
Scalable Nearest Neighbor Search for Optimal Transport:
Supplementary Material

Arturs Backurs 1 2 Yihe Dong 3 Piotr Indyk 4 Ilya Razenshteyn 5 Tal Wagner 4

1Author names are ordered alphabetically. Code available
at https://github.com/ilyaraz/ot_estimators.
2TTIC 3Microsoft 4MIT 5Microsoft Research. Correspondence
to: Tal Wagner <talw@mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

https://github.com/ilyaraz/ot_estimators

Scalable Nearest Neighbor Search for Optimal Transport

A. Proofs
A.1. Flowtree Computation

In this section we prove Lemma 1. We begin by specifying the greedy flow computation algorithm on the tree. Let h denote
the height of the tree (for the quadtree the height is h = O(log(dΦ)). Suppose we are given a pair of distributions µ, ν,
each supported on at most s leaves of the tree. For every node v in the tree, let Cµ(v) denote the set of points in x ∈ X
such that µ(x) > 0 and the tree leaf that contains x is a descendant of v. Similarly define Cν(v). Note that we only need
to consider nodes for which either Cµ(v) or Cν(v) is non-empty, and there are at most 2sh such nodes.

The algorithm starts with a zero flow f , and processes the nodes in a bottom-up order starting at the leaf. In each node,
the unmatched demands collected from its children are matched arbitrarily, and the demands that cannot be matched are
passed on to the parent. In mode detail, a node is processed as follows:

1. Collect from the children the list of unmatched µ-demands for the nodes inCµ(v) and the list of unmatched ν-demands
for the nodes in Cν(v). Let {µv(x) : x ∈ Cµ(v)} denote the unmatched ν-demands and let {νv(x) : x ∈ Cν(v)}
denote the unmatched ν-demands.

2. While there is a pair x ∈ Cµ(v) and x′ ∈ Cµ(v) with µv(x) > 0 and νv(x′) > 0, let η = min{µv(x), νv(x
′)}, and

update (i) f(x, x′) += η, (ii) µv(x) −= η, (iii) νv(x′) −= η.

3. Now either µv or νv is all-zeros. If the other one is not all-zeros (i.e., there is either remaining unmatched µ-demand
or remaining unmatched ν-demand), pass it on the the parent.

A leaf v contains a single point x ∈ X with either µ(x) > 0 or ν(x) > 0; it simply passes it on to its parent without
processing.

It is well known that the above algorithm computes an optimal flow on the tree (with respect to tree distance costs), see, e.g.,
(Kalantari & Kalantari, 1995). Let us now bound its running time. The processing time per node v in the above algorithm is
O(|Cµ(v)|+ |Cν(v)|). In every given level in the tree, if v1, . . . , vk are the nodes in that level, then {Cµ(v1), . . . , Cµ(vk)}
is a partition of the support of µ, and {Cν(v1), . . . , Cν(vk)} is a partition of the support of ν. Therefore the total processing
time per level is O(s), and since there are h levels, the flow computation time is O(sh). Then we need to compute the
Flowtree output W̃1(µ, ν). Observe that in the above algorithm, whenever we match demands between a pair x, x′, we fully
satisfy the unmatched demand of one of them. Therefore the output flow f puts non-zero flow between at most 2s pairs.
For each such pair we need to compute the Euclidean distance in time O(d), and the overall running time is O(s(d+ h)).

A.2. Quadtree and Flowtree Analysis

Proof of Theorem 1. Let x, y ∈ X . Let p`(x, y) be the probability that x, y fall into the same cell (hypercube) in level ` of
the quadtree. It satisfies,

1− ‖x− y‖1
2`

≤ p`(x, y) ≤ exp

(
−‖x− y‖1

2`

)
. (1)

To see this, recall that in level ` we impose a grid with side length 2`, shifted at random by an i.i.d. uniform shift in
[0, 2`] in each coordinate. The probability that x, y are separated in coordinate i is 2−`|xi − yi|, and thus p`(x, y) =∏d
i=1(1 − 2−`|xi − yi|). The lower bound in Equation (2) follows by a union bound, and the upper bound follows by

applying the general estimate 1− z ≤ exp(−z) to each term in the product.

Let t be the tree metric induced onX by the quadtree. Note that for t(x, y) to be at mostO(2`), x, y must fall into the same
hypercube in level `. For any δ > 0, we can round ‖x−y‖1log(1/δ) to its nearest power of 2 and obtain ` such that 2` = Θ(‖x−y‖1log(1/δ)).
It satisfies,

Pr

[
t(x, y) <

O(1)

log(1/δ)
‖x− y‖1

]
≤ δ.

By letting δ = Ω(min{1/|X|, 1/(s2n)}), we can take union bound either over all pairwise distances in X (of which there
are
(|X|

2

)
), or over all distances between the support of the query ν and the union of supports of the dataset µ1, . . . , µn (of

which there are at most s2n, if every support has size at most s). Then, with probability say 0.995, all those distances are

Scalable Nearest Neighbor Search for Optimal Transport

contracted by at most O(log(min{sn, |X|})), i.e.,

t(x, y) ≥ 1

O(log(1/δ))
‖x− y‖1. (2)

On the other hand,

E[t(x, y)] =
∑
`

2` · (1− p`(x, y)) ≤
∑
`

2` · ‖x− y‖1
2`

≤ O(log(dΦ)) · ‖x− y‖1.

Let µ∗ be the true nearest neighbor of ν in µ1, . . . , µn. Let f∗µ∗,ν be the optimal flow between them. Then by the above,

E

 ∑
(x,y)∈X×X

f∗µ∗,ν(x, y)t(x, y)

 ≤ O(log(dΦ))
∑

(x,y)∈X×X

f∗µ∗,ν(x, y)‖x− y‖1.

By Markov, with probability say 0.995,∑
(x,y)∈X×X

f∗µ∗,ν(x, y) · t(x, y) ≤ O(log(dΦ))
∑

(x,y)∈X×X

f∗µ∗,ν(x, y) · ‖x− y‖1. (3)

Let µ′ be the nearest neighbor of ν in the dataset according to the quadtree distance. Let f∗µ′,ν be the optimal flow between
them in the true underlying metric (`1 on X), and let fµ,ν be the optimal flow in the quadtree. Finally let Wt denote the
Wasserstein-1 distance on the quadtree. Then,

W1(µ′, ν)

=
∑

(x,y)∈X×X

f∗µ′,ν(x, y) · ‖x− y‖1

≤
∑

(x,y)∈X×X

fµ′,ν · ‖x− y‖1 f∗µ∗,ν is optimal for ‖·‖1

≤ O(log(min{sn, |X|}))
∑

(x,x′)∈X×X

fµ′,ν · t(x, y) eq. (3)

= O(log(min{sn, |X|})) ·Wt(µ
′, ν) definition of Wt

≤ O(log(min{sn, |X|})) ·Wt(µ
∗, ν) µ′ is the nearest neighbor in Wt

= O(log(min{sn, |X|}))
∑

(x,y)∈X×X

fµ∗,ν · t(x, y) definition of Wt

≤ O(log(min{sn, |X|}))
∑

(x,y)∈X×X

f∗µ∗,ν · t(x, y) fµ∗,ν is optimal for t(·, ·)

≤ O(log(min{sn, |X|}) log(dΦ))
∑

(x,y)∈X×X

f∗µ∗,ν · ‖x− y‖1 eq. (4)

= O(log(min{sn, |X|}) log(dΦ)) ·W1(µ∗, ν),

so µ′ is a O(log(min{sn, |X|}) log(dΦ))-approximate nearest neighbor.

Proof of Theorem 2. It suffices to prove the claim for s = 1 (i.e., the standard `1-distance). Let d > 0 be an even integer.
Consider the d-dimensional hypercube. Our query point is the origin. The true nearest neighbor is e1 (standard basis
vector). The other data points are the hypercube nodes whose hamming weight is exactly d/2. The number of such points
is Θ(2d/

√
d), and this is our n.

Consider imposing the grid with cell side 2 on the hypercube. The probability that 0 and 1 are uncut in a given axis is
exactly 1/2, and since the shifts in different axes are independent, the number of uncut axes is distributed as Bin(d, 1/2).

Scalable Nearest Neighbor Search for Optimal Transport

Thus with probability 1/2 there are at least d/2 uncut dimensions. If this happens, we have a data point hashed into the
same grid cell as the origin (to get such data point, put 1 in any d/2 uncut dimensions and 0 in the rest), so its quadtree
distance from the origin is 1. On the other hand, the distance of the origin to its true nearest neighbor e1 is at least 1, since
they will necessarily be separated in the next level (when the grid cells have side 1). Thus the quadtree cannot tell between
the true nearest neighbor and the one at distance d/2, and we get the lower bound c ≥ d/2. Since n = Θ(2d/

√
d), we

have d/2 = Ω(log n) as desired.

Proof of Theorem 3. The proof is the same as for Theorem 1, except that in eq. (3), we take a union bound only over the
s2 distances between the supports of ν and µ∗ (the query and its true nearest neighbor). Thus each distance between µ∗

and ν is contracted by at most O(log s).

Let WF denote the Flowtree distance estimate of W1. Let µ′ be the nearest neighbor of ν in the Flowtree distance. With
the same notation in the proof of Theorem 1,

W1(µ′, ν) =
∑

(x,y)∈X×X

f∗µ′,ν(x, y) · ‖x− y‖1

≤
∑

(x,y)×X×X

fµ′,ν(x, y) · ‖x− y‖1 f∗µ′,ν is optimal for ‖·‖1

= WF (µ′, ν) Flowtree definition
≤WF (µ∗, ν) µ′ is nearest in Flowtree distance

=
∑

(x,y)∈X×X

fµ∗,ν(x, y) · ‖x− y‖1 Flowtree definition

≤ O(log s)
∑

(x,y)∈X×X

fµ∗,ν(x, y) · t(x, y) eq. (3)

≤ O(log s)
∑

(x,y)∈X×X

f∗µ∗,ν(x, y) · t(x, y) fµ∗,ν is optimal for t(·, ·)

≤ O(log(dΦ) log s)
∑

(x,y)∈X×X

f∗µ∗,ν(x, y) · ‖x− y‖1 eq. (4)

= O(log(dΦ) log s) ·W1(µ∗, ν),

as needed. Note that the difference from the proof of Theorem 1 is that we only needed the contraction bound (eq. (3)) for
distances between µ∗ and ν.

Proof of Theorem 4. We set ε = 1/ log s. Let t′(x, y) denote the quadtree distance where the weight corresponding to a
cell v in level `(v) is 2`(v)(1−ε) instead of 2`(v). Let fµ,ν be the optimal flow in the quadtree defined by weights t′.

Let δ = c/s2 where c > 0 is a sufficiently small constant. For a every x, y, let `xy be the largest integer such that

2`xy ≤ ‖x− y‖1
(log(1/δ))1/(1−ε)

.

The probability that x, y are separated (i.e., they are in different quadtree cells) in level `xy is

1− p`xy(x,y) ≥ 1− exp

(
−‖x− y‖1

2`xy

)
≥ 1− δ

1− ε
.

By the setting of δ, we can take a union bound over all x ∈ support(µ∗) and y ∈ support(ν) and obtain that with say 0.99
probability, simultaneously, every pair x, y is separated at level `xy . We denote this event by Elower and suppose it occurs.
Then for every x, y we have

t′(x, y) ≥ 2 · 2`xy(1−ε) ≥ 2 ·
(

1

2
· ‖x− y‖1

(log(1/δ))1/(1−ε)

)1−ε

≥ ‖x− y‖
1−ε
1

log(1/δ)
=
‖x− y‖1−ε1

Θ(log s)
.

Scalable Nearest Neighbor Search for Optimal Transport

Next we upper-bound the expected tree distance t′(x, y). (Note that we are not conditioning on Elower.) Observe that

t′(x, y) = 2

∞∑
`=−∞

2`(1−ε) · 1{x, y are separated at level `}.

Let Lx,y be the largest integer such that 2Lxy ≤ ‖x− y‖1. We break up t′(x, y) into two terms,

t′lower(x, y) = 2

Lxy∑
`=−∞

2`(1−ε) · 1{x, y are separated at level `},

and

t′upper(x, y) = 2

∞∑
`=Lxy+1

2`(1−ε) · 1{x, y are separated at level `},

thus t′(x, y) = t′lower(x, y) + t′upper(x, y). For t′lower(x, y) it is clear that deterministically,

t′lower(x, y) ≤ 2

Lxy∑
`=−∞

2`(1−ε) = O
(

2Lxy(1−ε)
)

= O
(
‖x− y‖1−ε1

)
.

For t′upper(x, y), we have

E[t′upper(x, y)] = 2

∞∑
`=Lxy+1

2`(1−ε)p`(x, y)

≤ 2

∞∑
`=Lxy

2`(1−ε) · ‖x− y‖1
2`

= 2‖x− y‖1
∞∑

`=Lxy

2−ε`

= 2‖x− y‖1 ·
2−Lxy·ε

1− 2−ε

≤ O(log s) · ‖x− y‖1−ε1 ,

where in the final bound we have used that 2Lxy = Θ(‖x− y‖1) and 1− 2−ε = Θ(ε) = Θ(log s). Together,

E[t′(x, y)] = E[t′lower(x, y) + t′upper(x, y)] ≤ Θ(log s) · ‖x− y‖1−ε1 . (4)

Now we are ready to show the O(log2 s) upper bound on the approximation factor. Below we will use the fact that every
weight fµ∗,ν(x, y) in the flow is of the form i/(s′s′′) for some integer 0 ≤ i ≤ s′s′′. This follows from the assumption
that each element in the support of every measure is an integer multiple of 1/s′ or of 1/s′′ for some 1 ≤ s′, s′′ ≤ s.

W1(µ′, ν) =
∑

(x,y)∈X×X

f∗µ′,ν(x, y) · ‖x− y‖1 f∗µ′,ν is optimal for ‖·‖1

≤
∑

(x,y)×X×X

fµ′,ν(x, y) · ‖x− y‖1

= WF (µ′, ν) Flowtree definition
≤WF (µ∗, ν) µ′ is nearest to ν in Flowtree distance

=
∑

(x,y)∈X×X

fµ∗,ν(x, y) · ‖x− y‖1 Flowtree definition

Scalable Nearest Neighbor Search for Optimal Transport

≤

 ∑
(x,y)∈X×X

f1−εµ∗,ν(x, y) · ‖x− y‖1−ε1

1/(1−ε)

subadditivity of (·)1−ε

≤ O(1)

 ∑
(x,y)∈X×X

fµ∗,ν(x, y) · ‖x− y‖1−ε1

1/(1−ε)

fµ∗,ν(x, y) ≥ 1/(s′s′′) ≥ 1/s2 or fµ∗,ν(x, y) = 0

≤ O(log s)

 ∑
(x,y)∈X×X

fµ∗,ν(x, y) · t′(x, y)

1/(1−ε)

eq. (5)

≤ O(log s)

 ∑
(x,y)∈X×X

f∗µ∗,ν(x, y) · t′(x, y)

1/(1−ε)

fµ∗,ν is optimal for t′(·, ·)

≤ O(log2 s)

 ∑
(x,y)∈X×X

f∗µ∗,ν(x, y) · ‖x− y‖1−ε1

1/(1−ε)

eq. (5)

≤ O(log2 s)
∑

(x,y)∈X×X

f∗µ∗,ν(x, y) · ‖x− y‖1 concavity of (·)1−ε and
∑

f∗µ∗,ν(x, y) = 1

≤ O(log2 s) ·W1(µ∗, ν),

as needed.

Proof of Theorem 5. Quadtree. For every k = 1, . . . , s, let Hk be the smallest hypercube in the quadtree that contains
both xk and yk. (Note that Hk is a random variable, determined by the initial random shift in the Quadtree construction.)
In order for Quadtree to correctly identify µi as the nearest neighbor of ν, every Hk must not contain any additional points
from X . Otherwise, if say H1 contains a point x′ 6= x1, the W1 distance on the quadtree from ν to µi is equal to its
distance to the uniform distribution over {x′, x2, . . . , xs}. Since the points in X are chosen uniformly i.i.d. over Sd−1, the
probability of the above event, and thus the success probability of Quadtree, is upper bounded by E[(1 − V)N−s], where
V = volume(∪sk=1Hk∩Sd−1). This V is a random variable whose distribution depends only on d, s, ε, and is independent
of N . Thus the success probability decays exponentially with N .

Flowtree. On the other hand, suppose that each Hk contains no other points from {x1, . . . , xs} other than xk (but is
allowed to contain any other points from X). This event guarantees that the optimal flow on the tree between µi and ν
is the planted perfect matching, i.e., the true optimal flow, and thus the estimated Flowtree distance between them equals
W1(µi, ν). This guarantees that Flowtree recovers the planted nearest neighbor, and this event depends only on d, s, ε, and
is independent of N .

B. Additional Experiments
B.1. Additional Sinkhorn and ACT Experiments

Number of iterations. Both ACT and Sinkhorn are iterative algorithms, and the number of iterations is a parameter to set.
Our main experiments use ACT with 1 iteration and Sinkhorn with 1 or 3 iterations. The next experiments motivate these
choices. Figures 7(a)–(c) depict the accuracy and running time of ACT-1, ACT-7, Sinkhorn-1, Sinkhorn-3 and Sinkhorn-5
on each of our datasets.1 It can be seen that for both algorithms, increasing the number of iterations beyond the settings
used in Section 4 yields comparable accuracy with a slower running time. Therefore in Section 4 we restrict our evaluation
to ACT-1, Sinkhorn-1 and Sinkhorn-3. We also remark that in the pipeline experiments, we have evaluated Sinkhorn with
up to 9 iterations. In those experiments too, the best results are achieved with either 1 or 3 iterations

Sinkhorn regularization parameter. Sinkhorn has a regularization parameter λ that needs to be tuned per dataset. We
set λ = η ·M , where M is the maximum value in the cost matrix (of the currently evaluated pair of distributions), and

1ACT-1 and ACT-7 are the settings reported in (Atasu & Mittelholzer, 2019).

Scalable Nearest Neighbor Search for Optimal Transport

tune η. In all of our three datasets the optimal setting is η = 30, which is the setting we use in Section 4. As an example,
Figure 7(d) depicts the 1-NN accuracy (y-axis) of Sinkhorn-1 per η (x-axis).

Figure 1: Additional Sinkhorn and ACT experiments

(a) 20news dataset (b) Amazon dataset

(c) MNIST dataset
(d) 1-NN accuracy of Sinkhorn-1 with varying regularization

B.2. Additional Pipeline Results

The next tables summarize the running times and parameters settings of all pipelines considered in our experiments
(whereas the main text focuses on pipelines that start with Quadtree, since it is superior as a first step to Mean and Overlap).
The listed parameters are the number of output candidates of each step in the pipeline.

In the baseline pipelines, parameters are tuned to achieve optimal performance (i.e., minimize the running time while
attaining the recall goal on at least 90% of the queries). The details of the tuning procedure is as follows. For all pipelines
we use the same random subset of 300 queries for tuning. Suppose the pipeline has ` algorithms. For i = 1, . . . , `, let ci
the output number of candidates of the ith algorithm in the pipeline. Note that c` always equals either 1 or 5, according
to the recall goal of the pipeline, so we need to set c1, . . . , c`−1. Let p1 be the recall@1 accuracy of the first algorithm in
the pipeline. Namely, p1 is the fraction of queries such that the top-ranked c1 candidates by the first algorithm contain the
true nearest neighbor. We calculate 10 possible values of c1, corresponding to p1 ∈ {0.9, 0.91, . . . , 0.99}. We optimize
the pipeline by a full grid search over those values of c1 and all possible values of c2, . . . , c`−1.

When introducing Flowtree into a pipeline as an intermediate method, we do not re-optimize the parameters, but rather set
its output number of candidates to the maximum between 10 and twice the output number of candidates of the subsequent
algorithm in the pipeline. Re-optimizing the parameters could possibly improve results.

Scalable Nearest Neighbor Search for Optimal Transport

Pipeline methods Candidates Time
Mean, Sinkhorn-1, Exact 1476, 11, 1 0.543
Mean, Sinkhorn-3, Exact 1476, 5, 1 0.598
Mean, R-WMD, Exact 1850, 28, 1 0.428
Mean, ACT-1, Exact 1677, 14, 1 0.420
Overlap, Sinkhorn-1, Exact 391, 6, 1 0.610
Overlap, Sinkhorn-3, Exact 391, 5, 1 0.691
Overlap, R-WMD, Exact 576, 14, 1 0.367
Overlap, ACT-1, Exact 434, 10, 1 0.429
Quadtree, Sinkhorn-1, Exact 295, 5, 1 0.250
Quadtree, Sinkhorn-3, Exact 227, 3, 1 0.248
Quadtree, R-WMD, Exact 424, 12, 1 0.221
Quadtree, ACT-1, Exact 424, 8, 1 0.236

Table 1: Recall@1, no Flowtree.

Pipeline methods Candidates Time
Mean, Flowtree, Sinkhorn-1, Exact 1850, 10, 5, 1 0.089
Mean, Flowtree, Sinkhorn-3, Exact 1677, 10, 4, 1 0.077
Mean, Flowtree, R-WMD, Exact 2128, 48, 24, 1 0.242
Mean, Flowtree, ACT-1, Exact 2128, 20, 10, 1 0.138
Overlap, Flowtree, Sinkhorn-1, Exact 489, 10, 5, 1 0.087
Overlap, Flowtree, Sinkhorn-3, Exact 576, 10, 3, 1 0.076
Overlap, Flowtree, R-WMD, Exact 576, 28, 14, 1 0.173
Overlap, Flowtree, ACT-1, Exact 576, 16, 8, 1 0.119
Quadtree, Flowtree, Sinkhorn-1, Exact 424, 10, 5, 1 0.074
Quadtree, Flowtree, Sinkhorn-3, Exact 424, 10, 3, 1 0.059
Quadtree, Flowtree, R-WMD, Exact 424, 22, 11, 1 0.129
Quadtree, Flowtree, ACT-1, Exact 424, 16, 8, 1 0.104
Mean, Flowtree, Exact 1850, 9, 1 0.105
Overlap, Flowtree, Exact 489, 9, 1 0.100
Quadtree, Flowtree, Exact 424, 9, 1 0.092

Table 2: Recall@1, with Flowtree.

Pipeline methods Candidates Time
Mean, Sinkhorn-1 1476, 5 0.464
Mean, Sinkhorn-3 1476, 5 0.549
Mean, R-WMD, Exact 1850, 28, 5 0.426
Mean, ACT-1, Exact 1677, 14, 5 0.423
Overlap, Sinkhorn-1 391, 5 0.560
Overlap, Sinkhorn-3 391, 5 0.650
Overlap, R-WMD, Exact 576, 14, 5 0.368
Overlap, ACT-1, Exact 434, 10, 5 0.428
Quadtree, Sinkhorn-1 295, 5 0.222
Quadtree, Sinkhorn-3 227, 5 0.200
Quadtree, R-WMD, Exact 424, 11, 5 0.216
Quadtree, ACT-1, Exact 424, 7, 5 0.222

Table 3: Recall@5, no Flowtree.

Scalable Nearest Neighbor Search for Optimal Transport

Pipeline methods Candidates Time
Mean, Flowtree, Sinkhorn-1 1850, 10, 5 0.046
Mean, Flowtree, Sinkhorn-3 1476, 10, 5 0.043
Mean, Flowtree, R-WMD, Exact 2128, 48, 24, 5 0.237
Mean, Flowtree, ACT-1 2128, 10, 5 0.048
Overlap, Flowtree, Sinkhorn-1 391, 10, 5 0.042
Overlap, Flowtree, Sinkhorn-3 391, 10, 5 0.044
Overlap, Flowtree, R-WMD, Exact 576, 28, 14, 5 0.173
Overlap, Flowtree, ACT-1 576, 10, 5 0.046
Quadtree, Flowtree, Sinkhorn-1 424, 10, 5 0.033
Quadtree, Flowtree, Sinkhorn-3 424, 10, 5 0.034
Quadtree, Flowtree, ACT-1 424, 10, 5 0.029
Mean, Flowtree 2128, 5 0.043
Overlap, Flowtree 576, 5 0.039
Quadtree, Flowtree 645, 5 0.027
Quadtree, Flowtree, R-WMD, Exact 424, 22, 11, 5 0.131
Quadtree, Flowtree, ACT-1, Exact 424, 16, 8, 5 0.103

Table 4: Recall@5, with Flowtree.

