD, ACT and
Sinkhorn in Python with NumPy, as they amount to stan-
dard matrix operations which are handled efficiently by the

8This coincides with the results reported in (Atasu & Mittel-
holzer, 2019).
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Figure 2: Results on random data. Left: d = s = 10, ε = 0.25. Right: d = 10, s = 100, ε = 0.4.

underlying BLAS implementation. We implement Mean,
Overlap, TF-IDF, Quadtree and Flowtree in C++ (wrapped
in Python for evaluation). For Mean we use the Eigen li-
brary to compute dense `2 distances efficiently. For Exact
W1 we use the POT library in Python, which in turn calls
the Lemon graph library written in C++. The accuracy and
pipeline evaluation code is in Python.

4.3. Individual accuracy experiments

Our first set of experiments evaluates the runtime and ac-
curacy of each algorithm individually. The results are de-
picted in Figures 3 to 5. The plots report the recall@m ac-
curacy as m grows. The recall@m accuracy is defined as
the fraction of queries for which the true nearest neighbors
is included in the top-m ranked neighbors (called candi-
dates) by the evaluated method.

For each dataset, the left plot reports the accuracy of all of
the methods for large values of m. The right plot reports
the accuracy of the high-accuracy methods for smaller val-
ues of m (since they cannot be discerned in the left plots).
The high-accuracy methods are Flowtree, R-WMD, ACT,
Sinkhorn, and on MNIST also Quadtree. For Quadtree and
Flowtree, which are randomized methods, we report the
mean and standard deviation (shown as error bars) of 5 ex-
ecutions. The other methods are deterministic. The legend
of each plot is annonated with the running time of each
method, also summarized in Table 2.

Results. The tested algorithms yield a wide spectrum of
different time-accuracy tradeoffs. The “fast” linear time
methods (Mean, TF-IDF, Overlap and Quadtree) run in or-
der of milliseconds, but are less accurate than the rest. The
quadratic time methods (R-WMD, ACT-1 and Sinkhorn)
are much slower, running in order of seconds, but are dra-
matically more accurate.

Flowtree achieves comparable accuracy to the quadratic
time baselines, while being faster by a margin. In particu-
lar, its accuracy is either similar to or better than R-WMD,

while being 5.5 to 6 times faster. Compared to ACT-1,
Flowtree is either somewhat less or more accurate (depend-
ing on the dataset), while being at least 8 times faster. Com-
pared to Sinkhorn, Flowtree achieves somewhat lower ac-
curacy, but is at least 13.8 and up to 30 times faster.

4.4. Pipeline experiments

The above results exhibit a sharp divide between fast and
coarse algorithms to slow and accurate ones. In practical
nearest neighbor search system, both types of algorithms
are often combined sequentially as a pipeline (e.g., (Sivic
& Zisserman, 2003; Jegou et al., 2008; 2010)). First, a fast
and coarse method is applied to all points, pruning most of
them; then a slower and more accurate method is applied to
the surviving points, pruning them further; and so on, until
finally exact computation is performed on a small number
of surviving points. In particular, (Kusner et al., 2015) em-
ploy such a pipeline for the Word Mover Distance, which
combines Mean, R-WMD, and exact W1 computation.

In this section, we systematically evaluate pipelines built of
the algorithms tested above, on the 20news dataset.

Experimental setup. We perform two sets of experiments:
In one, the pipeline reports one candidate, and its goal
is to output the true nearest neighbor (i.e., recall@1). In
the other, the pipeline reports 5 candidates, and its goal is
to include the true nearest neighbor among them (i.e., re-
call@5). We fix the target accuracy to 0.9 (i.e., the pipeline
must achieve the recall goal on 90% of the queries), and
report its median running time over 3 identical runs.

Evaluated pipelines. The baseline pipelines we consider
contain up to three methods:

• First: Mean, Overlap or Quadtree.

• Second: R-WMD, ACT-1, Sinkhorn-1, or Sinkhorn-3.

• Third: Exact W1 computation. For recall@5 pipelines
whose second method is Sinkhorn, this third step is omit-
ted, since they already attain the accuracy goal without it.



Scalable Nearest Neighbor Search for Optimal Transport

Figure 3: Individual accuracy and runtime results on 20news

Figure 4: Individual accuracy and runtime results on Amazon

Figure 5: Individual accuracy and runtime results on MNIST*

Table 2: Running times

Dataset Mean TF-IDF Overlap Quadtree Flowtree R-WMD ACT-1** Sinkhorn-1 Sinkhorn-3 Exact W1

20news 0.22ms 8.0ms 8.4ms 13ms 0.24s 1.46s 2.23s 4.16s 4.93s 41.5s
Amazon 0.18ms 3.8ms 3.9ms 5.8ms 90ms 0.51s 0.74s 1.25s 1.58s 4.23s
MNIST* 0.58ms — 47ms 68ms 0.94s 5.73s 20.8s 23.7s 28.0s 154.0s

* On MNIST, the accuracy of R-WMD, ACT and Sinkhorn is evaluated on 1, 000 random queries. The running time of R-WMD, ACT,
Sinkhorn and Exact W1 is measured on 100 random queries. The running time of Flowtree is measured 1, 000 random queries.
** ACT takes a faster form when applied to uniform distributions. We use a separate implementation for this case. This accounts for the
large difference in its performance on 20news and Amazon (where distributions are uniform) compared to MNIST (where they are not).
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Figure 6: Best performing pipelines for recall@1 ≥ 0.9 (on the left) and recall@5 ≥ 0.9 (on the right). Each vertical bar
denotes a pipeline, built of the methods indicated by the color encoding, bottom-up. The y-axis measures the running time
up to each step of the pipeline. The plot depicts 4 baseline pipelines, consisting of Quadtree, then the method X indicated
on the x-axis (R-WMD, ACT-1, Sinkhorn-1 or Sinkhorn-3), and then (optionally) Exact W1. Next to each baseline bar
we show the bar obtained by adding Flowtree to the pipeline as an intermediate algorithm between Quadtree and X . The
rightmost bar in each plot shows the pipeline obtained by using Flowtree instead of X .

Table 3: Best pipeline runtime results

Recall@1 ≥ 0.9 Recall@5 ≥ 0.9

Without Flowtree 0.221s 0.200s
With Flowtree 0.059s 0.027s

To introduce Flowtree into the pipelines, we evaluate it both
as an intermediate stage between the first and second meth-
ods, and as a replacement for the second method.

Pipeline parameters. A pipeline with ` algorithms has
parameters c1, . . . , c`−1, where ci is the number of out-
put candidates (non-pruned points) of the ith algorithm in
the pipeline.9 We tune the parameters of each pipeline op-
timally on a random subset of 300 queries (fixed for all
pipelines). The optimal parameters are listed in the ap-
pendix.

Results. We found that in the first step of the pipeline,
Quadtree is significantly preferable to Mean and Overlap,
and the results reported in this section are restricted to it.
More results are included in the appendix.

Figure 6 shows the runtimes of pipelines that start with
Quadtree. Note that each pipeline is optimized by differ-
ent parameters, not depicted in the figure. For example,
Sinkhorn-3 is faster than Sinkhorn-1 on the right plot, even

9The final algorithm always outputs either 1 or 5 points, ac-
cording to the recall goal.

though it is generally a slower algorithm. However, it is
also more accurate, which allows the preceding Quadtree
step to be less accurate and report fewer candidates, while
still attaining overall accuracy of 0.9. Specifically, in the
optimal recall@5 setting, Sinkhorn-3 runs on 227 candi-
dates reported by Quadtree, while Sinkhorn-1 runs on 295.

The best runtimes are summarized in Table 3. The results
show that introducing Flowtree improves the best runtimes
by a factor of 3.7 for recall@1 pipelines, and by a factor of
7.4 for recall@5 pipelines.

In the recall@1 experiments, the optimally tuned baseline
pipelines attain runtimes between 0.22 to 0.25 seconds.
Introducing Flowtree before the second method in each
pipeline improves its running time by a factor of 1.7 to
4.15. Introducing Flowtree instead of the second method
improves the runtime by a factor of 2.4 to 2.7.

Once Flowtree is introduced into the recall@1 pipelines,
the primary bottleneck becomes the final stage of exact
W1 computations. In the recall@5 experiments, this step
is not always required, which enables larger gains for
Flowtree. In these experiments, the optimally tuned base-
line pipelines attain runtimes between 0.2 to 0.22 seconds.
Introducing Flowtree before the second method in each
pipeline improves its running time by a factor of 1.64 to
6.75. Introducing Flowtree instead of the second method
improves the runtime by a factor of 7.4 to 8.

Overall, Flowtree significantly improves the running time
of every pipeline, both as an addition and as a replacement.
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