
Constant Curvature Graph Convolutional Networks

Gregor Bachmann * 1 Gary Bécigneul * 1 Octavian-Eugen Ganea 2

Abstract
Interest has been rising lately towards methods
representing data in non-Euclidean spaces, e.g.
hyperbolic or spherical, that provide specific in-
ductive biases useful for certain real-world data
properties, e.g. scale-free, hierarchical or cycli-
cal. However, the popular graph neural networks
are currently limited in modeling data only via
Euclidean geometry and associated vector space
operations. Here, we bridge this gap by propos-
ing mathematically grounded generalizations of
graph convolutional networks (GCN) to (prod-
ucts of) constant curvature spaces. We do this
by i) introducing a unified formalism permitting
a differentiable interpolation between all geome-
tries of constant curvature, ii) leveraging gyro-
barycentric coordinates that generalize the classic
Euclidean concept of the center of mass. Our
class of models smoothly recover their Euclidean
counterparts when the curvature goes to zero from
either side. Empirically, we outperform Euclidean
GCNs in the tasks of node classification and dis-
tortion minimization for symbolic data exhibiting
non-Euclidean behavior, according to their dis-
crete curvature.

1. Introduction
Graph Convolutional Networks. The success of convo-
lutional networks and deep learning for image data has
inspired generalizations for graphs for which sharing pa-
rameters is consistent with the graph geometry. Bruna et al.
(2014); Henaff et al. (2015) are the pioneers of spectral
graph convolutional neural networks in the graph Fourier
space using localized spectral filters on graphs. However,
in order to reduce the graph-dependency on the Laplacian

*Equal contribution 1Department of Computer Science, ETH
Zürich 2Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology. Correspondence to: Gre-
gor Bachmann <gregor.bachmann@inf.ethz.ch>, Gary Bécigneul
<garyb@mit.edu>, Octavian-Eugen Ganea <oct@mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

eigenmodes, Defferrard et al. (2016) approximate the con-
volutional filters using Chebyshev polynomials leveraging
a result of Hammond et al. (2011). The resulting method
(discussed in Appendix A) is computationally efficient and
superior in terms of accuracy and complexity. Further, Kipf
& Welling (2017) simplify this approach by considering
first-order approximations obtaining high scalability. The
proposed graph convolutional networks (GCN) is interpolat-
ing node embeddings via a symmetrically normalized adja-
cency matrix, while this weight sharing can be understood as
an efficient diffusion-like regularizer. Recent works extend
GCNs to achieve state of the art results for link prediction
(Zhang & Chen, 2018), graph classification (Hamilton et al.,
2017; Xu et al., 2018) and node classification (Klicpera
et al., 2019; Veličković et al., 2018).

Euclidean geometry in ML. In machine learning (ML),
data is most often represented in a Euclidean space for var-
ious reasons. First, some data is intrinsically Euclidean,
such as positions in 3D space in classical mechanics. Sec-
ond, intuition is easier in such spaces, as they possess an
appealing vectorial structure allowing basic arithmetic and
a rich theory of linear algebra. Finally, a lot of quantities of
interest such as distances and inner-products are known in
closed-form formulae and can be computed very efficiently
on the existing hardware. These operations are the basic
building blocks for most of today’s popular machine learn-
ing models. Thus, the powerful simplicity and efficiency of
Euclidean geometry has led to numerous methods achieving
state-of-the-art on tasks as diverse as machine translation
(Bahdanau et al., 2015; Vaswani et al., 2017), speech recog-
nition (Graves et al., 2013), image classification (He et al.,
2016) or recommender systems (He et al., 2017).

Riemannian ML. In spite of this success, certain types
of data (e.g. hierarchical, scale-free or spherical data) have
been shown to be better represented by non-Euclidean ge-
ometries (Defferrard et al., 2019; Bronstein et al., 2017;
Nickel & Kiela, 2017; Gu et al., 2019), leading in particular
to the rich theories of manifold learning (Roweis & Saul,
2000; Tenenbaum et al., 2000) and information geometry
(Amari & Nagaoka, 2007). The mathematical framework in
vigor to manipulate non-Euclidean geometries is known as
Riemannian geometry (Spivak, 1979). Although its theory
leads to many strong and elegant results, some of its basic

Constant Curvature Graph Convolutional Networks

Figure 1. Euclidean embeddings of trees of different depths. All the four most inner circles are identical. Ideal node embeddings should
match in distance the graph metric, e.g. the distance between the pink and green nodes should be the same as their shortest path length.
Notice how we quickly run out of space, e.g. the pink and green nodes get closer as opposed to farther. This issue is resolved when
embedding trees in hyperbolic spaces.

quantities such as the distance function d(·, ·) are in general
not available in closed-form, which can be prohibitive to
many computational methods.

Representational Advantages of Geometries of Con-
stant Curvature. An interesting trade-off between gen-
eral Riemannian manifolds and the Euclidean space is given
by manifolds of constant sectional curvature. They define
together what are called hyperbolic (negative curvature),
elliptic (positive curvature) and Euclidean (zero curvature)
geometries. As discussed below and in Appendix B, Eu-
clidean spaces have limitations and suffer from large distor-
tion when embedding certain types of data such as trees. In
these cases, the hyperbolic and spherical spaces have repre-
sentational advantages providing a better inductive bias for
the respective data.

The hyperbolic space can be intuitively understood as a
continuous tree: the volume of a ball grows exponentially
with its radius, similarly as how the number of nodes in a
binary tree grows exponentially with its depth (see fig. 1).
Its tree-likeness properties have long been studied mathe-
matically (Gromov, 1987; Hamann, 2017; Ungar, 2008) and
it was proven to better embed complex networks (Krioukov
et al., 2010), scale-free graphs and hierarchical data com-
pared to the Euclidean geometry (Cho et al., 2019; Sala et al.,
2018; Ganea et al., 2018b; Gu et al., 2019; Nickel & Kiela,
2018; 2017; Tifrea et al., 2019). Several important tools
or methods found their hyperbolic counterparts, such as
variational autoencoders (Mathieu et al., 2019; Ovinnikov,
2019), attention mechanisms (Gulcehre et al., 2018), ma-
trix multiplications, recurrent units and multinomial logistic
regression (Ganea et al., 2018a).

Similarly, spherical geometry provides benefits for model-
ing spherical or cyclical data (Defferrard et al., 2019; Ma-
tousek, 2013; Davidson et al., 2018; Xu & Durrett, 2018;
Gu et al., 2019; Grattarola et al., 2018; Wilson et al., 2014).

Computational Efficiency of Constant Curvature
Spaces (CCS). CCS are some of the few Riemannian

manifolds to possess closed-form formulae for geometric
quantities of interest in computational methods, i.e.
distance, geodesics, exponential map, parallel transport
and their gradients. We also leverage here the closed
expressions for weighted centroids.

“Linear Algebra” of CCS: Gyrovector Spaces. In order
to study the geometry of constant negative curvature in anal-
ogy with the Euclidean geometry, Ungar (1999; 2005; 2008;
2016) proposed the elegant non-associative algebraic formal-
ism of gyrovector spaces. Recently, Ganea et al. (2018a)
have linked this framework to the Riemannian geometry
of the space, also generalizing the building blocks for non-
Euclidean deep learning models operating with hyperbolic
data representations.

However, it remains unclear how to extend in a principled
manner the connection between Riemannian geometry and
gyrovector space operations for spaces of constant posi-
tive curvature (spherical). By leveraging Euler’s formula
and complex analysis, we present to our knowledge the
first unified gyro framework that allows for a differentiable
interpolation between geometries of constant curvatures
irrespective of their signs. This is possible when working
with the Poincaré ball and stereographic spherical projection
models of respectively hyperbolic and spherical spaces.

GCNs in Constant Curvature Spaces. In this work, we
introduce an extension of graph convolutional networks
that allows to learn representations residing in (products
of) constant curvature spaces with any curvature sign.
We achieve this by combining the derived unified gyro
framework together with the effectiveness of GCNs (Kipf
& Welling, 2017). Concurrent to our work, Chami et al.
(2019); Liu et al. (2019) consider graph neural networks
that learn embeddings in hyperbolic space via tangent space
aggregation. Their approach will be analyzed more closely
in section 3.4. Our model is more general as it produces rep-
resentations in a strict super-set containing the hyperbolic
space.

Constant Curvature Graph Convolutional Networks

Figure 2. Geodesics in the Poincaré disk (left) and the stereo-
graphic projection of the sphere (right).

2. The Geometry of Constant Curvature
Spaces

Riemannian Geometry. A manifoldM of dimension d
is a generalization to higher dimensions of the notion of sur-
face, and is a space that locally looks like Rd. At each point
x ∈M,M can be associated a tangent space TxM, which
is a vector space of dimension d that can be understood as
a first order approximation ofM around x. A Riemannian
metric g is given by an inner-product gx(·, ·) at each tangent
space TxM, gx varying smoothly with x. A given g defines
the geometry of M, because it can be used to define the
distance between x and y as the infimum of the lengths of
smooth paths γ : [0, 1]→M from x to y, where the length
is defined as `(γ) :=

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt . Under cer-

tain assumptions, a given g also defines a curvature at each
point.

Unifying all curvatures κ. There exist several models of
respectively constant positive and negative curvatures. For
positive curvature, we choose the stereographic projection
of the sphere, while for negative curvature we choose the
Poincaré model which is the stereographic projection of the
Lorentz model. As explained below, this choice allows us to
generalize the gyrovector space framework and unify spaces
of both positive and negative curvature κ into a single model
which we call the κ-stereographic model.

The κ-stereographic model. For a curvature κ ∈ R and
a dimension d ≥ 2, we study the model stdκ defined as stdκ =
{x ∈ Rd | −κ‖x‖22 < 1} equipped with its Riemannian
metric gκx = 4

(1+κ||x||2)2 I =: (λκx)2I. Note in particular
that when κ ≥ 0, stdκ is Rd, while when κ < 0 it is the open
ball of radius 1/

√
−κ.

Gyrovector spaces & Riemannian geometry. As dis-
cussed in section 1, the gyrovector space formalism is used
to generalize vector spaces to the Poincaré model of hyper-
bolic geometry (Ungar, 2005; 2008). In addition, important
quantities from Riemannian geometry can be rewritten in
terms of the Möbius vector addition and scalar-vector multi-
plication (Ganea et al., 2018a). We here extend gyrovector
spaces to the κ-stereographic model, i.e. allowing positive
curvature.

For κ > 0 and any point x ∈ stdκ, we will denote by x̃ the
unique point of the sphere of radius κ−

1
2 in Rd+1 whose

stereographic projection is x. As detailed in Appendix C, it
is given by

x̃ := (λκxx, κ
− 1

2 (λκx − 1)). (1)

For x,y ∈ stdκ, we define the κ-addition, in the κ-
stereographic model by:

x⊕κy =
(1− 2κxTy − κ||y||2)x + (1 + κ||x||2)y

1− 2κxTy + κ2||x||2||y||2
∈ stdκ.

(2)
The κ-addition is defined in all the cases except for spherical
geometry and x = y/(κ‖y‖2) as stated by the following
theorem proved in Appendix C.2.1.

Theorem 1 (Definiteness of κ-addition). We have
1 − 2κxTy + κ2||x||2||y||2 = 0 if and only if κ > 0 and
x = y/(κ‖y‖2).

For s ∈ R and x ∈ stdκ (and |s tan−1
κ ‖x‖| < κ

1
2π/2 if

κ > 0), the κ-scaling in the κ-stereographic model is given
by:

s⊗κ x = tanκ (s · tan−1
κ ||x||)

x

||x||
∈ stdκ, (3)

where tanκ equals κ−1/2 tan if κ > 0 and (−κ)−1/2 tanh
if κ < 0. This formalism yields simple closed-forms for
various quantities including the distance function (see fig.
3) inherited from the Riemannian manifold (stdκ, gκ), the
exp and log maps, and geodesics (see fig. 2), as shown by
the following theorem.

Theorem 2 (Extending gyrovector spaces to positive cur-
vature). For x,y ∈ stdκ, x 6= y, v 6= 0, (and x 6=
−y/(κ‖y‖2) if κ > 0), the distance function is given bya:

dκ(x,y) = 2|κ|−1/2 tan−1
κ ‖ − x⊕κ y‖, (4)

the unit-speed geodesic from x to y is unique and given by

γx→y(t) = x⊕κ (t⊗κ (−x⊕κ y)) , (5)

and finally the exponential and logarithmic maps are de-
scribed as:

expκx(v) = x⊕κ
(

tanκ

(
|κ| 12 λ

κ
x||v||

2

)
v

||v||

)
(6)

logκx(y) =
2|κ|− 1

2

λκx
tan−1

κ || − x⊕κ y||
−x⊕κ y
|| − x⊕k y||

(7)

aWe write −x⊕ y for (−x)⊕ y and not −(x⊕ y).

Constant Curvature Graph Convolutional Networks

Figure 3. Heatmap of the distance function dκ(x, ·) in st2κ for κ = −0.254 (left) and κ = 0.248 (right).

Proof sketch:
The case κ ≤ 0 was already taken care of by Ganea et al.
(2018a). For κ > 0, we provide a detailed proof in Appendix
C.2.2. The exponential map and unit-speed geodesics are
obtained using the Egregium theorem and the known for-
mulas in the standard spherical model. The distance then
follows from the formula dκ(x,y) = ‖ logκx(y)‖x which
holds in any Riemannian manifold.

�

Around κ = 0. One notably observes that choosing
κ = 0 yields all corresponding Euclidean quantities,
which guarantees a continuous interpolation between κ-
stereographic models of different curvatures, via Euler’s
formula tan(x) = −i tanh(ix) where i :=

√
−1. But is

this interpolation differentiable with respect to κ? It is, as
shown by the following theorem, proved in Appendix C.2.3.

Theorem 3 (Differentiability of stdκ w.r.t. κ around 0).
Let v 6= 0 and x,y ∈ Rd, such that x 6= y (and x 6=
−y/(κ‖y‖2) if κ > 0). Quantities in Eqs. (4,5,6, 7) are
well-defined for |κ| < 1/min(‖x‖2, ‖y‖2), i.e. for κ small
enough. Their first order derivatives at 0− and 0+ exist
and are equal. Moreover, for the distance we have up to
quadratic terms in κ:

dκ(x,y) ≈ 2‖x− y‖

− 2κ
(
‖x− y‖3/3 + (xTy)‖x− y‖2

) (8)

Note that for xTy ≥ 0, this tells us that an infinitesimal
change of curvature from zero to small negative, i.e. towards
0−, while keeping x,y fixed, has the effect of increasing
their distance.

As a consequence, we have a unified formalism that al-
lows for a differentiable interpolation between all three
geometries of constant curvature.

3. κ-GCNs
We start by introducing the methods upon which we build.
We present our models for spaces of constant sectional cur-
vature, in the κ-stereographic model. However, the general-
ization to cartesian products of such spaces (Gu et al., 2019)
follows naturally from these tools.

3.1. Graph Convolutional Networks

The problem of node classification on a graph has long been
tackled with explicit regularization using the graph Lapla-
cian (Weston et al., 2012). Namely, for a directed graph
with adjacency matrix A, by adding the following term
to the loss:

∑
i,jAij‖f(xi) − f(xj)‖2 = f(X)TLf(X),

where L = D−A is the (unnormalized) graph Laplacian,
Dii :=

∑
k Aik defines the (diagonal) degree matrix, f con-

tains the trainable parameters of the model and X = (xji)ij
the node features of the model. Such a regularization is
expected to improve generalization if connected nodes in
the graph tend to share labels; node i with feature vector xi
is represented as f(xi) in a Euclidean space.

With the aim to obtain more scalable models, Defferrard
et al. (2016); Kipf & Welling (2017) propose to make this
regularization implicit by incorporating it into what they call
graph convolutional networks (GCN), which they motivate
as a first order approximation of spectral graph convolutions,
yielding the following scalable layer architecture (detailed
in Appendix A):

H(t+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(t)W(t)

)
(9)

where Ã = A + I has added self-connections, D̃ii =∑
k Ãik defines its diagonal degree matrix, σ is a non-

linearity such as sigmoid, tanh or ReLU = max(0, ·), and
W(t) and H(t) are the parameter and activation matrices
of layer t respectively, with H(0) = X the input feature
matrix.

Constant Curvature Graph Convolutional Networks

Figure 4. Left: Spherical gyromidpoint of four points. Right:
Möbius gyromidpoint in the Poincaré model defined by (Ungar,
2008) and alternatively, here in eq. (12).

3.2. Tools for a κ-GCN

Learning a parametrized function fθ that respects hyperbolic
geometry has been studied in Ganea et al. (2018a): neural
layers and hyperbolic softmax. We generalize their defini-
tions into the κ-stereographic model, unifying operations in
positive and negative curvature. We explain how curvature
introduces a fundamental difference between left and right
matrix multiplications, depicting the Möbius matrix multi-
plication of Ganea et al. (2018a) as a right multiplication,
independent for each embedding. We then introduce a left
multiplication by extension of gyromidpoints which ties the
embeddings, which is essential for graph neural networks.

3.3. κ-Right-Matrix-Multiplication

Let X ∈ Rn×d denote a matrix whose n rows are d-
dimensional embeddings in stdκ, and let W ∈ Rd×e de-
note a weight matrix. Let us first understand what a
right matrix multiplication is in Euclidean space: the Eu-
clidean right multiplication can be written row-wise as
(XW)i• = Xi•W. Hence each d-dimensional Euclidean
embedding is modified independently by a right matrix mul-
tiplication. A natural adaptation of this operation to the
κ-stereographic model yields the following definition.

Definition 1. Given a matrix X ∈ Rn×d holding κ-
stereographic embeddings in its rows and weights W ∈
Rd×e, the κ-right-matrix-multiplication is defined row-
wise as

(X⊗κ W)i• = expκ0 ((logκ0 (X)W)i•)

= tanκ
(
αi tan−1

κ (||X•i||)
) (XW)i•
||(XW)i•||

(10)

where αi = ||(XW)i•||
||Xi•|| and expκ0 and logκ0 denote the expo-

nential and logarithmic map in the κ-stereographic model.

This definition is in perfect agreement with the hyperbolic

Figure 5. Weighted Euclidean midpoint αx+ βy

scalar multiplication for κ < 0, which can also be written
as r ⊗κ x = expκ0 (r logκ0 (x)). This operation is known to
have desirable properties such as associativity (Ganea et al.,
2018a).

3.4. κ-Left-Matrix-Multiplication as a Midpoint
Extension

For graph neural networks we also need the notion of mes-
sage passing among neighboring nodes, i.e. an operation
that combines / aggregates the respective embeddings to-
gether. In Euclidean space such an operation is given by the
left multiplication of the embeddings matrix with the (pre-
processed) adjacency Â: H(l+1) = σ(ÂZ(l)) where Z(l) =
H(l)W(l). Let us consider this left multiplication. For
A ∈ Rn×n, the matrix product is given row-wise by:

(AX)i• = Ai1X1• + · · ·+AinXn•

This means that the new representation of node i is obtained
by calculating the linear combination of all the other node
embeddings, weighted by the i-th row of A. An adaptation
to the κ-stereographic model hence requires a notion of
weighted linear combination.

We propose such an operation in stdκ by performing a κ-
scaling of a gyromidpoint − whose definition is reminded
below. Indeed, in Euclidean space, the weighted linear com-
bination αx+βy can be re-written as (α+β)mE(x,y;α, β)
with Euclidean midpointmE(x,y;α, β) := α

α+βx+ β
α+βy.

See fig. 5 for a geometric illustration. This motivates gener-
alizing the above operation to stdκ as follows.

Definition 2. Given a matrix X ∈ Rn×d holding κ-
stereographic embeddings in its rows and weights A ∈
Rn×n, the κ-left-matrix-multiplication is defined row-
wise as

(A�κ X)i• := (
∑
j

Aij)⊗κ mκ(X1•, · · · ,Xn•;Ai•).

(11)

The κ-scaling is motivated by the fact that dκ(0, r ⊗κ x) =

Constant Curvature Graph Convolutional Networks

Figure 6. Heatmap of the distance from a st2κ-hyperplane to x ∈ st2κ for κ = −0.254 (left) and κ = 0.248 (right)

|r|dκ(0,x) for all r ∈ R, x ∈ stdκ. We remind that the
gyromidpoint is defined when κ ≤ 0 in the κ-stereographic
model as (Ungar, 2010):

mκ(x1, · · · ,xn;α) =
1

2
⊗κ

(
n∑
i=1

αiλ
κ
xi∑n

j=1 αj(λ
κ
xj − 1)

xi

)
,

(12)
with λκx = 2/(1 + κ‖x‖2). Whenever κ > 0, we have to
further require the following condition:

∑
j

αj(λ
κ
xj − 1) 6= 0. (13)

For two points, one can calculate that (λκx−1)+(λκy−1) = 0
is equivalent to κ‖x‖‖y‖ = 1, which holds in particular
whenever x = −y/(κ‖y‖2). See fig. 4 for illustrations of
gyromidpoints.

Our operation �κ satisfies interesting properties, proved in
Appendix C.2.4:

Theorem 4 (Neuter element & κ-scalar-associativity). We
have In �κ X = X, and for r ∈ R,

r ⊗κ (A�κ X) = (rA) �κ X.

The matrix A. In most GNNs, the matrix A is intended to
be a preprocessed adjacency matrix, i.e. renormalized by the
diagonal degree matrix Dii =

∑
k Aik. This normalization

is often taken either (i) to the left: D−1A, (ii) symmetric:
D−

1
2AD−

1
2 or (iii) to the right: AD−1. Note that the latter

case makes the matrix right-stochastic1, which is a property
that is preserved by matrix product and exponentiation. For
this case, we prove the following result in Appendix C.2.5:

1M is right-stochastic if for all i,
∑
jMij = 1.

Theorem 5 (κ-left-multiplication by right-stochastic ma-
trices is intrinsic). If A,B are right-stochastic, φ is a
isometry of stdκ and X,Y are two matrices holding κ-
stereographic embeddings:

∀i, dφ = dκ ((A�κ φ(X))i•, (B�κ φ(Y))i•)

= dκ((A�κ X)i•, (B�κ Y)i•).
(14)

The above result means that A can easily be preprocessed
as to make its κ-left-multiplication intrinsic to the metric
space (stdκ, dκ). At this point, one could wonder: does there
exist other ways to take weighted centroids on a Riemannian
manifold? We comment on two plausible alternatives.

Fréchet/Karcher means. They are obtained as
arg minx

∑
i αidκ(x,xi)

2; note that although they
are also intrinsic, they usually require solving an opti-
mization problem which can be prohibitively expensive,
especially when one requires gradients to flow through the
solution − moreover, for the space stdκ, it is known that the
minimizer is unique if and only if κ ≥ 0.

Tangential aggregations. The linear combination is here
lifted to the tangent space by means of the exponential and
logarithmic map and were in particular used in the recent
works of Chami et al. (2019) and Liu et al. (2019).

Definition 3. The tangential aggregation of x1, . . . ,xn ∈
stdκ w.r.t. weights {αi}1≤i≤n, at point x ∈ stdκ (for xi 6=
−x/(κ‖x‖2) if κ > 0) is defined by:

tgκx(x1, ...,xn;α1, ..., αn) := expκx

(
n∑
i=1

αi logκx(xi)

)
.

(15)

The below theorem describes that for the κ-stereographic
model, this operation is also intrinsic. We prove it in Ap-
pendix C.2.6.

Constant Curvature Graph Convolutional Networks

Theorem 6 (Tangential aggregation is intrinsic). For any
isometry φ of stdκ, we have

tgφ(x)({φ(xi)}; {αi}) = φ(tgx({xi}; {αi})). (16)

3.5. Logits

Finally, we need the logit and softmax layer, a neccessity for
any classification task. We here use the model of Ganea et al.
(2018a), which was obtained in a principled manner for the
case of negative curvature. Their derivation rests upon the
closed-form formula for distance to a hyperbolic hyperplane.
We naturally extend this formula to stdκ, hence also allowing
for κ > 0 but leave for future work the adaptation of their
theoretical analysis.

p(y = k|x) = S

(
||ak||pk√
|κ|

sin−1
κ

(
2
√
|κ|〈zk,ak〉

(1 + κ||zk||2)||ak||

))
,

(17)
where ak ∈ T0st

d
κ
∼= Rd and pk ∈ stdκ are trainable param-

eters, x ∈ stdκ , is the input,
zk = −pk ⊕ x and S(·) is the softmax function.
We reference the reader to Appendix D for further details
and to fig. 6 for an illustration of eq. 17.

3.6. κ-GCN

We are now ready to introduce our κ-stereographic GCN
(Kipf & Welling, 2017), denoted by κ-GCN2. Assume we
are given a graph with node level features G = (V,A,X)
where X ∈ Rn×d with each row Xi• ∈ stdκ and adja-
cency A ∈ Rn×n. We first perform a preprocessing step
by mapping the Euclidean features to stdκ via the projec-
tion X 7→ X/(2

√
|κ|||X||max), where ||X||max denotes

the maximal Euclidean norm among all stereographic em-
beddings in X. For l ∈ {0, . . . , L− 2}, the (l + 1)-th layer
of κ-GCN is given by:

H(l+1) = σ⊗κ
(
Â�κ

(
H(l) ⊗κ W(l)

))
, (18)

where H(0) = X, σ⊗κ(x) := expκ0(σ(logκ0(x))) is the
Möbius version (Ganea et al., 2018a) of a pointwise non-
linearity σ and Â = D̃−

1
2 ÃD̃−

1
2 . The final layer is a

κ-logit layer (Appendix D):

H(L) = softmax
(
Â logitκ

(
H(L−1),W(L−1)

))
, (19)

where W(L−1) contains the parameters ak and pk of the
κ-logits layer. A very important property of κ-GCN is that
its architecture recovers the Euclidean GCN when we let
curvature go to zero:

2To be pronounced “kappa” GCN; the greek letter κ being
commonly used to denote sectional curvature

Table 1. Minimum achieved average distortion of the different
models. H and S denote hyperbolic and spherical models respec-
tively.

MODEL TREE TOROIDAL SPHERICAL

E10 (LINEAR) 0.045 0.0607 0.0415
E10 (RELU) 0.0502 0.0603 0.0409
H10 (κ-GCN) 0.0029 0.272 0.267
S10 (κ-GCN) 0.473 0.0485 0.0337
H5 ×H5 (κ-GCN) 0.0048 0.112 0.152
S5 × S5 (κ-GCN) 0.51 0.0464 0.0359(
H2
)4 (κ-GCN) 0.025 0.084 0.062(

S2
)4 (κ-GCN) 0.312 0.0481 0.0378

κ-GCN κ−→0−−−→ GCN.

4. Experiments
We evaluate the architectures introduced in the previous
sections on the tasks of node classification and minimizing
embedding distortion for several synthetic as well as real
datasets. We detail the training setup and model architecture
choices to Appendix F.

Minimizing Distortion Our first goal is to evaluate the
graph embeddings learned by our GCN models on the
representation task of fitting the graph metric in the em-
bedding space. We desire to minimize the average dis-
tortion, i.e. defined similarly as in Gu et al. (2019):

1
n2

∑
i,j

((
d(xi,xj)
dG(i,j)

)2

− 1

)2

, where d(xi,xj) is the dis-

tance between the embeddings of nodes i and j, while
dG(i, j) is their graph distance (shortest path length).

We create three synthetic datasets that best reflect the dif-
ferent geometries of interest: i) “Tree‘”: a balanced tree of
depth 5 and branching factor 4 consisting of 1365 nodes and
1364 edges. ii) “Torus”: We sample points (nodes) from
the (planar) torus, i.e. from the unit connected square; two
nodes are connected by an edge if their toroidal distance (the
warped distance) is smaller than a fixedR = 0.01; this gives
1000 nodes and 30626 edges. iii) “Spherical Graph”: we
sample points (nodes) from S2, connecting nodes if their dis-
tance is smaller than 0.2, leading to 1000 nodes and 17640
edges.

For the GCN models, we use 1-hot initial node features.
We use two GCN layers with dimensions 16 and 10. The
non-Euclidean models do not use additional non-linearities
between layers. All Euclidean parameters are updated using
the ADAM optimizer with learning rate 0.01. Curvatures are
learned using gradient descent and learning rate of 0.0001.
All models are trained for 10000 epochs and we report the

Constant Curvature Graph Convolutional Networks

Table 2. Node classification: Average accuracy across 5 splits with estimated uncertainties at 95 percent confidence level via bootstrapping
on our datasplits. H and S denote hyperbolic and spherical models respectively.

MODEL CITESEER CORA PUBMED AIRPORT

E16 (KIPF & WELLING, 2017) 0.729± 0.0054 0.814± 0.004 0.792± 0.0039 0.814± 0.0029
H16 (CHAMI ET AL., 2019) 0.71± 0.0049 0.803± 0.0046 0.798 ± 0.0043 0.844 ± 0.0041
H16 (κ-GCN) 0.732 ± 0.0051 0.812± 0.005 0.785± 0.0036 0.819± 0.0033
S16 (κ-GCN) 0.721± 0.0045 0.819 ± 0.0045 0.788± 0.0049 0.809± 0.0058
PROD-GCN (κ-GCN) 0.711± 0.0059 0.808± 0.0041 0.781± 0.006 0.817± 0.0044

minimal achieved distortion.

Distortion results. The obtained distortion scores shown
in table 1 reveal the benefit of our models. The best per-
forming architecture is the one that matches the underlying
geometry of the graph.

Figure 7. Histogram of Curvatures from ”Deviation of Parallo-
gram Law”

4.1. Node Classification

We consider the popular node classification datasets Citeseer
(Sen et al., 2008), Cora-ML (McCallum et al., 2000) and
Pubmed (Namata et al., 2012). Node labels correspond to
the particular subfield the published document is associated
with. Dataset statistics and splitting details are deferred
to the Appendix F due to the lack of space. We compare
against the Euclidean model (Kipf & Welling, 2017) and the
recently proposed hyperbolic variant (Chami et al., 2019).

Curvature Estimations of Datasets To understand how
far are the real graphs of the above datasets from the Eu-
clidean geometry, we first estimate the graph curvature of
the four studied datasets using the deviation from the Par-
allelogram Law (Gu et al., 2019) as detailed in Appendix G.
Curvature histograms are shown in fig. 7. It can be noticed
that the datasets are mostly non-Euclidean, thus offering

a good motivation to apply our constant-curvature GCN
architectures.

Training Details We trained the baseline models in the
same setting as done in Chami et al. (2019). Namely, for
GCN we use one hidden layer of size 16, dropout on the
embeddings and the adjacency of rate 0.5 as well as L2-
regularization for the weights of the first layer. We used
ReLU as the non-linear activation function.

For the non-Euclidean architectures, we used a combination
of dropout and dropconnect for the non-Euclidean models as
reported in Chami et al. (2019), as well as L2-regularization
for the first layer. All models have the same number of
parameters and for fairness are compared in the same setting,
without attention. We use one hidden layer of dimension 16.
For the product models we consider two-component spaces
(e.g H8 × S8) and we split the embedding space into equal
dimensions of size 8. We also distribute the input features
equally among the components. Non-Euclidean models
use the Möbius version of ReLU. Euclidean parameters use
a learning rate of 0.01 for all models using ADAM. The
curvatures are learned using gradient descent with a learning
rate of 0.01. We show the learnt values in Appendix F. We
use early stopping: we first train for 2000 epochs, then we
check every 200 epochs for improvement in the validation
cross entropy loss; if that is not observed, we stop.

Node classification results. These are shown in table 2.
It can be seen that our models are competitive with the
Euclidean GCN considered and outperforms Chami et al.
(2019) on Citeseer and Cora, showcasing the benefit of our
proposed architecture.

5. Conclusion
In this paper, we introduced a natural extension of GCNs
to the stereographic models of both positive and negative
curvatures in a unified manner. We show how this choice
of models permits a differentiable interpolation between
positive and negative curvature, allowing the curvature to
be trained independent of an initial sign choice. We hope
that our models will open new exciting directions into non-
Euclidean graph neural networks.

Constant Curvature Graph Convolutional Networks

6. Acknowledgements
We thank prof. Thomas Hofmann, Andreas Bloch, Calin
Cruceru and Ondrej Skopek for useful discussions and
anonymous reviewers for suggestions.
Gary Bécigneul is funded by the Max Planck ETH Center
for Learning Systems.

References
Abu-El-Haija, S., Kapoor, A., Perozzi, B., and Lee,

J. N-GCN: Multi-scale Graph Convolution for Semi-
supervised Node Classification. International Workshop
on Mining and Learning with Graphs (MLG), 2018.

Amari, S.-i. and Nagaoka, H. Methods of information geom-
etry, volume 191. American Mathematical Soc., 2007.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. Pro-
ceedings of the International Conference on Learning
Representations, 2015.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. Spectral
networks and locally connected networks on graphs. In
International Conference on Learning Representations
(ICLR2014), CBLS, April 2014, pp. http–openreview,
2014.

Chami, I., Ying, R., Ré, C., and Leskovec, J. Hyperbolic
graph convolutional neural networks. Advances in Neural
Information processing systems, 2019.

Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with
graph convolutional networks via importance sampling.
ICLR, 2018.

Cho, H., DeMeo, B., Peng, J., and Berger, B. Large-margin
classification in hyperbolic space. In The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 1832–1840, 2019.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tom-
czak, J. M. Hyperspherical Variational Auto-Encoders.
Uncertainty in Artificial Intelligence (UAI), 856- 865,
2018.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information
Processing Systems, pp. 3844–3852, 2016.

Defferrard, M., Perraudin, N., Kacprzak, T., and Sgier, R.
Deepsphere: towards an equivariant graph-based spheri-
cal cnn. In ICLR Workshop on Representation Learn-
ing on Graphs and Manifolds, 2019. URL https:
//arxiv.org/abs/1904.05146.

Deza, M. and Laurent, M. Geometry of Cuts and Metrics.
Springer, Vol. 15, 1996.

Ganea, O., Bécigneul, G., and Hofmann, T. Hyperbolic
neural networks. In Advances in Neural Information
Processing Systems, pp. 5345–5355, 2018a.

Ganea, O.-E., Becigneul, G., and Hofmann, T. Hyperbolic
entailment cones for learning hierarchical embeddings.
In International Conference on Machine Learning, pp.
1632–1641, 2018b.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural Message Passing for Quantum Chem-
istry. Proceedings of the International Conference on
Machine Learning, 2017.

Grattarola, D., Zambon, D., Alippi, C., and Livi, L. Learn-
ing graph embeddings on constant-curvature manifolds
for change detection in graph streams. stat, 1050:16,
2018.

Graves, A., Mohamed, A.-r., and Hinton, G. Speech recog-
nition with deep recurrent neural networks. In 2013 IEEE
international conference on acoustics, speech and signal
processing, pp. 6645–6649. IEEE, 2013.

Gromov, M. Hyperbolic groups. In Essays in group theory,
pp. 75–263. Springer, 1987.

Gu, A., Sala, F., Gunel, B., and Ré, C. Learning mixed-
curvature representations in product spaces. Proceedings
of the International Conference on Learning Representa-
tions, 2019.

Gulcehre, C., Denil, M., Malinowski, M., Razavi, A., Pas-
canu, R., Hermann, K. M., Battaglia, P., Bapst, V., Ra-
poso, D., Santoro, A., et al. Hyperbolic attention net-
works. Proceedings of the International Conference on
Learning Representations, 2018.

Hamann, M. On the tree-likeness of hyperbolic spaces.
Mathematical Proceedings of the Cambridge Philo-
sophical Society, pp. 1–17, 2017. doi: 10.1017/
S0305004117000238.

Hamann, M. On the tree-likeness of hyperbolic spaces.
Mathematical Proceedings of the Cambridge Philo- soph-
ical Society, pp. 117, 2017.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
Representation Learning on Large Graphs. In Advances
in Neural Information Processing Systems, 2017.

https://arxiv.org/abs/1904.05146
https://arxiv.org/abs/1904.05146

Constant Curvature Graph Convolutional Networks

Hammond, D. K., Vandergheynst, P., and Gribonval, R.
Wavelets on graphs via spectral graph theory. Applied
and Computational Harmonic Analysis, 30(2):129–150,
2011.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S.
Neural collaborative filtering. In Proceedings of the 26th
international conference on world wide web, pp. 173–
182. International World Wide Web Conferences Steering
Committee, 2017.

Henaff, M., Bruna, J., and LeCun, Y. Deep convolu-
tional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

Kingma, D. P. and Ba, J. ADAM: A method for stochastic
optimization. ICLR, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. International
Conference on Learning Representations, 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: graph neural networks meet personal-
ized pagerank. International Conference on Learning
Representations, 2019.

Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., and
Boguná, M. Hyperbolic geometry of complex networks.
Physical Review E, 82(3):036106, 2010.

Liu, Q., Nickel, M., and Kiela, D. Hyperbolic graph neural
networks. Advances in Neural Information processing
systems, 2019.

Mathieu, E., Lan, C. L., Maddison, C. J., Tomioka, R., and
Teh, Y. W. Continuous hierarchical representations with
Poincaré variational auto-encoders. Advances in Neural
Information Processing Systems, 2019.

Matousek, J. Lecture notes on metric embeddings. 2013.

McCallum, A., Nigam, K., Rennie, J., and Seymore, K.
Automating the construction of internet portals with ma-
chine learning. Information Retrieval, 3(2):127–163,
2000.

Namata, G., London, B., Getoor, L., and Huang, B. Query-
driven Active Surveying for Collective Classification.
International Workshop on Mining and Learning with
Graphs (MLG), 2012.

Nickel, M. and Kiela, D. Poincaré embeddings for learn-
ing hierarchical representations. In Advances in Neural
Information Processing Systems, pp. 6341–6350, 2017.

Nickel, M. and Kiela, D. Learning continuous hierarchies
in the lorentz model of hyperbolic geometry. In Interna-
tional Conference on Machine Learning, 2018.

Ovinnikov, I. Poincaré Wasserstein autoencoder. arXiv
preprint arXiv:1901.01427, 2019.

Roweis, S. T. and Saul, L. K. Nonlinear dimensionality re-
duction by locally linear embedding. science, 290(5500):
2323–2326, 2000.

Sala, F., De Sa, C., Gu, A., and Re, C. Representation
tradeoffs for hyperbolic embeddings. In International
Conference on Machine Learning, pp. 4457–4466, 2018.

Sarkar, R. Low distortion delaunay embedding of trees in
hyperbolic plane. International Symposium on Graph
Drawing, pp. 355–366. Springer,, 2011.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B.,
and Eliassi-Rad, T. Collective Classification in Network
Data. AI Magazine, 29(3):93–106, 2008.

Spivak, M. A comprehensive introduction to differential
geometry. volume four. 1979.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. A
global geometric framework for nonlinear dimensionality
reduction. science, 290(5500):2319–2323, 2000.

Tifrea, A., Bécigneul, G., and Ganea, O.-E. Poincaré glove:
Hyperbolic word embeddings. Proceedings of the Inter-
national Conference on Learning Representations, 2019.

Ungar, A. Barycentric Calculus in Euclidean and Hyper-
bolic Geometry. World Scientific, ISBN 9789814304931,
2010.

Ungar, A. A. The hyperbolic pythagorean theorem in the
Poincaré disc model of hyperbolic geometry. The Ameri-
can mathematical monthly, 106(8):759–763, 1999.

Ungar, A. A. Analytic hyperbolic geometry: Mathematical
foundations and applications. World Scientific, 2005.

Ungar, A. A. A gyrovector space approach to hyperbolic ge-
ometry. Synthesis Lectures on Mathematics and Statistics,
1(1):1–194, 2008.

Ungar, A. A. Analytic Hyperbolic Geometry in N Dimen-
sions: An Introduction. CRC Press, 2014.

Ungar, A. A. Novel tools to determine hyperbolic triangle
centers. In Essays in Mathematics and its Applications,
pp. 563–663. Springer, 2016.

Constant Curvature Graph Convolutional Networks

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. Interna-
tional Conference on Learning Representations, 2018.

Weston, J., Ratle, F., Mobahi, H., and Collobert, R. Deep
learning via semi-supervised embedding. In Neural Net-
works: Tricks of the Trade, pp. 639–655. Springer, 2012.

Wilson, R. C., Hancock, E. R., Pekalska, E., and Duin,
R. P. Spherical and hyperbolic embeddings of data. IEEE
transactions on pattern analysis and machine intelligence,
36(11):2255–2269, 2014.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596, 2019.

Xu, J. and Durrett, G. Spherical latent spaces for stable
variational autoencoders. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 4503–4513, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? International Conference on
Learning Representations, 2018.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. In Advances in Neural Information
Processing Systems, 2018.

