
Model-Based Reinforcement Learning with Value-Targeted Regression

A. Proof of Theorem 1

In this section, we provide the regret analysis of the UCRL-VTR Algorithm (Algorithm 1). We will explain the motivation
for our construction of confidence sets for general nonlinear squared estimation, and establish the regret bound for a general
class of transition models, P .

A.1. Preliminaries

Recall that a finite horizon MDP is M = (S,A, P, r,H, s�) where S is the state space, A is the action space, P = (Pa)a2A
is a collection of Pa : S !M1(S) Markov kernels, r : S ⇥A! [0, 1] is the reward function, H > 0 is the horizon and
s� 2 S is the initial state. For a state s 2 S and an action a 2 A, Pa(s) gives the distribution of the next state that is
obtained when action a is executed in state s. For a bounded (measurable) function V : S ! R, we will use hPa(s), V i as
the shorthand for the expected value of V at a random next state s0 whose distribution is Pa(s).

Given any policy ⇡ (which may or may not use the history), its value function is

V ⇡(s) = E⇡,�s

"
HX

i=1

r(si, ai)

#
,

where E⇡,�s is the expectation operator underlying the probability measure P⇡,�s induced over sequences of state-action
pairs of length H by executing policy ⇡ starting at state s in the MDP M and sh is the state visited in stage h and action ah
is the action taken in that stage after visiting sh. For a nonstationary Markov policy ⇡ = (⇡1, . . . ,⇡H), we also let

V ⇡

h
(s) = E⇡h:H ,�s

"
H�h+1X

i=1

r(si, ai)

#

be the value function of ⇡ from stage h to H . Here, ⇡h:H denotes the policy (⇡h, . . . ,⇡H). The optimal value function
V ⇤ = (V ⇤

1 , . . . , V
⇤
H
) is defined via V ⇤

h
(s) = max⇡ V ⇡

h
(s), s 2 S .

For simplicity assume that r is known. To indicate the dependence of V ⇤ on the transition model P , we will write
V ⇤
P
= (V ⇤

P,1, . . . , V
⇤
P,H

). For convenience, we define V ⇤
P,H+1 = 0.

Algorithm 1 is an instance of the following general model-based optimistic algorithm:

Algorithm 2 Generic Algorithm 1-Schema for finite horizon problems
1: Input: P – a set of transition models, K – number of episodes, s0 – initial state
2: Set B1 = P

3: for k = 1, . . . ,K do

4: P k = argmax{V ⇤
P̃
(s0) : P̃ 2 Bk}

5: Vk = V ⇤
Pk

6: sk1 = s0
7: for h = 1, . . . , H do

8: Choose ak
h
= argmax

a2Ar(s
k

h
, a) + hP k

a
(sk

h
), Vh+1,ki

9: Observe transition to sk
h+1

10: end for

11: Construct Bk+1 based on (sk1 , a
k

1 , . . . , s
k

H
, ak

H
)

12: end for

Specific instances of Algorithm 2 differ in terms of how Bk+1 is constructed. In particular, UCRL-VTR uses the construction
described in Section 3.2.

Recall that Vk = (V1,k, . . . , VH,k, VH+1,k) (with VH+1,k = 0) in Algorithm 2. Let ⇡k be the nonstationary Markov policy
chosen in episode k by Algorithm 2. Let

RK =
KX

k=1

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)
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be the pseudo-regret of Algorithm 1 for K episodes. The following standard lemma bounds the kth term of the expression
on the right-hand side.
Lemma 5. Assuming that P 2 Bk, we have

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  sup
P̃2Bk

H�1X

h=1

hP̃
a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh,ki+

H�1X

h=1

⇠h+1,k ,

where

⇠h+1,k = hP
a
k

h

(sk
h
), Vh+1,k � V ⇡k

h+1i �
�
Vh+1,k(s

k

h+1)� V ⇡k

h+1(s
k

h+1)
�
.

Note that (⇠2,1, ⇠3,1, . . . , ⇠H,1, ⇠2,2, ⇠3,2, . . . , ⇠H,2, ⇠2,3, . . . ) is a sequence of martingale differences.

Proof. Because P 2 Bk, V ⇤
1 (s

k

1)  V1,k(sk1) by the definition of the algorithm. Hence,

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  V1,k(s
k

1)� V ⇡k

1 (sk1) .

Fix h 2 [H]. In what follows we bound Vh,k(skh)� V ⇡k

h
(sk

h
). By the definition of ⇡k, P k and ak

h
, we have

Vh,k(s
k

h
) = r(sk

h
, ak

h
) + hP k

a
k

h

(sk
h
), Vh+1,ki and

V ⇡k

h
(sk

h
) = r(sk

h
, ak

h
) + hP

a
k

h

(sk
h
), V ⇡k

h+1i .

Hence,

Vh,k(s
k

h
)� V ⇡k

h
(sk

h
) = hP k

a
k

h

(sk
h
), Vh+1,ki � hPa

k

h

(sk
h
), V ⇡k

h+1i

= hP k

a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh+1,ki+ hPa

k

h

(sk
h
), Vh+1,k � V ⇡k

h+1i .

Therefore, by induction, noting that VH+1,k = 0, we get that

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1) 
H�1X

h=1

hP k

a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh+1,ki+

H�1X

h=1

⇠h+1,k

 sup
P̃2Bk

H�1X

h=1

hP̃
a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh+1,ki+

H�1X

h=1

⇠h+1,k .

A.2. The confidence sets for Algorithm 1

The previous lemma suggests that at the end of the kth episode, the model could be estimated using

P̂k = argmin
P̃2P

kX

k0=1

H�1X

h=1

⇣
hP̃

a
k0
h

(sk
0

h
), Vh+1,k0i � Vh+1,k0(sk

0

h+1)
⌘2

(9)

For a confidence set construction, we get inspiration from Proposition 5 in the paper of Osband & Van Roy (2014). The set
is centered at P̂k:

Bk = {P̃ 2 P : Lk(P̂k, P̃ )  �k} , (10)

where

Lk(P̂ , P̃ ) =
kX

k0=1

H�1X

h=1

⇣
hP̃

a
k0
h

(sk
0

h
)� P̂

a
k0
h

(sk
0

h
), Vh+1,k0i

⌘2
.

Note that this is the same confidence set as described in Section 3.2. To obtain the value of �k, we now consider the nonlinear
least-squares confidence set construction from Russo & Van Roy (2014). The next section is devoted to this construction.
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A.3. Confidence sets for general nonlinear least-squares

Let (Xp, Yp)p=1,2,... be a sequence of random elements, Xp 2 X for some measurable set X and Yp 2 R. Let F be
a subset of the set of real-valued measurable functions with domain X . Let F = (Fp)p=0,1,... be a filtration such that
for all p � 1, (X1, Y1, . . . , Xp�1, Yp�1, Xp) is Fp�1 measurable and such that there exists some function f⇤ 2 F such
that E[Yp | Fp�1] = f⇤(Xp) holds for all p � 1. The (nonlinear) least-squares predictor given (X1, Y1, . . . , Xt, Yt) is
f̂t = argmin

f2F
P

t

p=1(f(Xp)�Yp)2. We say that Z is conditionally ⇢-subgaussian given the �-algebra F if for all � 2 R,
logE[exp(�Z)|F]  1

2�
2⇢2. For ↵ > 0, let N↵ be the k · k1-covering number of F at scale ↵. That is, N↵ is the smallest

integer for which there exist G ⇢ F with N↵ elements such that for any f 2 F , ming2G kf � gk1  ↵. For � > 0, define

Ft(�) = {f 2 F :
tX

p=1

(f(Xp)� f̂t(Xp))
2
 �} .

We have the following theorem, the proof of which is given in Section A.6.

Theorem 6. Let F be the filtration defined above and assume that the functions in F are bounded by the positive constant
C > 0. Assume that for each s � 1, (Yp � f⇤(Xp))p is conditionally �-subgaussian given Fp�1. Then, for any ↵ > 0, with
probability 1� �, for all t � 1, f⇤ 2 Ft(�t(�,↵)), where

�t(�,↵) = 8�2 log(2N↵/�) + 4t↵
⇣
C +

p
�2 log(4t(t+ 1)/�)

⌘
.

The proof follows that of Proposition 6, Russo & Van Roy (2014), with minor improvements, which lead to a slightly better
bound. In particular, with our notation, Russo & Van Roy stated their result with

�RvR
t

(�,↵) = 8�2 log(2N↵/�) + 2t↵
⇣
8C +

p
8�2 log(8t2/�)

⌘
.

While �t(�,↵)  �RvR
t

(�,↵), the improvement is only in terms of smaller constants.

A.4. The choice of �k in Algorithm 1

To use this result in our RL problem recall that P is the set of transition probabilities parameterized by ✓ 2 ⇥. We
index time t = 1, 2, . . . in a continuous fashion. Episode k = 1, 2, . . . and stage h = 1, . . . , H � 1 corresponds to time
t = (k � 1)(H � 1) + h:

episode (k) 1 1 . . . 1 2 2 . . . 2 3 . . .
stage (h) 1 2 . . . H � 1 1 2 . . . H � 1 1 . . .
time step (t) 1 2 . . . H � 1 H H + 1 . . . 2H � 2 2H � 1 . . .

Note that the transitions at stage h = H are skipped and the time index at the end of episode k � 1 is k(H � 1).

Let V(t) be the value function used by Algorithm 1 at time t (V(t) is constant in periods of length H�1), while let (s(t), a(t))
be the state-action pair visited at time t.

Let V be the set of optimal value functions under some model in P : V = {V ⇤
P 0 : P 0

2 P}. Note that V ⇢ B(S, H), where
B(S, H) denotes the set of real-valued measurable functions with domain S that are bounded by H . Note also that for all t,
V(t) 2 V . Define X = S⇥A⇥V . We also let Xt = (s(t), a(t), V(t)), Yt = V(t)(s(t+1)) when t+1 62 {H+1, 2H+1, . . . }
and Yt = V(t)(s

k

H+1), and choose

F =

⇢
f : X ! R : 9P̃ 2 P s.t. f(s, a, v) =

Z
P̃a(ds

0
|s)v(s0)

�
. (11)

Note that F ⇢ B1(X , H).

Let � : P ! F be the natural surjection to F : �(P ) = f where f(s, a, v) =
R
Pa(ds0|s)v(s0) for (s, a, v) 2 X . We

know show that � is in fact a bijection. If P 6= P 0, this means that for some (s, a) 2 S ⇥ A and U ⇢ S measurable,
Pa(U |s) 6= P 0

a
(U |s). Choosing v to be the indicator of U , note that (s, a, v) 2 X . Hence, �(P )(s, a, v) = Pa(U |s) 6=
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P 0
a
(U |s) = �(P 0)(s, a, v), and hence �(P ) 6= �(P 0): � is indeed a bijection. For convenience and to reduce clutter, we

will write fP = �(P ).

Choose F = (Ft)t�0 so that Ft�1 is generated by (s(1), a(1), V(1), . . . , s(t), a(t), V(t)). Then E[Yt|Ft�1] =R
Pa(t)

(ds0|s(t))V(t)(s
0) = fP (Xt) and by definition fP 2 F . Now, Yt 2 [0, H], hence, Zt = Yt � fP (Xt) is con-

ditionally H/2-subgaussian given Ft�1.

Let t = k(H � 1) for some k � 1. Thus, this time step corresponds to finishing episode k and thus V(t) = Vk. Furthermore,
letting f̂t = argmin

f2F
P

t

p=1(f(Xp)� Yp)2, since � is an injection, we see that f̂t = f
P̂k

where P̂k is defined using (9).
For P 0, P 00

2 P , we have Lk(P 0, P 00) =
P

t

p=1(fP 0(Xp)� fP 00(Xp))2 and thus

Bk = {P̃ 2 P : Lk(P̂k, P̃ )  �k} = {P̃ 2 P :
tX

p=1

(f̂t(Xp)� f
P̃
(Xp))

2
 �k}

= {��1(f) : f 2 F and
tX

p=1

(f̂t(Xp)� f(Xp))
2
 �k} = ��1(Ft(�k)) .

Corollary 7. For ↵ > 0 and k � 1 let

�k = 2H2 log

✓
2N (F ,↵, k · k1)

�

◆
+ 2H(kH � 1)↵

(
2 +

s

log

✓
4kH(kH � 1)

�

◆)
.

Then, with probability 1� �, for any k � 1, P 2 Bk where Bk is defined by (10).

A.5. Regret of Algorithm 1

Recall that X = S ⇥ A ⇥ V where V ⇢ B1(S, H) is the set of value functions that are optimal under some model in
P . We will abbreviate (x1, . . . , xt) 2 X

t as x1:t. Further, we let F|x1:t = {(f(x1), . . . , f(xt)) : f 2 F}(⇢ Rt) and for
S ⇢ Rt, let diam(S) = sup

u,v2S
ku� vk2 be the diameter of S. We will need the following lemma, extracted from Russo

& Van Roy (2014):

Lemma 8 (Lemma 5 of Russo & Van Roy (2014) ). Let F ⇢ B1(X , C) be a set of functions bounded by C > 0, (Ft)t�1

and (xt)t�1 be sequences such that Ft ⇢ F and xt 2 X hold for t � 1. Then, for any T � 1 and ↵ > 0 it holds that

TX

t=1

diam(Ft|xt
)  ↵+ C(d ^ T ) + 2�T

p

dT ,

where �T = max1tT diam(Ft|x1:t) and d = dimE(F ,↵).

Let

Wk = sup
P̃2Bk

H�1X

h=1

hP̃
a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh,ki .

From Lemma 5, we get

RK 

KX

k=1

Wk +
KX

k=1

H�1X

h=1

⇠h+1,k . (12)

Lemma 9. Let ↵ > 0 and d = dimE(F ,↵) where F is given by (11). Then, for any nondecreasing sequence (�2
k
)K
k=1, on

the event when P 2 \k2[K]Bk,

KX

k=1

Wk  ↵+H(d ^K(H � 1)) + 4
p
d�KK(H � 1) .
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Proof. Let P 2 \k2[K]Bk holds. Using the notation of the previous section, letting F̃t = Ft(�k) for (k� 1)(H � 1)+1 
t  k(H � 1), we have

KX

k=1

Wk 

KX

k=1

sup
P̃2Bk

H�1X

h=1

�
f
P̃
(sk

h
, ak

h
, Vh+1,k)� fP (s

k

h
, ak

h
, Vh+1,k)

�



K(H�1)X

t=1

diam(F̃t|Xt
) (because P 2 \k2[K]Bk)

 ↵+H(d ^K(H � 1)) + 2�K(H�1)

p
dK(H � 1) ,

where Xt is defined in Section A.4 and where the last inequality is by Lemma 8, which is applicable because F ⇢ B1(X , H)
holds by choice, and �K(H�1) = max1tK(H�1) diam(F̃t|X1:t). Thanks to the definition of F̃t, �K(H�1)  2

p
�K .

Plugging this into the previous display finishes the proof.

A.5.1. PROOF OF THEOREM 1

Proof. Note that for any k 2 [K] and h 2 [H � 1], ⇠h+1, k 2 [�H,H]. As noted beforehand,
⇠2,1, ⇠3,1, . . . , ⇠H,1, ⇠2,2, ⇠3,2, . . . , ⇠H,2, ⇠2,3, . . . is a martingale difference sequence. Thus, with probability 1 � �,P

K

k=1

P
H�1
h=1 ⇠h+1,k  H

p
2K(H � 1) log(1/�). Consider the event when this inequality holds and when P 2 \k2[K]Bk.

By using Corollary 7 and a union bound, this event holds with probability at least 1� 2�. On this event, by (12) and Lemma
9, we obtain

RK  ↵+H(d ^K(H � 1)) + 4
p

d�KK(H � 1) +H
p
2K(H � 1) log(1/�) .

Using ↵  1, which holds by assumption, finishes the proof.

A.5.2. PROOF OF COROLLARY 2

Proof. Note that

kfP 0 � fP 00k1 = sup
s,a,v

|

Z
(P 0

a
(ds0|s)� P 00

a
(ds0|s))v(s0)|  H sup

s,a

Z
|P 0

a
(ds0|s)� P 00

a
(ds0|s)|

= H sup
s,a

kP 0
a
(s)� P 00

a
(s)k1 =: HkP 0

� P 00
k1,1 .

For ↵ > 0 let N (P,↵, k · k1,1) denote the (↵, k · k1,1)-covering number of P . Then we have

N (F ,↵, k · k1)  N (P,↵/H, k · k1,1).

Then, by Corollary 7,

�K = 2H2 log(2N (F ,↵, k · k1)/�) + C  2H2 log(2N (P,↵/H, k · k1,1)/�) + C

with some universal constant C > 0. Let f : (⇥, k · k) ! (P, k · k1,1) be defined by ✓ 7!
P

j
✓jPj . Note that

kf(✓) � f(✓0)k1,1  sup
s,a

P
j
k(✓j � ✓0j)Pj,a(s)k1 =

P
j
|✓j � ✓0j | = k✓ � ✓

0
k1. Hence, any (✏, k · k1) covering of

⇥ induces an (✏, k · k1,1)-covering of P and so N (P,↵/H, k · k1,1)  N (⇥,↵/H, k · k1)  C 0(RH/↵)d with some
universal constant C 0 > 0.

Now, choose 1/↵ = K
p
log(KH/�). Hence,

�K  2H2(log(2C 0/�) + d log(RH/↵)) + C .

Suppressing log factors (e.g., log(RH)), log log terms and constants, we have �K = H2(d+ log(1/�)).

Let F be given by (11). We now bound dimE(F ,↵). Let X = S ⇥A⇥B(S) as before. Define z : S ⇥A⇥B(S)! Rd

using z(s, a, v)j = hPj,a(s), vi and note that if x 2 X is (✏,F)-independent of x1, . . . , xk 2 X then z(x) 2 Rd is
(✏,⇥)-independent of z(x1), . . . , z(xk) 2 Rd. This holds because if P =

P
j
✓jPj 2 P then fP (s, a, v) = h✓, z(s, a, v)i
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for any (s, a, v) 2 X . Hence, dimE(F ,↵)  dimE(Lin(Z,⇥),↵), where Lin(Z,⇥) is the set of linear maps with domain
Z = {z(x) : x 2 X} ⇢ Rd and parameter from ⇥: Lin(Z,⇥) = {h : h : Z ! R s.t. 9✓ 2 ⇥ : h(z) = h✓, zi, z 2 Z}.
Now, by Proposition 11 of Russo & Van Roy (2014), dimE(Lin(Z,⇥),↵) = O(d log(1 + (S�/↵)2) where S is the k · k2
diameter of ⇥ and � = sup

z2Z kzk2. We have

kzk22 =
X

j

(hPj,a(s), vi)
2
 H2d ,

hence �  H
p
d. By the relation between the 1 and 2 norms, the 2-norm diameter of ⇥ is at most

p
dR. Dropping log

terms, dimE(F ,↵) = Õ(d).

Plugging into Theorem 1 gives the desired result.

A.6. Proof of Theorem 6

Recall the following:
Definition 3. A random variable X is �-subgaussian if for all � 2 R, it holds that E[exp(�X)]  exp

�
�2�2/2

�
.

The proof of the next couple of statements is standard and is included only for completeness.
Theorem 10. If X is �-subgaussian, then for any � > 0, with probability at least 1� �,

X <
1

�
log

✓
1

�

◆
+ �

�2

2
. (13)

Proof. Let � > 0. We have, {X � ✏} = {exp(�(X � ✏)) � 0}. Hence, Markov’s inequality gives P(X � ✏) 
exp(��✏)E[exp(�X)]  exp(��✏+ 1

2�
2�2). Equating the right-hand side with � and solving for ✏, we get that log(�) =

��✏+ 1
2�

2�2. Solving for ✏ gives ✏ = log(1/�)/�+ �
2

2 �, finishing the proof.

Choosing the � that minimizes the right-hand side of the bound gives the usual form:

P(X �
p
2�2 log(1/�))  � . (14)

Lemma 11 (Lemma 5.4 of Lattimore & Szepesvári (2020)). Suppose that X is �-subgaussian and X1 and X2 are
independent and �1 and �2-subgaussian, respectively, then:

1. E[X] = 0.

2. cX is |c|�-subgaussian for all c 2 R.

3. X1 +X2 is
p
�2
1 + �2

2-subgaussian.

Let (Zp)p be an F = (Fp)p-adapted process. Recall that (Zp)p is conditionally �-subgaussian given F if for all p � 1,

logE[exp(�Zp)|Fp�1] 
1

2
�2�2 , for all � 2 R .

A standard calculation gives that St =
P

t

p=1 Zp is
p
t�-subgaussian (essentially, a refinement of the calculation that is

need to show Part (3) of Lemma 11) and thus, in particular, for any t � 1 and � > 0, with probability 1� �,

St <
1

�
log

✓
1

�

◆
+ �

t�2

2
.

In fact, by slightly strengthening the argument, one can show that the above inequality holds simultaneously for all t � 1:
Theorem 12 (E.g., Lemma 7 of Russo & Van Roy (2014)). Let F be a filtration and let (Zp)p be an F-adapted, conditionally
�-subgaussian process. Then for any � > 0, with probability at least 1� �, for all t � 1,

St <
1

�
log

✓
1

�

◆
+ �

t�2

2
, (15)

where St =
P

t

p=1 Zp.
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Proof of Theorem 6 Let us introduce the following helpful notation: For vectors x, y 2 Rt, let hx, yit =
P

t

p=1 xpyp,
kxk2

t
= hx, xit, and for f : X ! R, kfk2

t
=
P

t

p=1 f
2(Xp). More generally, we will overload addition and subtraction

such that for x 2 Rt, x + f 2 Rt is the vector whose pth coordinate is xp + f(Xp) (xp and Xp both appear on purpose
here). We also overload h·, ·it such that hx, fit = hf, xit =

P
t

p=1 xpf(Xp).

Define Zp using Yp = f⇤(Xp) + Zp and collect (Yp)tp=1 and (Zp)tp=1 into the vectors Y and Z. As in the statement of the
theorem, let F = (Fp)p=0,1,... be such that for any s � 1, (X1, Y1, . . . , Xp�1, Yp�1, Xp) is Fp�1-measurable. Note that for
any p � 1, Zp = Yp � f⇤(Xp) is Fp-measurable, hence (Zp)p�1 is F-adapted.

With this, elementary calculation gives

kY � fk2
t
� kY � f⇤k

2
t
= kf⇤ � fk2

t
+ 2hZ, f⇤ � fit .

Splitting kf⇤ � fk2
t

and rearranging gives

1

2
kf⇤ � fk2

t
= kY � fk2

t
� kY � f⇤k

2
t
+ E(f) (16)

where

E(f) = �
1

2
kf⇤ � fk2

t
+ 2hZ, f � f⇤it .

Recall that f̂t = argmin
f2F kY � fk2

t
. Plugging f̂t into 16 in place of f and using that thanks to f⇤ 2 F , kY � f̂tk2t 

kY � f⇤k2t , we get

1

2
kf⇤ � f̂tk

2
t
 E(f̂t) . (17)

Thus, it remains to bound E(f̂t). For this fix some ↵ > 0 to be chosen later and let G(↵) ⇢ F be an ↵-cover of F in k · k1.
Let g 2 G(↵) be a random function, also to be chosen later. We have

E(f̂t) = E(f̂t)� E(g) + E(g)  E(f̂t)� E(g) + max
g̃2G(↵)

E(g̃) (18)

We start by bounding the last term above. A simple calculation gives that for any fixed f 2 F , w.p. 1� �, 2hZ, f � f⇤it is
2�kf � f⇤kt-subgaussian. Hence, with probability 1� �, simultaneously for all t � 1,

E(f)  �
1

2
kf⇤ � fk2

t
+

1

�
log

✓
1

�

◆
+ �

4�2
kf � f⇤k2t

2
= 4�2 log

✓
1

�

◆
,

where the equality follows by choosing � = 1/(4�2) (which makes the first and last terms cancel). (Note how splitting
kf � f⇤k2t into two halves allowed us to bound the “error term” E(f) independently of t.) Now, by a union bound, it follows
that with probability at least 1� �, the second term is bounded by 4�2 log(|G(↵)|/�).

Let us now turn to bounding the first term. We calculate

E(f̂t)� E(g) =
1

2
kg � f⇤k

2
t
�

1

2
kf̂t � f⇤k

2
t
+ 2hZ, f̂t � git


1

2

⇣
hg � f̂t, g + f̂t + 2f⇤it

⌘
+ 2kZktkf̂t � gkt


1

2
4C↵ t+ 2kZkt↵

p
t ,

where for the last inequality we chose g = argmin
g̃2G(↵) kf̂t � g̃k1 so that kf̂t � gkt  ↵

p
t and used Cauchy-Schwartz,

together with that kgkt, kf̂tkt, kf⇤kt  C
p
t, which follows from g, f̂t, f⇤ 2 F and that by assumption all functions in F

are bounded by C.



Model-Based Reinforcement Learning with Value-Targeted Regression

It remains to bound kZkt. For this, we observe that with probability 1� �, simultaneously for all t � 1,

kZkt  �
p

2t log(2t(t+ 1)/�) .

Indeed, this follows because with probability 1 � �, simultaneously for any s � 1, |Zp|
2
 2�2 log(2s(s + 1)/�) holds

because of a union bound and Eq. (14). Therefore, for the above choice g, with probability 1� �, simultaneously for all
t � 1, it holds that

E(f̂t)� E(g)  2C↵ t+ 2t↵
p
�2 log(2t(t+ 1)/�) .

Merging this with Eqs. (17) and (18) and with another union bound, we get that with probability 1� �, for any t � 1,

kf⇤ � f̂tk
2
t
 8�2 log(2N↵/�) + 4t↵

⇣
C +

p
�2 log(4t(t+ 1)/�)

⌘
,

where N↵ is the (↵, k · k1)-covering number of F .

B. Proof of Theorem 3

In this section we establish a regret lower bound by reduction to a known result for tabular MDP.

Proof. We assume without loss of generality that d is a multiple of 4 and d � 8. We set S = 2 and A = d/4 � 2. According
to (Azar et al., 2017), (Osband & Van Roy, 2016), there exists an MDP M(S,A, P, r,H) with S states, A actions and
horizon H such that any algorithm has regret at least ⌦(

p
HSAT ). In this case, we have |S ⇥ A ⇥ S| = d. We use

�(s, a, s0) to denote the index of (s, a, s0) in S ⇥A⇥ S . Letting

Pi(s
0
|s, a) =

(
1 if �(s, a, s0) = i,

0 otherwise,

and ✓i = P (s0|s, a) if �(s, a, s0) = i, we will have P (s0|s, a) =
P

d

i=1 ✓
iPi(s0|s, a). Therefore P can be parametrized using

(19). Therefore, the known lower bound ⌦(
p
HSAT ) implies a worst-case lower bound of ⌦(

p
H · d/2 · T ) = ⌦(

p
HdT )

for our model.

C. The Special Case of Linear Transition Models

We derive a modification of UCRL-VTR when P✓ is a linear model of the form P✓ =
P

d

j=1 ✓jPj , which is captured in the
following assumption:
Assumption 3 (Linear Parameterized Transition Model). There exists a vector ✓⇤ 2 Rd such that k✓⇤k2  C✓ (C✓ � 1)
and

P (s0|s, a) =
dX

j=1

(✓⇤)jPj(s
0
|s, a) = P•(s0|s, a)>✓⇤, (19)

where Pj’s are known basis models such that sup
j2[d],(s,a)2S⇥A kPj(·|s, a)k1  1, and P•(s0|s, a) denotes the d-

dimensional vector P•(s0|s, a) = [P1(s0|s, a), . . . , Pd(s0|s, a)]>3. Note that we do not require each basis model Pj

to be a probability transition model.

By modifying the algorithm and using optimistic Q-update, we obtain an algorithm that can be implemented using efficient
recursive update. See Algorithm 3 for full details of implementation.

Estimating ✓⇤ by recursive regression. We let X>
h,k
✓ := E• [Vh+1,k(s)|skh, a

k

h
]>✓ = hP✓(·|s, a), Vh+1,ki be the predicted

expected value of next state. In this case, each new observation adds the following loss to regression:
�
X>

h,k
✓ � yh,k

�2
:

=
�
E• [Vh+1,k(s)|s

k

h
, ak

h
]>✓ � Vh+1,k(s

k

h+1)
�2

3We also use P·(·|s, a) to denote a d⇥ S matrix.
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Algorithm 3 UCRL-VTR with linear transition model
1: Input: MDP, d,H, T = KH;
2: Initialize: M1,1  H2dI , w1,1  0 2 Rd⇥1, ✓1  M�1

1,1w1,1 for 1  h  H;
3: Initialize: �  1/K, and for 1  k  K,

�k  16C2
✓
H2d log(1 +Hk) log2((k + 1)2H/�);

4: Compute Q-function Qh,1 using ✓1,1 according to (3);
5: for k = 1 : K do

6: Obtain initial state sk1 for episode k;
7: for h = 1 : H do

8: Choose action greedily by
ak
h
= argmax

a2A
Qh,k(s

k

h
, a)

and observe the next state sk
h+1.

9: Compute the predicted value vector: . Evaluate the expected value of next state

Xh,k  E• [Vh+1,k(s)|s
k

h
, ak

h
]

=
X

s2S
Vh+1,k(s) · P•(s|skh, a

k

h
).

10: yh,k  Vh+1,k(skh+1) . Update regression parameters
11: Mh+1,k  Mh,k +Xh,kX>

h,k

12: wh+1,k  wh,k + yh,k ·Xh,k

13: end for

14: Update at the end of episode: . Update Model Parameters

M1,k+1  MH+1,k,

w1,k+1  wH+1,k,

✓k+1  M�1
1,k+1w1,k+1;

15: Compute Qh,k+1, h = H, . . . , 1, using ✓k+1 according to (20) . Computing Q functions
16: end for
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By aggregating the value prediction losses constructed from all past experiences, we formulate a ridge regression problem to
estimate ✓⇤ by

✓k+1

= arg min
✓2Rd

2

4✓>M1,1✓ +
X

(h0,k0)(H,k)

�
X>

h0,k0✓ � yk0,h0
�2
3

5 ,

where M1,1 = H2dI acts as a regularization term.

To solve the above regression problem, we can first calculate Xh0,k0 and recursively compute estimates of ✓⇤ by letting

M1,k+1 = M1,1 +
X

(h0,k0)(H,k)

Xh0,k0X>
h0,k0

w1,k+1 = w1,1 +
X

(h0,k0)(H,k)

yh0,k0 ·Xh0,k0 ,

with M1,1 = H2d · I and w1,1 = 0. Then we obtain the estimated ✓k+1 easily by

✓k+1 = M�1
1,k+1wk+1.

Confidence ball. We construct Bk as follows:

Bk = {✓|(✓ � ✓k)
>Mk(✓ � ✓k)  �k}.

where �k is preselected (see the algorithm).

Our model parameter update, ✓k and Mk, can be via a recursive update in an incremental fashion. In this way, one does not
need to re-train the model parameter from scratch every episode. A similarly simple recursion was used in (Jin et al., 2019)
for model-free Q learning. Our method differs in that our Q functions cannot be parameterized by d parameters and our
updates are made on the transition model rather than Q functions.

Optimistic Q-update. Instead of solving the optimistic planning problem ✓k = argmax
✓
{V ⇤

✓
(s1)|✓ 2 Bk} as in Algorithm

1, we incorporate optimism into iterative Q-update:

QH+1,k(s, a) = 0,

Vh,k(s) = max
a2A

Qh,k(s, a),

Qh,k(s, a) = r(s, a) + max
✓2Bk

dX

j=1

(✓)jPj(·|s, a)Vh+1,k.

Since the confidence sets are ellipsoids, the preceding Q update has a closed-forms solution

Qh,k(s, a)

= r(s, a) + max
✓2Bk

hP✓(·|s, a), Vh+1,ki

= r(s, a) +X>
h,k
✓k +

p
�k
q
X>

h,k
M�1

k
Xh,k.

(20)

The last term in the above is the “bonus” term that quantifies uncertainty and encourages exploration. This optimistic Q
value allows us to greedily pick actions while sufficiently exploring the state space.

Algorithm 3 is a modification of UCRL-VTR and uses a different construction of confidence set. we provide an independent
regret analysis using techniques from linear bandit theory. The next theorem gives a egret upper bound for Algorithm 3.
Theorem 13. Let Assumption 3 hold. If we choose

�k =

 
H

s

d log

✓
1 +Hk ·H2d

�

◆
+ C✓H

p

d

!2

,
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then T -time-step regret of Algorithm 1 satisfies

E [R(T )] = Õ

⇣
C✓ · d

p

H3T
⌘
,

where T = HK is the total number of steps in K episodes, C✓ (C✓ � 1) is a known constant such that k✓⇤k  C✓ and Õ

hides polylog factors of H,T .

Let us outline the proof ideas. In the first part of the proof, we show that if ✓⇤ 2 Bh,k, then the estimated Q-functions are
optimistic estimates of the true Q-value functions. That is, Qh,k(s) is greater than the true Q-value Qh(s) for every s 2 S .
Using this fact, we can bound the regret by the sum of Q1,k(sk1)�Q⇡k

1 (s⇡k

1 ), which can be decomposed into the sum of
state-action confidence bounds on the sample path. In the second part, we construct martingale difference sequences and
apply a concentration argument to show that ✓⇤ 2 Bh,k for all (h, k) with high probability. The full proof is deferred to the
Appendix E.

D. Proof of Theorem 4

In this section, we will present the full proof of Theorem 4. To handle the mispecification error, we will modify the bonus
term by replacing it with

�k = 8H2 log

✓
2N (F ,↵, k · k1)

�

◆
+ 4H(kH � 1)↵

(
2 +

s

log

✓
4kH(kH � 1)

�

◆)
+ 8H3k"2.

The last term in the above choice of �k can be viewed as an “error tolerance.”

Next we show that P ⇤
2 Bk with high probability.

We first present a theorem which is nearly identical to Theorem 6 but tolerates misspecification. We use the same notations
as in the proof of Theorem 6.

Theorem 14. Let F be the filtration defined above and assume that the functions in F and also f⇤ are all bounded by the
positive constant C > 0 at values Xt for all t. Assume that there exists f̃ 2 F such that |f̃(X) � f⇤(X)|  ⇣ for all
X = (s, a, v) with kvk1  H , and also for each s � 1, (Yp � f⇤(Xp))p is conditionally �-subgaussian given Fp�1. We
define

f̂t = argmin
f2F

tX

p=1

(f(Xp)� Yp)
2

and

Ft(�) =

(
f : X ! R, s.t.

tX

p=1

(f(Xp)� f̂(Xp))
2
 �

)
.

Then, for any ↵ > 0, with probability 1� �, for all t � 1, f⇤ 2 Ft(�t(�,↵)), where

�t(�,↵) = 16�2 log(4N↵/�) + 4t↵
⇣
C +

p
�2 log(8t(t+ 1)/�)

⌘
+ 3t⇣2.

Note that here the last term is due to the misspecification error.

Proof. The proof of this theorem is also nearly identical to Theorem 6, except for the modifications below.

Due to model misspecification, we no longer have f⇤ 2 F , and hence we may not have kY � f̂tkt  kY � f⇤kt (Here
notation k · kt is defined to be the same as the notations in Theorem 6). To handle the misspecification error, we will
use the function f̃ as a bridge to bound the error between f̂t and f⇤. Hence since f̂t = argminf2F kY � fk2

t
, we have

kf̂t � Y k2
t
 kf̃ � Y k2

t
, which indicates that kf̂t � f⇤ � Zk2

t
 kf̃ � f⇤ � Zk2

t
. (Recall the notations Zp = Yp � f⇤(Xp)

and Z = (Z1, · · · , Zp).) Therefore, we have

kf̂t � f⇤k
2
t
� 2hf̂t � f⇤, Zit  kf̃ � f⇤k

2
t
� 2hf̃ � f⇤, Zit.
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We then obtain
1

2
kf̂t � f⇤k

2
t
 �

1

2
kf̂t � f⇤k

2
t
+ 2hf̂t � f⇤, Zit + kf̃ � f⇤k

2
t
� 2hf̃ � f⇤, Zit

= E(f̂t) + Ẽ(f̃) +
3

2
kf̃ � f⇤k

2
t
,

(21)

where we define

E(f) = �
1

2
kf � f⇤k

2
t
+ 2hZ, f � f⇤it (22)

Ẽ(f) = �
1

2
kf � f⇤k

2
t
� 2hZ, f � f⇤it (23)

In the next, we will bound E(f̂t) and also Ẽ(f̃). Similar to the proof of Theorem 6, we can show that

E(f̂t)  4�2 log(|N↵|/�) + 2C↵ t+ 2t↵
p
�2 log(2t(t+ 1)/�),

holds with probability at least 1� �, where N↵ is the ↵-covering number of F .

Now we analyze Ẽ(f̃) where f̃ 2 F . Similarly, a simple calculation gives that for any fixed f 2 F , 2h�Z, f � f⇤it is
2�kf � f⇤kt-subgaussian. Hence, with probability 1� �, simultaneously for all t � 1,

Ẽ(f)  �
1

2
kf⇤ � fk2

t
+ 4�2 log

✓
1

�

◆
+

1

4�2
·
4�2
kf � f⇤k2t

2
= 4�2 log

✓
1

�

◆
,

which indicates that with probability at least 1� �, we have

Ẽ(f̃)  4�2 log

✓
1

�

◆
.

Finally, as for the last term kf̃ � f⇤k2t in (21), we have the following estimation due to the bound of the misspecification
error:

kf̃ � f⇤k
2
t
=

tX

p=1

(f̃(Xp)� f̃(Xp))
2
 t · ⇣2,

where we use the fact that Xp = (sp, ap, vp) satisfies that kvpk1  H .

We combine those bounds on the three terms in (21) above, and obtain that with probability at least 1� 2�, the following
inequality holds:

1

2
kf̂ � f⇤k

2
t
 2tC↵+ 2t↵

p
�2 log(2t(t+ 1)/�) + 8�2 log(2N↵/�) +

3

2
t⇣2.

Finally, we switch � into �/2 and multiply the above inequality by 2 on both sides. And the proof of Theorem 14 is
completed.

Next we apply this theorem to prove the following lemma:
Lemma 15. For any transition model P , we define its corresponding function fp : X ! R:

fP (s, a, v) =

Z
P (ds0|s, a)v.

Then with probability at least 1� �, we have P⇤ 2 Bk, where

Bk =

(
P̃ 2 P :

tX

p=1

(f
P̃
(Xt)� f

P̂t
(Xt))

2
 �k

)
, t = k(H � 1).

Here P̂t is defined in (9) and we choose

�k = 8H2 log

✓
4N (F ,↵, k · k1)

�

◆
+ 4H(kH � 1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)
+ 8H3k"2,
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Proof. In the following proof, the notation of Xt, Yt,F are the same as the proof of Corollary 7. We notice that Yt �

fP (Xt) 2 [�H,H] for every Xt = (st, at, Vt), and

E[Yt|Ft] = E[Vt(st+1)|Ft] =

Z
P (ds0|st, at)Vt(s

0) = fP (st, at, vt) = fP (Xt).

Hence Zt = Yt � fP (Xt) is H

2 -subgaussian given Ft.

For every f 2 F , there exists some P̃ 2 P such that f(s, a, v) =
R
P̃ (ds0|s, a)v(s0), which indicates that |f(Xt)|  H .

Moreover, we also have |fP (Xt)|  H .

We next apply Theorem 14 with C = H and � = H

2 and f⇤ = fP and ⇣ = H✏ and f̃ = fP⇤ . According to Assumption 2,
we notice that, for all X = (s, a, v) with kvk1  H , we have

|f⇤(X)� f̃(X)| =

����
Z

(P (s0|s, a)� P ⇤(s0|s, a))v(s0)ds0
����  kP (s0|s, a)� P ⇤(s0|s, a)k1kvk1  H" = ⇣.

Hence we have verified all the assumptions in Theorem 14. Hence we obtain that: for any ↵ > 0, with probability at least
1� �, for all t � 1, we have

tX

p=1

(fP (Xp)� f
P̂t
(Xp))

2
 4H2 log

✓
4N (F ,↵, k · k1)

�

◆

+ 2H(kH � 1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)
+ 3H3k"2.

Moreover, noticing that

(fP (Xt)� fP⇤(Xt))
2 =

✓Z
(P (ds0|st, at)� P ⇤(ds0|st, at))Vt

◆2

 (H")2,

we have

tX

p=1

(fP⇤(Xp)� f
P̂t
(Xp))

2


tX

p=1

2(fP (Xp)� fP⇤(Xp))
2 + 2(fP (Xp)� f

P̂t
(Xp))

2

 8H2 log

✓
4N (F ,↵, k · k1)

�

◆
+ 4H(kH � 1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)
+ 6H3k"2 + 2H2"2t

 8H2 log

✓
4N (F ,↵, k · k1)

�

◆
+ 4H(kH � 1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)
+ 8H3k"2.

which indicates that P ⇤
2 Bk . This finishes the proof of this corollary.

We next provide a lemma similar to Lemma 5, only adding the misspecification analysis.

Lemma 16. Assuming that P ⇤
2 Bk, we have

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  sup
P̃2Bk

H�1X

h=1

hP̃ (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki+

H�1X

h=1

⇠h+1,k +H2" ,

where

⇠h+1,k = hP (·|sk
h
, ak

h
), Vh+1,k � V ⇡k

h+1i �
�
Vh+1,k(s

k

h+1)� V ⇡k

h+1(s
k

h+1)
�
.

Note that (⇠2,1, ⇠3,1, . . . , ⇠H,1, ⇠2,2, ⇠3,2, . . . , ⇠H,2, ⇠2,3, . . . ) is a sequence of martingale differences.
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Proof. We first prove by induction that

Vh,k(s
k

h
) � V ⇤

h
(sk

h
)� (H + 1� h)", 81  h  H + 1

by induction on h according to the fact that P ⇤
2 Bk (but not P 2 Bk). When h = H + 1, this inequality holds since both

sides equal to 0. We assume it holds for h+ 1 and we consider the case of h. Actually we have

Qh,k(s
k

h
) = r(sk

h
, ak

h
) + hP k(·|sk

h
, ak

h
), Vh+1,ki � r(sk

h
, ak

h
) + hP ⇤(·|sk

h
, ak

h
), Vh+1,ki

= r(sk
h
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h
) + hP (·|sk

h
, ak

h
), Vh+1,ki � hP (·|sk
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)� P ⇤(·|sk

h
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h
), Vh+1,k)i
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h
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h
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h
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h
), V ⇤
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h
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h
)� P ⇤(·|sk

h
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h
)k1kVh+1,kk1

� r(sk
h
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h
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h
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h
), V ⇤

h+1i � (H + 1� h)⇠ = Q⇤
h
(sk

h
, ak

h
)� (H + 1� h)⇠,

where in the third line we use the induction and in the last line we use the fact that kVh+1,kk1  H . This indicates that
Vh,k(skh) � V ⇤

h
(sk

h
)� (H +1� h)", which completes the induction at h. Hence we know that Vh,k(skh) � V ⇤

h
(sk

h
)� (H +

1� h)" holds for all 1  h  H + 1.

Therefore,

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  V1,k(s
k

1)� V ⇡k

1 (sk1) +H" .

Fix h 2 [H]. In what follows we bound Vh,k(skh)� V ⇡k

h
(sk

h
). By the definition of ⇡k, P k and ak

h
, we have

Vh,k(s
k

h
) = r(sk

h
, ak

h
) + hP k(·|sk

h
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h
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h
(sk

h
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h
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h
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h
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Hence,
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h
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h
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h
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h
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h
), Vh+1,ki+ hP (·|sk

h
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h
), Vh+1,k � V ⇡k

h+1i .

Therefore, by induction, noting that VH+1,k = 0, we get that

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1) 
H�1X

h=1

hP k(·|sk
h
, ak

h
)� P (·|sk

h
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h
), Vh+1,ki+
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h
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h
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Finally noticing that

hP̃ (·|sk
h
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h
)� P (·|sk

h
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h
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h
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h
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 hP̃ (·|sk
h
, ak

h
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h
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h
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we have

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1) 
H�1X

h=1

hP̃ (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh+1,ki+

H�1X
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2
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h
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h
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h
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h
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which completes the proof of this lemma.

Equipped with these two lemmas, we are ready to prove Theorem 4.
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Proof of Theorem 4. According to Lemma 15, we learn that P ⇤
2 Bk holds with probability at least 1� �. We next assume

P ⇤
2 Bk and bound the error V ⇤

1 (s
k

1)� V ⇡k

1 (sk1).

According to Lemma 16, we have

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  sup
P̃2Bk

H�1X

h=1

hP̃ (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki+

H�1X

h=1

⇠h+1,k +H2" , (24)

where

⇠h+1,k = hP (·|sk
h
, ak

h
), Vh+1,k � V ⇡k

h+1i �
�
Vh+1,k(s

k

h+1)� V ⇡k

h+1(s
k

h+1)
�
.

We let

Wk = sup
P̃2Bk

H�1X

h=1

hP̃ (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki,

and summing h from 1 to H in (24) we obtain the following bound on the regret up to horizon K:

RK =
KX

k=1

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1) 
KX

k=1

Wk +
KX
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H�1X
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⇠h+1,k +H2K"

We next bound
P

K

k=1 Wk. Actually we have
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h
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
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h
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h
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h
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,

and each term inside satisfies

sup
P̃2Bk

hP̃ (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki  diam(F̃t|Xt

)

where

F̃t =

(
f = fP : P 2 P,

tX

p=1

(f(Xp)� f
P̂t
(Xp))

2
 �k

)

We notice that Ft ⇢ F ⇢ B1(X , H). Hence we apply Lemma 9 and obtain that

KX

k=1

diam(F̃t|Xt
)  ↵+H(d ^K(H � 1)) + 2�K(H�1)

p
dK(H � 1),

where �K(H�1) = max1tK(H�1) diam(F̃t|Xt
). Thanks to the definition of F̃t, �K(H�1)  2

p
�K . Plugging this into

the previous display finishes the proof.

Moreover, we also have
P

K

k=1

P
H�1
h=1 ⇠h+1,k  H

p
2K(H � 1) log(1/�) holds with probability at least 1 � �. Hence

combine these two inequality together, we obtain that with probability at least 1� 2�, the following bound holds
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
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(sk
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H�1X
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 ↵+H(d ^K(H � 1)) + 4
p
d�KK(H � 1) +H

p
2K(H � 1) log(1/�) +H2K",

where we use ↵  1.
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E. Proof of Theorem 13

Here we will provide the formal regret analysis for Algorithm 3, which differs from Algorithm 1. By leveraging the linear
structures, we provide an independent proof of Theorem 13 using an analysis adapted from linear bandits.

The full proof is divided into five parts in the following five subsections respectively. In the first subsection, we decompose
the regret into the sum of bonuses assuming the Q-functions indeed are optimistic estimates. In the second subsection,
we discover some important properties of our algorithm. We provide an upper bound to the sum of bonuses in the third
subsection. In the fourth subsection, we will prove that the optimism holds with high probability by constructing a particular
martingale and showing that it concentrates, and in the final subsection, we will put together all the analysis to finish the
proof of upper bound of expected regret.

We say (h, k)  (h0, k0) if k < k0 or k = k0, h  h0. Thus,  stands for the lexicographic order with k being the variable
that takes priority. We say (h, k) < (h0, k0) if k < k0 or k = k0, h < h0.Let Fh,k be the filtration generated by the random
sample path {(sk

0

h0 , ak
0

h0 , rk
0

h0)}(h0,k0)(h,k).

E.1. Regret Analysis

The proof in this section is similar to Lemma 5. Throughout E.1 to E.3, we assume that ✓⇤ 2 Bk for all 1  k  K. And in
subsection E.4 we will prove that this event holds with high probability.

E.1.1. OPTIMISM

We will show by induction that Q⇤
h
(s, a)  Qh,k(s, a) for all (s, a), h and k. For h = H + 1, this inequality obviously

holds, since both sides equal to 0. Next suppose that this inequality holds for some h+ 1  H . As a result, we have

V ⇤
h+1(s) =

Q
[0,H]


max
a2A

Q⇤
h+1(s, a)

�

Q

[0,H]


max
a2A

Qh+1,k(s, a)

�
= Vh+1,k(s),

which indicates that

Q⇤
h
(s, a) = r(s, a) + P (·|s, a)>V ⇤

h+1  r(s, a) + P (·|s, a)>Vh+1,k

= r(s, a) +
dX

j=1

(✓⇤)jPj(·|s, a)
>Vh+1,k  r(s, a) + max

✓2Bk

2

4
dX

j=1

(✓)jPj(·|s, a)
>Vh+1,k

3

5

= Qh,k(s, a).

This completes the induction.

E.1.2. REGRET DECOMPOSITION

Let us denote ⇡k to be the stationary policy used in the k episode, and let

✓̄h,k(s, a) = arg max
✓2Bk

dX

j=1

(✓)jPj(·|s, a)
>Vh+1,k.

Using the fact that ⇡k(skh) = ak
h

and ✓⇤ 2 Bk and letting ⇠k
h+1 be

⇠k
h+1 := P (·|sk

h
, ak

h
)>(Vh+1,k � V ⇤

h+1)�
⇥
Vh+1,k(s

k

h+1)� V ⇤
h+1(s

k

h+1)
⇤
,
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we have

Vh,k(s
k

h
)� V ⇡k

h
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h
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⇤
,

where the first inequality uses the fact that ✓⇤, ✓h,k 2 Bk, the second inequality uses the Cauchy-Schwarz inequality and the
third inequality uses the definition of Bk.

Recall that Vh+1,k(s) = V ⇤
H+1(s) = 0 for any s 2 S . We apply the preceding inequality recursively and obtain

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  V1,k(s
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1)� V ⇡k

1 (sk1) (by optimism of value estimates)
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⇠k
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p
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h
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h
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⇤
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therefore the expected regret can be bounded by if we bound the expectation of

R̂(K) =
KX
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⇥
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1)� V ⇡k

1 (sk1)
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q⇥
P•(·|sk

h
, ak

h
)Vh+1,k

⇤>
M�1

k

⇥
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(25)

Moreover, it is easy to observe that
E
⇥
⇠k
h+1

��Fh,k

⇤
= 0,

therefore ⇠k
h+1 is a martingale difference sequence w.r.t. Fh,k. Since

0  V ⇤
h
(sk

h
), Vh,k(s

k

h
)  H and P (·|sk

h
, ak

h
) is a probability distribution over the state space,

we have |⇠k
h
|  H with probability 1. By the Azuma-Hoeffding inequality, with probability at least 1� �, the following

inequality holds
KX

k=1

HX

h=1

⇠k
h+1 

p
2H3K log(1/�). (26)

It remains to analyze the second term of (25), ie., the sum of bonus given by

2
KX

k=1

HX

h=1

p
�k ·
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P•(·|sk
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h
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⇥
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h
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h
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⇤
.

E.2. Some Properties of Algorithm 3

In this subsection we establish several useful properties of our algorithm, assuming that optimism holds throughout.
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E.2.1.

Note that

Mh,k = M1,1 +
X

(h0,k0)<(h,k)

h
P•(·|sk

0

h0 , ak
0

h0)Vh0+1,k0

i h
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lh,k =
q⇥
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⇥
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⇤
.

Denote by (h, k) + 1 the double index of the next time step after (h, k), that is (h+1, k) if h < H and (h, k+1) otherwise.
We can see {Mh,k} satisfies M1,k = MH+1,k�1 and also a recursive formula

M�1
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⇣
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⇥
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⇤ ⇥
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E.2.2.

Next, we derive an upper bound to the quantity
KX
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⇥
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we have

detM(h,k)+1 = detMh,k det
⇣
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This indicates that X
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Furthermore, since
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we have
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2 log(1 + l2
h0,k0) = 2 log detM(h,k)+1 � 2 log detM1,1.
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E.2.3.

Given the initial value M1,1 = H2dI , we have

tr(M(h,k)+1) = tr(M1,1) +
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where the last inequality uses Assumption 3 and the fact that
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0
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0
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Using the inequalities of arithmetic and geometric means, we get the following upper bound for the determinant of M(h,k)+1:

detM(h,k)+1 

✓
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which indicates that
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�
� log

�
(H2d)d

�
 d log(1 +HK). (27)

Hence we have
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E.3. Sum-of-Bonus Analysis

In this section, under the assumption that ✓⇤ 2 Bk for every k, we establish an upper bound for the following sum-of-bonus
term
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where we denote Mk = M1,k for simplicity. We let
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h=1

uh,k  2
p
�K ·

KX

k=1

HX

h=1

min{1, uh,k}

 2
p

HK�K ·

vuut
KX

k=1

HX

h=1

min{1, u2
h,k

}  4
p
HK�K ·

vuut
KX

k=1

HX

h=1

log(1 + u2
h,k

)

(29)
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where the third inequality uses the Cauchy-Schwarz inequality. Next we notice that

Mk+1 = Mk +
HX

h=1

⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤> ⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤
.

Hence we have

det(Mk+1) = det(Mk) · det

 
I +

HX

h=1

M�1/2
k

⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤> ⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤
M�1/2

k

!
.

We further notice that every eigenvalue of the matrix

I +
HX

h=1

M�1/2
k

⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤> ⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤
M�1/2

k

is at least 1, and we have the following bound of its trace:

tr

 
HX

h=1

M�1/2
k

⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤> ⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤
M�1/2

k

!

=
HX

h=1

⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤>
M�1

k

⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤
=

HX

h=1

u2
h,k

.

This indicates that

det

 
I +

HX

h=1

M�1/2
k

⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤> ⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤
M�1/2

k

!

� 1 + tr

 
I +

HX

h=1

M�1/2
k

⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤> ⇥
P•(·|skh, a

k

h
)Vh+1,k

⇤
M�1/2

k

!

= 1 +
HX

h=1

u2
h,k

,

where the first inequality follows from the following fact:
Q

i
(1+wi) � 1+

P
i
wi provided wi � 0. Combining the above

inequality with the following inequality

1 +
HX

h=1

u2
h,k

=

P
H

h=1(1 +Hu2
h,k

)

H
�

HY

h=1

(1 +Hu2
h,k

)1/H �
HY

h=1

(1 + u2
h,k

)1/H ,

we obtain that
HX

h=1

log(1 + u2
h,k

)  H log

 
1 +

HX

h=1

u2
h,k

!
 H det(Mk+1)�H det(Mk).

Therefore, we have

2
KX

k=1

HX

h=1

p
�k ·

q⇥
P•(·|sk

h
, ak

h
)Vh+1,k

⇤>
M�1

k

⇥
P•(·|sk

h
, ak

h
)Vh+1,k

⇤

 4
p
HK�K ·

vuut
KX

k=1

HX

h=1

log(1 + u2
h,h

)

 4
p
HK�K ·

vuut
KX

k=1

H det(Mk+1)�H det(Mk)

 4
p
HK�K ·

q
H det(M(H,k)+1)�H det(M1,1)

 4
p
H2dK�K log(1 +HK),

where the last inequality uses (27).
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E.4. Confidence Set of Value Target Regression

We adopt the result in (Abbasi-Yadkori et al., 2011). For t = H(k � 1) + h, we choose

� = H2d,

V t = Mh,k,

S = C✓,

R = H,

L =
p

H2d.

Then we have
✓h,k = (XT

1:tX1:t + �I)�1X1:tY1:t = ✓̂t, and k✓⇤k2  C✓ = S.

Moreover, if we since |⌘t| = |Yt � hXt, ✓⇤i| = |Yh,k �P (·|sk
h
, ak

h
)TVh+1,k|  H , ⌘t is H-subgaussian. We can also verify

that

kXtk
2
2 =

dX

i=1

�
Pi(·|s

k

h
, ak

h
)Vh+1,k

�2
 H2d = L2.

Hence according to Theorem 2 in (Abbasi-Yadkori et al., 2011), we obtain that with probability at least 1 � �, for any
(h, k)  (H,K), the following inequality holds:

k✓⇤ � ✓h,kkMh,k
 H

s

d log

✓
1 +Hk ·H2d

�

◆
+ C✓H

p

d

Therefore, if we choose

�k =

 
H

s

d log

✓
1 +Hk ·H2d

�

◆
+ C✓H

p

d

!2

,

then we will have
✓⇤ 2 Bh,k

for all (h, k)  (H,K) with probability at least 1� �.

E.5. Expected Regret Analysis

According to Section E.4, we have with probability at least 1� � that ✓⇤ 2 Bk for all 1  k  K. When this event happens,
we enable the analysis of Sections E.1-E.3. We combine the error bounds (26) and (29) and apply them into the regret bound
(25). It follows that, if T = KN ,

R(T )  2
p

H3K log(1/�) + 4
p
H2dK�K log(1 +HK)

= 2
p

H3K log

✓
1

�

◆
+ 4H2d

p
K log(1 +HK) ·

 s

log

✓
1 +H3Kd

�

◆
+ C✓

!

 6H2d
p

K

✓
C✓

p
log(1 +HK) + log

✓
1 +H3Kd

�

◆◆

with probability at least 1� 2�. Note the trivial upper bound R(K)  HK. Therefore, by letting � = 1/K and noticing
T = HK, we get

E [R(T )]  (1� 2�) · 6H2d
p

K

✓
C✓

p
log(1 +HK) + log

✓
1 +H3Kd

�

◆◆
+ 2� ·HK

 6H2d
p

K ·

✓
C✓

p
log(1 +HK) + log

✓
1 +H3Kd

�

◆◆

= Õ(C✓ ·H
2d
p

K) = Õ(C✓ · d
p

H3T ).

Thus we have completed the proof of Theorem 13.
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F. Implementation

F.1. Analysis of Implemented Confidence Bounds

In the implementation of UCRL-VTR used in Section 6, we used different confidence intervals then the ones stated in the
paper. The confidence intervals used in our implementation are the ones introduced in (Abbasi-Yadkori et al., 2011). These
confidence intervals are much tighter in the linear setting than the ones introduced in Section 3 and thus have better practical
performance. The purpose of this section is to formally introduce the confidence intervals used in our implementation of
UCRL-VTR as well as show how these confidence intervals were adapted from the linear bandit setting to the linear MDP
setting.

F.1.1. LINEAR MDP ASSUMPTIONS

For our implementation of UCRL-VTR we used different confidence then was introduced in the paper. These are the tighter
confidence bounds from the seminal work done by (Abbasi-Yadkori et al., 2011) and further expanded upon in Chapter 20 of
(Lattimore & Szepesvári, 2020). Now we will state some assumptions in the MDP setting, then we will state the equivalent
assumptions from the linear bandit setting, and lastly we will make the connections between the two that allow us to use the
confidence bounds from the linear bandit setting in the RL setting.

1. P ⇤(s0 | s, a) =
P

d

i=1(✓
MDP
⇤ )iPi(s0 | s, a)

2. sk
h+1 ⇠ P ⇤(· | sk

h
, ak

h
)

3. C
MDP
t

= {✓MDP
2 Rd : k✓MDP

� ✓̂MDP
t
kMk

 �t}

where t is defined in the table of A.4. Also note that in this section (·)⇤ denotes the true parameter or model, (·)MDP denotes
something derived or used in the linear MDP setting, and (·)LIN denotes something derived or used in the linear bandit
setting. Now, under 1-3 of F.1.1 we hope to construct a confidence set CMDP

t
such that

✓MDP
2

1\

t=1

C
MDP
t

with high probability. Now the choice of how to choose both C
MDP
t

and �t comes from the linear bandit literature. We will
introduce the necessary theorems and assumptions to derive both C

LIN
t

and �t in the linear bandit setting and then adapt the
results from the linear bandit setting to the linear MDP setting.

F.1.2. TIGHTER CONFIDENCE BOUNDS FOR LINEAR BANDITS

The following results are introduced in the paper by (Abbasi-Yadkori et al., 2011) and are further explained in Chapter 20 of
the book by (Lattimore & Szepesvári, 2020). In this section, we will introduce the theorems and lemmas that allows us
to derive tighter confidence intervals for the linear bandit setting. Then we will carefully adapt the confidence intervals
to the linear bandit setting. Now supposed a bandit algorithm has chosen actions A1, ..., At 2 Rd and received rewards
XLIN

1 , ..., XLIN
t

with XLIN
s

= hAt, ✓LIN
⇤ i+ ⌘s where ⌘s is some zero mean noise. The least squares estimator of ✓LIN

⇤ is the
minimizer of the following loss function

Lt(✓
LIN) =

tX

s=1

(XLIN
s
� hAt, ✓

LIN
i)2 + �k✓LIN

k
2
2

where � > 0 is the regularizer. This loss function is minimized by

✓̂LIN
t

= W�1
t

tX

s=1

XLIN
s

As with Wt = �I +
tX

s=1

AsA
>
s

notice how this linear bandit problem is very similar to the linear MDP problem introduced in section 3 of our paper. In our
linear MDP setting, it is convenient to think of M and W as serving equivalent purposes (storing rank one updates) thus
it is also convenient to think of At and XMDP

t
as serving equivalent purposes (the features by which we use to make our

predictions), where XMDP
t

is defined in section 3 of our paper with some added notation to distinguish it from the XLIN
t

used
here in the linear bandit setting. We will now build up some intuition by making some simplifying assumptions.
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1. No regularization: � = 0 and Wt is invertible.

2. Independent subgaussian noise: (⌘s)s are independent and �-subgaussian

3. Fixed Design: A1, ..., At are deterministically chosen without the knowledge of XLIN
1 , ..., XLIN

t

finally it is also convenient to think of XLIN
t

and Vt+1(st+1) as serving equivalent purposes (the target of our predictions).
Thus the statements we prove in the linear bandit setting can be easily adapted to the linear MDP setting. While none of the
assumptions stated above is plausible in the bandit setting, the simplifications eases the analysis and provides insight.

Comparing ✓LIN
⇤ and ✓̂LIN

t
in the direction x 2 Rd, we have

h✓̂LIN
t
� ✓LIN

⇤ , xi =

*
x,W�1

t

tX

s=1

AsX
LIN
s
� ✓LIN

⇤

+
=

*
x,W�1

t

tX

s=1

As(A
>
s
✓LIN
⇤ + ⌘s)� ✓

LIN
⇤

+

=

*
x,W�1

t

tX

s=1

As⌘s

+
=

tX

s=1

hx,W�1
t

Asi⌘s

Since (⌘s)s are independent and �-subgaussian, by Lemma 5.4 and Theorem 5.3 (need to be stated),

P

0

@h✓̂LIN
t
� ✓LIN

⇤ , xi �

vuut2�2

tX

s=1

hx,W�1
t

Asi
2 log

✓
1

�

◆1

A  �

A little linear algebra shows that
P

t

s=1hx,W
�1
t

Asi
2 = kxk2

W
�1
t

and so,

P
 
h✓̂LIN

t
� ✓LIN

⇤ , xi �

s

2�2kxk2
W

�1
t

log

✓
1

�

◆!
 � (30)

We now remove the limiting assumptions we stated above and use the newly stated assumptions for the rest of this section

1. There exists a ✓LIN
⇤ 2 Rd such that XLIN

t
= h✓LIN

⇤ , Ati+ ⌘t for all t � 1.

2. The noise is conditionally �-subgaussian:

for all ↵ 2 R and t � 1, E[exp(↵⌘t) | Ft�1]  exp

✓
↵�2

2

◆
a.s.

where Ft�1 is such that A1, XLIN
1 , ..., At�1, XLIN

t�1 are Ft�1-measurable.

3. In addition, we now assume � > 0.

The inclusion of At in the definition of Ft�1 allows the noise to depend on past choices, including the most recent action.
Since we want exponentially decaying tail probabilities, one is tempted to try the Cramer-Chernoff method:

P(k✓̂LIN
t
� ✓LIN

⇤ k
2
Wt
� u2)  inf

↵>0
E
h
exp

⇣
↵k✓̂LIN

t
� ✓LIN

⇤ k
2
Wt
� ↵u2

⌘i
.

Sadly, we do not know how to bound this expectation. Can we still somehow use the Cramer–Chernoff method? We take
inspiration from looking at the special case of � = 0 one last time, assuming that Wt =

P
t

s=1 AsA>
s

is invertible. Let

St =
tX

s=1

⌘sAs

Recall that ✓̂LIN
t

= W�1
t

P
t

s=1 X
LIN
s

As = ✓LIN
⇤ +W�1

t
St. Hence,

1

2
k✓̂LIN

t
� ✓LIN

⇤ k
2
Wt

=
1

2
kStk

2
W

�1
t

= max
x2Rd

✓
hx, Sti �

1

2
kxk2

Wt

◆
.

The next lemma shows that the exponential of the term inside the maximum is a supermartingale even when � � 0.
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Lemma 17. For all x 2 Rd the process Dt(x) = exp(hx, Sti �
1
2kxkW 2

t
) is an F-adapted non-negative supermartingale

with D0(x)  1.

The proof for this Lemma can be found in Chapter 20 of the book by (Lattimore & Szepesvári, 2020). For simplicity, consider
now again the case when � = 0. Combining the lemma and the linearisation idea almost works. The Cramer–Chernoff
method leads to

P
✓
1

2
k✓̂LIN

t
� ✓LIN

⇤ k
2
Wt
� log(1/�)

◆
= P

✓
exp

✓
max
x2Rd

✓
hx, Sti �

1

2
kxk2

Wt

◆◆
� log(1/�)

◆
(31)

 �E

exp

✓
max
x2Rd

✓
hx, Sti �

1

2
kxk2

Wt

◆◆�
= �E


max
x2Rd

Dt(x)

�
(32)

Now Lemma 17 shows that E[Dt(x)]  1. Now using Laplace’s approximation we write

max
x

Dt(x) ⇡

Z

Rd

Dt(x)dh(x),

where h is some measure on Rd chosen so that the integral can be calculated in closed form. This is not a requirement of
the method, but it does make the argument shorter. The main benefit of replacing the maximum with an integral is that we
obtain the following lemma
Lemma 18. Let h be a probability measure on Rd; then; D̄t =

R
Rd Dt(x)dh(x) is an F-adapted non-negative supermartin-

gale with D̄0 = 1.

The proof of Lemma 18 can, again, be found in Chapter 20 of the book by (Lattimore & Szepesvári, 2020). Now the
following theorem is the key result from which the confidence set will be derived.
Theorem 19. For all � > 0, and � 2 (0, 1)

P
✓
exists t 2 N : kStk

2
W

�1
t

� 2�2 log

✓
1

�

◆
+ log

✓
detWt

�d

◆◆
 �

Furthermore, if k✓LIN
⇤ k2  m2, then P(exists t 2 N+ : ✓LIN

⇤ /2 C
LIN
t

)  � with

C
LIN
t

=

(
✓ 2 Rd : k✓̂LIN

t�1 � ✓kWt�1 < m2

p

�+

s

2�2 log

✓
1

�

◆
+ log

✓
Wt�1

�d

◆)
.

The proof of Theorem 19 can be found in Chapter 20 of the book by (Lattimore & Szepesvári, 2020).

F.1.3. ADAPTATION OF THE CONFIDENCE BOUNDS TO OUR LINEAR MDP SETTING

Now with the Lemmas and Theorems introduced in the previous section we are ready to derive the confidence bounds used
in our implementation of UCRL-VTR. Now using the notation from the linear bandit setting we set

1. The target XMDP
t

=
R
j
Vt(s0)Pj(ds0 | st, at)

2. Yt = Vt(st+1)

3. Ft�1 = �(s1, a1, ..., st�1, at�1), which just means the filtration is set to be the sigma-algebra generated by all past
states and actions observed.

4. ⌘t = Yt � hXMDP
t

, ✓MDP
⇤ i = Vt(st+1)�

R
j
Vt(s0)P ⇤

j
(ds0 | st, at), since ✓MDP

⇤ is the true model of the MDP.

5. Mt in the linear MDP setting is defined equivalently to Wt in the linear bandit setting, i.e. they are both the sums of a
regularizer term and a bunch of rank one updates.

it can be seen that our the noise in our system ⌘t has zero mean E[⌘t | Ft�1] = 0 finally the noise in our system has variance
H/2 thus our system in H/2-subgaussian.
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Lemma 20. (Hoeffding’s lemma) Let Z = Z � E[Z] be a real centered random variable such that Z 2 [a, b] almost surely.
Then E[exp(↵Z)]  exp(↵2 (b�a)2

8 ) for any ↵ 2 R or Z is subgaussian with variance �2 = (b�a)2

4 .

Proof Define  (↵) = logE[exp(↵Z)] we can then compute

 0(↵) =
E[Z exp(↵Z)]

E[exp (↵Z)]
,  00(↵) =

E[Z2 exp(↵Z)]

E[exp (↵Z)]
�

✓
E[Z exp(↵Z)]

E[exp (↵Z)]

◆2

Thus  00(↵) can be interpreted as the variance of the random variable Z under the probability measure dQ = exp(↵Z)
E[exp(↵Z)]dP,

but since Z 2 [a, b] almost surely, we have, under any probability

var(Z) = var(Z �
a+ b

2
)  E

"✓
Z �

a+ b

2

◆2
#


✓
b� a

4

◆2

The fundamental theorem of calculus yields

 (↵) =

Z
s

0

Z
µ

0
 (⇢)d⇢dµ =

s2(b� a)2

8

using  (0) = log 1 = 0 and  0(0) = E[Z] = 0.

Now using Lemma 20 and the fact that Yt is bounded in the range of [0, H], E[Yt] = hXMDP
t

, ✓MDP
⇤ i, and

⌘t = Yt � hXMDP
t

, ✓MDP
⇤ i = Yt � E[Yt], the noise ⌘t in our linear MDP setting is H/2-subgaussian. This result

is also stated in a proof from A.4.

Putting this all together we can derive the tighter confidence set for UCRL-VTR in the linear setting,

C
MDP
t

=

(
✓ 2 Rd : k✓̂MDP

t�1 � ✓kMt�1 < m2

p

�+
H

2

s

2 log

✓
1

�

◆
+ log

✓
Mt�1

�d

◆)
.

where here in the linear MDP setting Mt replaces Wt from the linear bandit setting and k✓MDP
⇤ k2  m2. The justification of

using these bounds in the linear MDP setting follow exactly from the justification given above for using these bounds in the
linear bandit setting.

F.2. UCRL-VTR

In the proceeding subsections we discuss the implementation of the algorithms studied in Section 6 of the paper. The first
algorithm we present is the algorithm used to generate the results for UCRL-VTR.
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Algorithm 4 UCRL-VTR with Tighter Confidence Bounds
1: Input: MDP, d,H, T = KH;
2: Initialize: M1,1  I , w1,1  0 2 Rd⇥1, ✓1  M�1

1,1w1,1 for 1  h  H , d1 = |S|⇥ |A|;
3: Initialize: �  1/K, and for 1  k  K,
4: Compute Q-function Qh,1 using ✓1,1 according to (3);
5: for k = 1 : K do

6: Obtain initial state sk1 for episode k;
7: for h = 1 : H do

8: Choose action greedily by
ak
h
= argmax

a2A
Qh,k(s

k

h
, a)

and observe the next state sk
h+1.

9: Compute the predicted value vector: . Evaluate the expected value of next state

Xh,k  E• [Vh+1,k(s)|s
k

h
, ak

h
] =

X

s2S
Vh+1,k(s) · P•(s|skh, a

k

h
).

10: yh,k  Vh+1,k(skh+1) . Update regression parameters
11: Mh+1,k  Mh,k +Xh,kX>

h,k

12: wh+1,k  wh,k + yh,k ·Xh,k

13: end for

14: Update at the end of episode: . Update Model Parameters

M1,k+1  MH+1,k,

w1,k+1  wH+1,k,

✓k+1  M�1
1,k+1w1,k+1;

15: Compute Qh,k+1 for h = H, . . . , 1, using ✓k+1 according to (33) using

p
�h,k  

p
d1 +

H � h+ 1

2

s

2 log

✓
1

�

◆
+ log det(M1,k+1);

. Computing Q functions
16: end for

The iterative Q-update for Algorithm 4 is

Vh+1,k(s) = 0

Qh,k(s, a) = r(s, a) +X>
h,k
✓k +

p
�h,k

q
X>

h,k
M�1

1,k+1Xh,k

Vh,k(s) = max
a

Qh,k(s, a)

(33)

The choice of the confidence bounds used in Algorithm 4 comes from the tight bounds derived in (Abbasi-Yadkori et al.,
2011) for linear bandits and further expanded upon in Chapter 20 of (Lattimore & Szepesvári, 2020). The details of which
are shown and stated in F.1. We slightly tighten the values for the noise at each stage by using the fact that for each stage in
the horizon, h 2 [H], the value V k

h
(·) is capped as to never be greater than H � h+ 1. The appearance of the

p
d1 comes

from the fact that k✓⇤k2 
p
d1 for all ✓⇤ 2 Rd in the tabular setting since ✓⇤ in the tabular setting is equal to the true model

of the environment.

F.3. EGRL-VTR

In this section we discuss the algorithm EGRL-VTR. This algorithm is very similar to UCRL-VTR expect it performs
"-greedy value iteration instead of optimistic value iteration and acts "-greedy with respect to Qh,k.
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Algorithm 5 EGRL-VTR
1: Input: MDP, d,H, T = KH, " > 0;
2: Initialize: M1,1  I , w1,1  0 2 Rd⇥1, ✓1  M�1

1,1w1,1 for 1  h  H;
3: Compute Q-function Qh,1 using ✓1,1 according to (34);
4: for k = 1 : K do

5: Obtain initial state sk1 for episode k;
6: for h = 1 : H do

7: With probability 1� " do
ak
h
= argmax

a2A
Qh,k(s

k

h
, a)

else pick a uniform random action ak
h
2 A. Observe the next state sk

h+1.
8: Compute the predicted value vector: . Evaluate the expected value of next state

Xh,k  E• [Vh+1,k(s)|s
k

h
, ak

h
] =

X

s2S
Vh+1,k(s) · P•(s|skh, a

k

h
).

9: yh,k  Vh+1,k(skh+1) . Update regression parameters
10: Mh+1,k  Mh,k +Xh,kX>

h,k

11: wh+1,k  wh,k + yh,k ·Xh,k

12: end for

13: Update at the end of episode: . Update Model Parameters

M1,k+1  MH+1,k,

w1,k+1  wH+1,k,

✓k+1  M�1
1,k+1w1,k+1;

14: Compute Qh,k+1 for h = H, . . . , 1, using ✓k+1 according to (34) . Computing Q functions
15: end for

The iterative value update for EGRL-VTR is

Vh+1,k(s) = 0

Qh,k(s, a) = r(s, a) +X>
h,k
✓k

Vh,k(s) = (1� ")⇧[0,H] max
a

Qh,k(s, a) +
"

|A|

X

a2A
Qh,k(s, a)

(34)

F.4. EG-Frequency

In this section we discuss the algorithm EG-Frequency. This algorithm is the "-greedy version of UC-MatrixRL (Yang &
Wang, 2019a).
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Algorithm 6 EG-Frequency

1: Input: MDP, Features � : S ⇥A! R|S||A| and  : S ! R|S|, " > 0, and the total number of episodes K;
2: Initialize: A1  I 2 R|S||A|⇥|S||A|, M1  0 2 R|S||A|⇥|S|, and K  

P
s02S  (s

0) (s0)>;
3: for k = 1 : K do

4: Let Qh,k be given in (35) using Mk;
5: for h = 1 : H do

6: Let the current state be sk
h

;
7: With probability (1�") play action ak

h
= argmaxa2A Qh,k(skh, a) else pick a uniform random action ak

h
2 A.

8: Record the next state sk
h+1

9: end for

10: Ak+1  Ak +
P

hH
�(sk

h
, ak

h
)�(sk

h
, ak

h
)>

11: Mk+1  Mk +A�1
k+1

P
hH

�(sk
h
, ak

h
) (sk

h+1)
>K�1

 

12: end for

The iterative Q-update for EG-Frequency is

Qh+1,k(s, a) = 0 and

Qh,k(s, a) = r(s, a) + �(s, a)>Mk 
>Vh+1,k

Vh,k = (1� ")⇧[0,H] max
a

Qh,k(s, a) +
"

|A|

X

a2A
Qh,k(s, a)

(35)

Note that is a |S|⇥ |S| whose rows are the features  (s0) and� is a |S||A|⇥ |S||A| whose rows are the features �(s, a).
In the tabular RL setting both  and � are the identity matrix which is what we used in our numerical experiments. In
the tabular RL setting, EG-Frequency stores the counts of the number of times it transitioned to next state s0 from the
state-action pair (s, a) and fits the estimated model Mk accordingly.

F.5. Futher Implementation Notes

In this section, we include some further details on how we implemented Algorithms 4, 5, and 6. All code was written in
Python 3 and used the Numpy and Scipy libraries. All plots were generated using MatPlotLib. In Algorithm 4, Numpy’s
logdet function was used to calculate the determinate in step 15 for numerical stability purposes. No matrix inversion was
performed in our code, instead a Sherman-Morrison update was performed for each matrix in which a matrix inversion is
performed at each (k, h) in order to save on computation. To read more about the Sherman Morrison update in the context
of RL, we refer to the reader to Eqn (9.22) of (Sutton & Barto, 2018). When computing the weighted L1-norm, we added a
small constant to each summation in the denominator to avoid dividing by zero. Finally, when computing UC-MatrixRL we
also used the self-normalize bounds introduced in the beginning of this section. Some pseudocode for using self-normalized
bounds with UC-MatrixRL can be found in step 5 of Alg 7.
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G. Mixture Model

In this section, we introduce, analyze, and evaluate a Linear model-based RL algorithm that used both the canonical model
and the VTR model for planning. We call this algorithm UCRL-MIX.

G.1. UCRL-MIX

Below a meta-algorithm for UCRL-MIX

Algorithm 7 UCRL-MIX
1: Compute Algorithm 4 and UC-MatrixRL (Yang & Wang, 2019a) simultaneously.
2: At end of episode k, perform value iteration and set VH+1,k(s) = 0.
3: for h = H : 1 do

4: for s 2 |S| and a 2 |A| do

5: Compute the confidence set bonuses as follows

BV TR

h,k
 

p
d1 +

H � h+ 1

2

s

2 log

✓
2

�

◆
+ log det(M1,k+1);

BMAT

h,k
 

p
|S||A|+

H � h+ 1

2

s

2 log

✓
2

�

◆
+ log det(Ak+1);

6: if BV TR

h,k

q
X>

h,k
M�1

1,k+1Xh,k  BMAT

h,k

q
�>(s, a)A�1

n �(s, a) then

7: Perform one step of value iteration using the VTR model as follows: Qh,k(s, a) = r(s, a) + X>
h,k
✓k +

p
�h,k

q
X>

h,k
M�1

1,k+1Xh,k

8: else

9: Update Qh,k(s, a) according to Equation 8 (Yang & Wang, 2019a) using the UC-MatrixRL model Ak. Note
that in (Yang & Wang, 2019a) they use n to denote the current episode, in our paper we use k to denote the
current episode.

10: end if

11: Vh,k(s) = maxa Qh,k(s, a)
12: end for

13: end for

We are now using multiple models instead of a single model, we must adjust our confidence sets accordingly. By using
a union bound we replace � with �/2 for our confidence parameter. This updated confidence parameter changes the term
inside the logarithm. We now have log(2/�) where as before we had log(1/�).

G.2. Numerical Results

We will include the cumulative regret and the weighted L1 norm of UCRL-MIX on the RiverSwim environment as in Section
6. We also include a bar graph of the relative frequency with which the algorithm used the VTR-model for planning and the
canonical model for planning.
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Figure 5. In the plots for the model error we include model error for both the VTR-model and the canonical model. Even though only one
is used during planning both are updated at the end of each episode.

If we compare the results of Figure 5 with the results of Figure 2 from Section 6.2 we see that the cumulative regret of
UCRL-MIX is almost identical to the cumulative regret of UCRL-VTR. The model errors of both the VTR and the canonical
models are almost identical to the model errors of UCRL-VTR and UC-MatrixRL respectively.

Figure 6. UCRL-MIX rarely, if ever, chooses the canonical model for planning on the RiverSwim environments.

From Figure 6, we see that on the RiverSwim environment, UCRL-MIX almost always uses the VTR-model for planning.
We calculate this frequency by counting the number of times Step 7 of Alg 7 was observed up until episode k and by
counting the number of times Step 9 of Alg 7 was observed up until episode k. We then divide these counts by the sum of
the counts to get a percentage. We believe the reason the algorithm overwhelming chose the VTR-model was due to the fact
that the confidence intervals for the VTR-model shrink much faster than the confidence intervals for the canonical model.
The canonical model is forced to explore much longer than the VTR-model as its objective is to learn a globally optimal
model rather than a model that yields high reward. Thus, the canonical model is forced to explore all state-action-next state
tuples, even ones that do not yield high reward, in order to meet its objective of learning a globally optimal model while the
VTR-model is only forced to explore state-action-next state tuples that fall in-line with its objective of accumulating high
reward. The set of all state-action-next state tuples is much larger then the set of state-action-next state tuples that yield
high reward which means the confidence intervals for the canonical model shrink slower than the confidence sets of the
VTR-model on the RiverSwim environment.


