
Constant Curvature Graph Convolutional Networks

A. GCN - A Brief Survey
A.1. Convolutional Neural Networks on Graphs

One of the pioneering works on neural networks in non-
Euclidean domains was done by Defferrard et al. (2016).
Their idea was to extend convolutional neural networks for
graphs using tools from graph signal processing.

Given a graphG = (V,A), where A is the adjacency matrix
and V is a set of nodes, we define a signal on the nodes
of a graph to be a vector x ∈ Rn where xi is the value of
the signal at node i. Consider the diagonalization of the
symmetrized graph Laplacian L̃ = UΛΛΛUT , where ΛΛΛ =
diag(λ1, . . . , λn). The eigenbasis U allows to define the
graph Fourier transform x̂ = UTx ∈ Rn.
In order to define a convolution for graphs, we shift from
the vertex domain to the Fourier domain:

x ?G y = U
((
UTx

)
�
(
UTy

))
Note that x̂ = UTx and ŷ = UTy are the graph Fourier
representations and we use the element-wise product �
since convolutions become products in the Fourier domain.
The left multiplication with U maps the Fourier representa-
tion back to a vertex representation.
As a consequence, a signal x filtered by gθ becomes
y = Ugθθθ(ΛΛΛ)UTx where gθθθ = diag(θθθ) with θθθ ∈ Rn con-
stitutes a filter with all parameters free to vary. In order
to avoid the resulting complexity O(n), Defferrard et al.
(2016) replace the non-parametric filter by a polynomial
filter:

gθθθ(ΛΛΛ) =

K−1∑
k=0

θkΛΛΛ
k

where θθθ ∈ RK resulting in a complexity O(K). Filter-
ing a signal is unfortunately still expensive since y =
Ugθθθ(ΛΛΛ)UTx requires the multiplication with the Fourier
basis U, thus resulting in complexity O(n2). As a con-
sequence, Defferrard et al. (2016) circumvent this prob-
lem by choosing the Chebyshev polynomials Tk as a
polynomial basis, gθθθ(ΛΛΛ) =

∑K
k=0 θkTk(Λ̃ΛΛ) where Λ̃ΛΛ =

2ΛΛΛ
λmax

− I. As a consequence, the filter operation becomes

y =
∑K
k=0 θkTk(L̂)x where L̂ = 2L

λmax
− I. This led to

a K-localized filter since it depended on the K-th power
of the Laplacian. The recursive nature of these polynomi-
als allows for an efficient filtering of complexity O(K|E|),
thus leading to an computationally appealing definition of
convolution for graphs. The model can also be built in an
analogous way to CNNs, by stacking multiple convolutional
layers, each layer followed by a non-linearity.

A.2. Graph Convolutional Networks

Kipf & Welling (2017) extended the work of Defferrard et al.
(2016) and inspired many follow-up architectures (Chen
et al., 2018; Hamilton et al., 2017; Abu-El-Haija et al., 2018;
Wu et al., 2019). The core idea of Kipf & Welling (2017)
is to limit each filter to 1-hop neighbours by setting K = 1,
leading to a convolution that is linear in the Laplacian L̂:

gθθθ ? x = θ0x + θ1L̂x

They further assume λmax ≈ 2, resulting in the expression

gθθθ ? x = θ0x− θ1D
− 1

2AD−
1
2x

To additionally alleviate overfitting, Kipf & Welling (2017)
constrain the parameters as θ0 = −θ1 = θ, leading to the
convolution formula

gθ ? x = θ(I + D−
1
2AD−

1
2)x

Since I+D−
1
2AD−

1
2 has its eigenvalues in the range [0, 2],

they further employ a reparametrization trick to stop their
model from suffering from numerical instabilities:

gθ ? x = θD̃−
1
2 ÃD̃−

1
2x

where Ã = A + I and D̃ii =
∑n
j=1 Ãij .

Rewriting the architecture for multiple features X ∈ Rn×d1
and parameters ΘΘΘ ∈ Rd1×d2 instead of x ∈ Rn and θ ∈ R,
gives

Z = D̃−
1
2 ÃD̃−

1
2XΘΘΘ ∈ Rn×d2

The final model consists of multiple stacks of convolutions,
interleaved by a non-linearity σ:

H(k+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(k)ΘΘΘ(k)

)
where H(0) = X and ΘΘΘ ∈ Rn×dk .

The final output H(K) ∈ Rn×dK represents the embedding
of each node i as hi = Hi• ∈ RdK and can be used to
perform node classification:

Ŷ = softmax
(
D̃−

1
2 ÃD̃−

1
2H(K)W

)
∈ Rn×L

where W ∈ RdK×L, with L denoting the number of classes.

In order to illustrate how embeddings of neighbouring nodes
interact, it is easier to view the architecture on the node level.
Denote by N (i) the neighbours of node i. One can write
the embedding of node i at layer k + 1 as follows:

hhh
(k+1)
i = σ

ΘΘΘ(l)
∑

j∈Ni∪{i}

hhh
(k)
j√

|N (j)||N (i)|



Constant Curvature Graph Convolutional Networks

Notice that there is no dependence of the weight matrices
ΘΘΘ(l) on the node i, in fact the same parameters are shared
across all nodes.
In order to obtain the new embedding h

(k+1)
i of node i,

we average over all embeddings of the neighbouring nodes.
This Message Passing mechanism gives rise to a very broad
class of graph neural networks (Kipf & Welling, 2017;
Veličković et al., 2018; Hamilton et al., 2017; Gilmer et al.,
2017; Chen et al., 2018; Klicpera et al., 2019; Abu-El-Haija
et al., 2018).

To be more precise, GCN falls into the more general cate-
gory of models of the form

zzz
(k+1)
i = AGGREGATE(k)({hhh(k)

j : j ∈ N (i)};WWW (k))

hhh
(k+1)
i = COMBINE(k)(hhh

(k)
i , zzz

(k+1)
i ;VVV (k))

Models of the above form are deemed Message Pass-
ing Graph Neural Networks and many choices for
AGGREGATE and COMBINE have been suggested in the
literature (Kipf & Welling, 2017; Hamilton et al., 2017;
Chen et al., 2018).

B. Graph Embeddings in Non-Euclidean
Geometries

In this section we will motivate non-Euclidean embeddings
of graphs and show why the underlying geometry of the
embedding space can be very beneficial for its representa-
tion. We first introduce a measure of how well a graph is
represented by some embedding f : V −→ X , i 7→ f(i):

Definition 4. Given an embedding f : V −→ X , i 7→ f(i)
of a graph G = (V,AAA) in some metric space X , we call f a
D-embedding for D ≥ 1 if there exists r > 0 such that

r · dG(i, j) ≤ dX (f(i), f(j)) ≤ D · r · dG(i, j)

The infimum over all such D is called the distortion of f .

The r in the definition of distortion allows for scaling of all
distances. Note further that a perfect embedding is achieved
when D = 1.

B.1. Trees and Hyperbolic Space

Trees are graphs that do not allow for a cycle, in other words
there is no node i ∈ V for which there exists a path starting
from i and returning back to i without passing through any
node twice. The number of nodes increases exponentially
with the depth of the tree. This is a property that prohibits
Euclidean space from representing a tree accurately. What
intuitively happens is that ”we run out of space”. Consider
the trees depicted in fig. 1. Here the yellow nodes represent
the roots of each tree. Notice how rapidly we struggle to
find appropriate places for nodes in the embedding space

because their number increases just too fast.

Moreover, graph distances get extremely distorted towards
the leaves of the tree. Take for instance the green and the
pink node. In graph distance they are very far apart as one
has to travel up all the way to the root node and back to the
border. In Euclidean space however, they are very closely
embedded in a L2-sense, hence introducing a big error in
the embedding.

This problem can be very nicely illustrated by the following
theorem:
Theorem 7. Consider the tree K1,3 (also called 3-star)
consisting of a root node with three children. Then every
embedding {x1, . . . ,x4} with xi ∈ Rk achieves at least
distortion 2√

3
for any k ∈ N.

Proof. We will prove this statement by using a special case
of the so called Poincaré-type inequalities (Deza & Lau-
rent, 1996):

For any b1, . . . , bk ∈ R with
∑k
i=1 bi = 0 and points

x1, . . . ,xk ∈ Rn it holds that

k∑
i,j=1

bibj ||xi − xj ||2 ≤ 0

Consider now an embedding of the tree x1, . . . ,x4 where
x1 represents the root node. Choosing b1 = −3 and bi = 1
for i 6= 1 leads to the inequality

||x2 − x3||2 + ||x2 − x4||2 + ||x3 − x4||2

≤ 3||x1 − x2||2 + 3||x1 − x3||2 + 3||x1 − x4||2

The left-hand side of this inequality in terms of the graph
distance is

dG(2, 3)2 + dG(2, 4)2 + dG(3, 4)2 = 22 + 22 + 22 = 12

and the right-hand side is

3 ·dG(1, 2)2 +3 ·dG(1, 3)2 +3 ·dG(1, 4)2 = 3+3+3 = 9

As a result, we always have that the distortion is lower-

bounded by
√

12
9 = 2√

3

Euclidean space thus already fails to capture the geomet-
ric structure of a very simple tree. This problem can be
remedied by replacing the underlying Euclidean space by
hyperbolic space.

Consider again the distance function in the Poincaré model,
for simplicity with c = 1:

dP(x,y) = cosh−1

(
1 + 2

||x− y||2

(1− ||x||2)(1− ||y||2)

)

Constant Curvature Graph Convolutional Networks

Assume that the tree is embedded in the same way as in
fig.1, just restricted to lie in the disk of radius 1√

c
= 1.

Notice that as soon as points move closer to the boundary
(||x|| −→ 1), the fraction explodes and the resulting distance
goes to infinity. As a result, the further you move points
to the border, the more their distance increases, exactly as
nodes on different branches are more distant to each other
the further down they are in the tree. We can express this
advantage in geometry in terms of distortion:

Theorem 8. There exists an embedding x1, . . . ,x4 ∈ P2

forK1,3 achieving distortion 1+ε for ε > 0 arbitrary small.

Proof. Since the Poincaré distance is invariant under
Möbius translations we can again assume that x1 = 0. Let
us place the other nodes on a circle of radius r. Their dis-
tance to the root is now given as

dP(xi, 0) = cosh−1

(
1 + 2

||xi||2

1− ||xi||2

)
= cosh−1

(
1 + 2

r2

1− r2

) (20)

By invariance of the distance under centered rotations we
can assume w.l.o.g. x2 = (r, 0). We further embed

• x3 =
(
r cos(2

3π), r sin(2
3π)
)

=
(
− r2 ,

√
3

2 r
)

• x4 =
(
r cos(4

3π), r sin(4
3π)
)

=
(
− r2 ,

√
3

2 r
)

.

This procedure gives:

dP(x2,x3) = cosh−1

1 + 2
||
(

3r
2 ,
−
√

3
2 r

)
||2

(1− r2)2


= cosh−1

(
1 + 2

3r2

(1− r2)2

) (21)

If we let the points now move to the border of the disk we
observe that

cosh−1
(

1 + 2 3r2

(1−r2)2

)
cosh−1

(
1 + 2 r2

1−r2

) r−→1−−−→ 2

But this means in turn that we can achieve distortion 1 + ε
for ε > 0 arbitrary small.

The tree-likeliness of hyperbolic space has been investigated
on a deeper mathematical level. Sarkar (2011) show that
a similar statement as in theorem 8 holds for all weighted
or unweighted trees. The interested reader is referred to
Hamann (2017); Sarkar (2011) for a more in-depth treatment
of the subject.

Cycles are the subclasses of graphs that are not allowed in a
tree. They consist of one path that reconnects the first and
the last node: (v1, . . . , vn, v1). Again there is a very simple
example of a cycle, hinting at the limits Euclidean space
incurs when trying to preserve the geometry of these objects
(Matousek, 2013).

Theorem 9. Consider the cycle G = (V,AAA) of length four.
Then any embedding (x1, . . . ,x4) where xi ∈ Rk achieves
at least distortion

√
2.

Proof. Denote by x1,x2,x3,x4 the embeddings in Eu-
clidean space where x1,x3 and x2,x4 are the pairs without
an edge. Again using the Poincaré-type inequality with
b1 = b3 = 1 and b2 = b4 = −1 leads to the short diagonal
theorem (Matousek, 2013):

||x1 − x3||2 + ||x2 − x4||2

≤ ||x1 − x2||2 + ||x2 − x3||2 + ||x3 − x4||2 + ||x4 − x1||2

(22)

The left hand side of this inequality in terms of the graph
distance is dG(1, 3)2 + dG(2, 4)2 = 22 + 22 = 8 and the
right hand side is 12 + 12 + 12 + 12 = 4.
Therefore any embedding has to shorten one diagonal by at
least a factor

√
2.

It turns out that in spherical space, this problem can be
solved perfectly in one dimension for any cycle.

Theorem 10. Given a cycle G = (V,AAA) of length n, there
exists an embedding {x1, . . . ,xn} achieving distortion 1.

Proof. We model the one dimension spherical space as the
circle S1. Placing the points at angles 2πi

n and using the
arclength on the circle as the distance measure leads to
an embedding of distortion 1 as all pairwise distances are
perfectly preserved.

Notice that we could also use the exact same embedding in
the two dimensional stereographic projection model with
c = 1 and we would also obtain distortion 1. The difference
to the Poincaré disk is that spherical space is finite and the
border does not correspond to infinitely distant points. We
therefore have no ε since we do not have to pass to a limit.

C. Spherical Space and its Gyrostructure
Contrarily to hyperbolic geometry, spherical geometry is
not only in violation with the fifth postulate of Euclid but
also with the first. Notice that, shortest paths are not unique
as for antipodal (oppositely situated) points, we have in-
finitely many geodesics connecting the two. Hence the first
axiom does not hold. Notice that the third postulate holds
as we stated it but it is sometimes also phrased as: ”A circle

Constant Curvature Graph Convolutional Networks

of any center and radius can be constructed”. Due to the
finiteness of space we cannot have arbitrary large circles
and hence phrased that way, the third postulate would not
hold.
Finally, we replace the fifth postulate by:

• Given any straight line l and a point p not on l, there
exists no shortest line g passing through p but never
intersecting l.

The standard model of spherical geometry suffers from the
fact that its underlying space depends directly on the curva-
ture κ through a hard constraint −κ〈x,x〉 = 1 (similarly to
the Lorentz model of hyperbolic geometry). Indeed, when
κ → 0, the domain diverges to a sphere of infinite radius
which is not well defined.
For hyperbolic geometry, we could circumvent the problem
by moving to the Poincaré model, which is the stereographic
projection of the Lorentz model, relaxing the hard constraint
to an inequality. A similar solution is also possible for the
spherical model.

C.1. Stereographic Projection Model of the Sphere

In the following we construct a model in perfect duality to
the construction of the Poincaré model.
Fix the south pole z = (000,− 1√

κ
) of the sphere of curva-

ture κ > 0, i.e. of radius R := κ−
1
2 . The stereographic

projection is the map:

Φ : SnR −→ Rn,x′ 7→ x =
1

1 +
√
κx′n+1

x′1:n

with the inverse given by

Φ−1 : Rn −→ SnR,x 7→ x′ =

(
λκxx,

1√
κ

(λκx − 1)

)
where we define λκx = 2

1+κ||x||2 .
Again we take the image of the sphere SnR under the ex-
tended projection Φ((0, . . . , 0,− 1

κ)) = 000, leading to the
stereographic model of the sphere. The metric tensor trans-
forms as:

gκij = (λκx)2δij

C.2. Gyrovector Space in the Stereographic Model

C.2.1. PROOF OF THEOREM 1

Using Cauchy-Schwarz’s inequality, we have A :=
1 − 2κxTy + κ2||x||2||y||2 ≥ 1 − 2|κ|‖x‖‖y‖ +
κ2||x||2||y||2 = (1 − |κ|‖x‖‖y‖)2 ≥ 0. Since equality
in the Cauchy-Schwarz inequality is only reached for colin-
ear vectors, we have that A = 0 is equivalent to κ > 0 and
x = y/(κ‖y‖2).

C.2.2. PROOF OF THEOREM 2

Let us start by proving that for x ∈ Rn and v ∈ TxRn the
exponential map is given by

expκx(v) =
λκx

(
α−
√
κxT v

||v||β
)
x + 1√

κ
β v
||v||

1 + (λκx − 1)α−
√
κλκxx

T v
||v||β

(23)

where α = cosκ (λκx||v||) and β = sinκ (λκx||v||)

Indeed, take a unit speed geodesic γx,v(t) starting from x
with direction v. Notice that the unit speed geodesic on
the sphere starting from x′ ∈ Sn−1 is given by Γx′,v′(t) =
x′ cosκ(t) + 1√

κ
sinκ(t)v′. By the Egregium theorem, we

know that Φ(γx,v(t)) is again a unit speed geodesic in

the sphere where Φ−1 : x 7→ x′ =
(
λκxx,

1√
κ

(λκx − 1)
)

.
Hence Φ(γx,v(t)) is of the form of Γ for some x′ and v′.
We can determine those by

x′ = Φ−1(γ(0)) = Φ−1(x) =

(
λκxx,

1√
κ

(λκx − 1)

)
v′ = Γ̇(0) =

∂Φ−1(y)

∂y
γ(0)γ̇(0)

Notice that∇xλ
κ
x = −κ(λκx)2x and we thus get

v′ =

(
−2κ(λκx)2xTvx + λκxv
−
√
κ(λκx)2xTv

)
We can obtain γx,v again by inverting back by calculating
γx,v(t) = Φ(Γx′,v′(t)), resulting in

γx,v(t) =
(λκx cosκ(t)−

√
κ(λκx)2xTv sinκ (t))x

1 + (λκx − 1) cosκ (t)−
√
κ(λκx)2xTv sinκ (t)

+

1√
κ
λκx sinκ (t)v

1 + (λκx − 1) cosκ (t)−
√
κ(λκx)2xTv sinκ (t)

Denoting gκx(v,v) = ||v||2λκx we have that expκx(v) =

γx, 1√
gκx (v,v)

v

(√
gκx(v,v)

)
which concludes the proof of

the above formula of the exponential map. One then notices
that it can be re-written in terms of the κ-addition. The for-
mula for the logarithmic map is easily checked by verifying
that it is indeed the inverse of the exponential map. Finally,
the distance formula is obtained via the well-known identity
dκ(x,y) = ‖ logκx(y)‖x where ‖v‖x =

√
gκx(v,v).

Note that as expected, expκx(v)→κ→0 x + v, converging
to the Euclidean exponential map.

�

Constant Curvature Graph Convolutional Networks

C.2.3. PROOF OF THEOREM 3

We first compute a Taylor development of the κ-addition
w.r.t κ around zero:

x⊕κ y =
(1− 2κxTy − κ||y||2)x + (1 + κ||x||2)y

1− 2κxTy + κ2||x||2||y||2

= [(1− 2κxTy − κ||y||2)x

+ (1 + κ||x||2)y][1 + 2κxTy +O(κ2)]

= (1− 2κxTy − κ||y||2)x + (1 + κ||x||2)y

+ 2κxTy[x + y] +O(κ2)

= (1− κ||y||2)x + (1 + κ||x||2)y + 2κ(xTy)y

+O(κ2)

= x + y + κ[‖x‖2y − ‖y‖2x + 2(xTy)y] +O(κ2).

(24)

We then notice that using the Taylor of ‖ · ‖2, given by
‖x + v‖2 = ‖x‖2 + 〈x,v〉+O(‖v‖22) for v→ 0, we get

‖x⊕κ y‖ = ‖x + y‖+ κ〈‖x‖2y − ‖y‖2x
+ 2(xTy)y,x + y〉+O(κ2)

= ‖x + y‖+ κ(xTy)‖x + y‖2 +O(κ2).

(25)

Finally Taylor developments of tanκ(|κ| 12u) and
|κ|− 1

2 tan−1
κ (u) w.r.t κ around 0 for fixed u yield

For κ→ 0+

tanκ(|κ| 12u) = κ−
1
2 tan(κ

1
2u)

= κ−
1
2 (κ

1
2u+ κ

3
2u3/3O(κ

5
2)

= u+ κu3/3 +O(κ2).

(26)

For κ→ 0−,

tanκ(|κ| 12u) = (−κ)−
1
2 tanh((−κ)

1
2u)

= (−κ)−
1
2 ((−κ)

1
2u− (−κ)

3
2u3/3 +O(κ

5
2)

= u+ κu3/3 +O(κ2).

(27)

The left and right derivatives match, hence even though
κ 7→ |κ| 12 is not differentiable at κ = 0, the function
κ 7→ tanκ(|κ| 12u) is. A similar analysis yields the same
conclusion for κ 7→ |κ|− 1

2 tan−1
κ (u) yielding

For κ→ 0, |κ|− 1
2 tan−1

κ (u) = u− κu3/3 +O(κ2).
(28)

Since a composition of differentiable functions is differen-
tiable, we consequently obtain that ⊗κ, expκ, logκ and dκ
are differentiable functions of κ, under the assumptions on

x,y,v stated in Theorem 3. Finally, the Taylor development
of dκ follows by composition of Taylor developments:

dκ(x,y) = 2‖κ‖− 1
2 tan−1

κ (‖(−x)⊕κ y‖)

= 2(‖x− y‖+ κ((−x)Ty)‖x− y‖2)
(

1−

(κ/3)(‖x− y‖+O(κ))2
)

+O(κ2)

= 2(‖x− y‖+ κ((−x)Ty)‖x− y‖2)
(

1

− (κ/3)‖x− y‖2
)

+O(κ2)

= 2‖x− y‖ − 2κ
(
(xTy)‖x− y‖2 + ‖x− y‖3/3

)
+O(κ2).

�

C.2.4. PROOF OF THEOREM 4

If A = In then for all i we have
∑
j Aij = 1, hence

(In �X)i• =
1

2
⊗κ

∑
j

δijλ
κ
xj∑

k δik(λκxk − 1)
xj

 (29)

=
1

2
⊗κ
(

λκxi
(λκxi − 1)

xi

)
(30)

=
1

2
⊗κ (2⊗κ xi) (31)

= xi (32)
= (X)i•. (33)

For associativity, we first note that the gyromidpoint is un-
changed by a scalar rescaling of A. The property then
follows by scalar associativity of the κ-scaling.

�

C.2.5. PROOF OF THEOREM 5

It is proved in Ungar (2005) that the gyromidpoint com-
mutes with isometries. The exact same proof holds for
positive curvature, with the same algebraic manipulations.
Moreover, when the matrix A is right-stochastic, for each
row, the sum over columns gives 1, hence our operation
�κ reduces to a gyromidpoint. As a consequence, our �κ
commutes with isometries in this case. Since isometries
preserve distance, we have proved the theorem.

�

C.2.6. PROOF OF THEOREM 6

We begin our proof by stating the left-cancellation law:

x⊕κ (−x⊕κ y) = y (34)

Constant Curvature Graph Convolutional Networks

and the following simple identity stating that orthogonal
maps commute with κ-addition

Rx⊕κ Ry = R(x⊕κ y), ∀R ∈ O(d) (35)

Next, we generalize the gyro operator from Möbius gyrovec-
tor spaces as defined in Ungar (2008):

gyr[u,v]w := −(u⊕κ v)⊕κ (u⊕κ (v ⊕κ w)) (36)

Note that this definition applies only for u,v,w ∈ stdκ for
which the κ-addition is defined (see theorem 1). Following
Ungar (2008), we have an alternative formulation (verifiable
via computer algebra):

gyr[u,v]w = w + 2
Au +Bv

D
. (37)

where the quantities A,B,D have the following closed-
form expressions:

A = −κ2〈u,w〉‖v‖2 − κ〈v,w〉+ 2κ2〈u,v〉 · 〈v,w〉,
(38)

B = −κ2〈v,w〉‖u‖2 + κ〈u,w〉, (39)

D = 1− 2κ〈u,v〉+ κ2‖u‖2‖v‖2. (40)

We then have the following relations:

Lemma 11. For all u,v,w ∈ stdκ for which the κ-addition
is defined we have the following relations: i) gyration is a
linear map, ii) u ⊕κ v = gyr[u,v](v ⊕κ u), iii) −(z ⊕κ
u)⊕κ (z⊕κv) = gyr[z,u](−u⊕κv), iv) ‖gyr[u,v]w‖ =
‖w‖.

Proof. The proof is similar with the one for negative cur-
vature given in Ungar (2008). The fact that gyration is a
linear map can be easily verified from its definition. For the
second part, we have

−gyr[u,v](v ⊕κ u) = gyr[u,v](−(v ⊕κ u))

= −(u⊕κ v)

⊕κ (u⊕κ (v ⊕κ (−(v ⊕κ u))))

= −(u⊕κ v)

(41)

where the first equality is a trivial consequence of the fact
that gyration is a linear map, while the last equality is the
consequence of left-cancellation law.

The third part follows easily from the definition of the gy-
ration and the left-cancellation law. The fourth part can be
checked using the alternate form in equation (37).

We now follow Ungar (2014) and describe all isometries of
stdκ spaces:

Theorem 12. Any isometry φ of stdκ can be uniquely written
as:

φ(x) = z⊕κ Rx, where z ∈ stdκ,R ∈ O(d) (42)

The proof is exactly the same as in theorems 3.19 and 3.20
of Ungar (2014), so we will skip it.

We can now prove the main theorem. Let φ(x) = z⊕κ Rx
be any isometry of stdκ, where R ∈ O(d) is an orthogonal
matrix. Let us denote by v :=

∑n
i=1 αi logκx(xi). Then, us-

ing lemma 11 and the formula of the log map from theorem
2, one obtains the following identity:

n∑
i=1

αi logκφ(x)(φ(xi)) =
λκx
λκφ(x)

gyr[z,Rx]Rv (43)

and, thus, using the formula of the exp map from theorem 2
we obtain:

tgφ(x)({φ(xi)}; {αi}) = φ(x)⊕κ gyr[z,Rx]R
(
− x

⊕κ expκx(v)
)

(44)

Using eq. (36), we get that ∀w ∈ stdκ:

gyr[z,Rx]Rw = −φ(x)⊕κ (z⊕κ (Rx⊕κ Rw)) (45)

giving the desired

tgφ(x)({φ(xi)}; {αi}) = z⊕κ R expκx(v)

= φ (tgx({xi}; {αi}))
(46)

�

D. Logits
The final element missing in the κ-GCN is the logit layer, a
necessity for any classification task. We here use the formu-
lation of Ganea et al. (2018a). Denote by {1, . . . ,K} the
possible labels and let ak ∈ Rd, bk ∈ R and x ∈ Rd. The
output of a feed forward neural network for classification
tasks is usually of the form

p(y = k|x) = S(〈ak,x〉 − bk)

where S(·) denotes the softmax function. In order to general-
ize this expression to hyperbolic space, Ganea et al. (2018a)
realized that the term in the softmax can be rewritten as

〈ak,x〉 − bk = sign(〈ak,x〉 − bk)||ak||d(x, Hak,bk)

Constant Curvature Graph Convolutional Networks

Table 3. Average curvature obtained for node classification. H and S denote hyperbolic and spherical models respectively. Curvature for
Pubmed was fixed for the product model.

MODEL CITESEER CORA PUBMED AIRPORT

H16 (κ-GCN) −1.306± 0.08 −1.51± 0.11 −1.42± 0.12 −0.93± 0.08
S16 (κ-GCN) 0.81± 0.05 1.24± 0.06 0.71± 0.15 1.49± 0.08
PROD κ-GCN [1.21,−0.64]± [0.09, 0.07] [−0.83,−1.61]± [0.04, 0.06] [−1,−1] [1.23,−0.89]± [0.07, 0.11]

where Ha,b = {x ∈ Rd : 〈x,a〉 − b = 0} = {x ∈ Rd :

〈−p + x,a〉 = 0} = H̃a,p with p ∈ Rd.
As a first step, they define the hyperbolic hyperplane as

H̃κ
a,p = {x ∈ stdκ〈−p⊕κ x,a〉 = 0}

where now a ∈ Tpstdκ and p ∈ stdκ. They then proceed
proving the following formula:

dκ(x, H̃a,p) =
1√
−κ

sinh−1

(
2
√
−κ|〈z,a〉|

(1 + κ||z||2)||a||

)
(47)

where z = −p⊕κ x Using this equation, they were able to
obtain the following expression for the logit layer:

p(y = k|x) = S
(
||ak||pk√
−κ

sinh−1

(
2
√
−κ〈zk,ak〉

(1 + κ||zk||2)||ak||

))
(48)

where ak ∈ T0st
d
κ
∼= Rd, x ∈ stdκ and pk ∈ stdκ. Combin-

ing all these operations leads to the definition of a hyperbolic
feed forward neural network. Notice that the weight matri-
ces W and the normal vectors ak live in Euclidean space
and hence can be optimized by standard methods such as
ADAM (Kingma & Ba, 2015).

For positive curvature κ > 0 we use in our experiments the
following formula for the softmax layer:

p(y = k|x) = S
(
||ak||pk√

κ
sin−1

(
2
√
κ〈zk,ak〉

(1 + κ||zk||2)||ak||

))
,

(49)
which is inspired from the formula i sin(x) = sinh(ix)
where i :=

√
−1. However, we leave for future work the

rigorous proof that the distance to geodesic hyperplanes in
the positive curvature setting is given by this formula.

Figure 8. Histogram of node degrees

E. Additional Experiments
To study the differentiability of the derived interpolation em-
pirically, we embedded a small tree into stdκ for κ ∈ [−5, 5].
To that end, we used 200 equidistant values κ in [−5, 5] and
trained a κ-GCN (with non-trainable curvature) to produce
an embedding that minimizes distortion. Moreover we also
trained a Euclidean GCN with the same architecture. The
results are summarized in Figure 9.
One can observe a smooth transition between the differ-
ent geometries. As expected, the distortion improves for
increased hyperbolicity and worsens when the embedding
space becomes more spherical. The small kink for the spher-
ical model is due to numerical issues.

F. More Experimental Details
We here present training details for the node classification
experiments.

We split the data into training, early stopping, validation
and test set. Namely we first split the dataset into a known
subset of size nknown and an unknown subset consisting of
the rest of the nodes. For all the graphs we use nknown =
1500 except for the airport dataset, where we follow the
setup of Chami et al. (2019) and use nknown = 2700. For
the citation graphs, the known subset is further split into a

Constant Curvature Graph Convolutional Networks

Figure 9. Distortion of κ-GCNs of varying curvature κ trained to
embed a tree

Algorithm 1 Curvature Estimation
Input: Graph G, niter
for m ∈ G do

for i = 1 to niter do
b, c ∼ U(N (m)) and a ∼ U(G) such that m 6= a

ψ(m; b, c; a) = dG(a,m)
2 +

d2G(b,c)
8dG(a,m)

− 2d2G(a,b)+2d2G(a,c)
4dG(a,m)

end for
ψ(m) = AVERAGE(ψ(m; a, b; c))

end for
return: κ = AVERAGE(ψ(m))

training set consisting of 20 data points per label, an early
stopping set of size 500 and a validation set of the remaining
nodes. For airport, we separate the known subset into 2100
training nodes, 300 validation nodes and 300 early stopping
nodes. Notice that the whole structure of the graph and all
the node features are used in an unsupervised fashion since
the embedding of a training node might for instance depend
on the embedding of a node from the validation set. But
when calculating the loss, we only provide supervision with
the training data.
The unknown subset serves as the test data and is only used
for the final evaluation of the model. Hyperparameter-tuning
is performed on the validation set. We further use early
stopping in all the experiments. We stop training as soon
as the early stopping cross entropy loss has not decreased
in the last npatience = 200 epochs or as soon as we have
reached nmax = 2000 epochs. The model chosen is the one
with the highest accuracy score on the early stopping set.
For the final evaluation we test the model on five different
data splits and two runs each and report mean accuracy and
bootstrapped confidence intervals. We use the described

setup for both the Euclidean and non-Euclidean models to
ensure a fair comparison.

Learned curvatures . We report the learnt curvatures for
node classification in tab. 3

G. Graph Curvature Estimation Algorithm
We used the procedure outlined in Algorithm 1 to estimate
the curvature of a dataset developed by Gu et al. (2019).

