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Abstract
The goal of Sparse Convex Optimization is to
optimize a convex function f under a sparsity
constraint s ≤ s∗γ, where s∗ is the target num-
ber of non-zero entries in a feasible solution
(sparsity) and γ ≥ 1 is an approximation factor.
There has been a lot of work to analyze the spar-
sity guarantees of various algorithms (LASSO,
Orthogonal Matching Pursuit (OMP), Iterative
Hard Thresholding (IHT)) in terms of the Re-
stricted Condition Number κ. The best known
algorithms guarantee to find an approximate solu-
tion of value f(x∗) + ε with the sparsity bound of
γ = O

(
κmin

{
log f(x0)−f(x∗)

ε , κ
})

, where x∗

is the target solution. We present a new Adaptively
Regularized Hard Thresholding (ARHT) algo-
rithm that makes significant progress on this prob-
lem by bringing the bound down to γ = O(κ),
which has been shown to be tight for a general
class of algorithms including LASSO, OMP, and
IHT. This is achieved without significant sacri-
fice in the runtime efficiency compared to the
fastest known algorithms. We also provide a new
analysis of OMP with Replacement (OMPR) for
general f , under the condition s > s∗ κ

2

4 , which
yields Compressed Sensing bounds under the Re-
stricted Isometry Property (RIP). When compared
to other Compressed Sensing approaches, it has
the advantage of providing a strong tradeoff be-
tween the RIP condition and the solution sparsity,
while working for any general function f that
meets the RIP condition.

1. Introduction
Sparse Convex Optimization is the problem of optimizing a
convex objective, while constraining the sparsity of the so-
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lution (its number of non-zero entries). Variants and special
cases of this problem have been studied for many years, and
there have been countless applications in Machine Learning,
Signal Processing, and Statistics. In Machine Learning it
is used to regularize models by enforcing parameter spar-
sity, since a sparse set of parameters often leads to better
model generalization. Furthermore, in a lot of large scale
applications the number of parameters of a trained model
is a significant factor in computational efficiency, thus im-
proved sparsity can lead to improved time and memory
performance. In applied statistics, a single extra feature
translates to a real cost from increasing the number of sam-
ples. In Compressed Sensing, finding a sparse solution to
a Linear Regression problem can be used to significantly
reduce the sample size for the recovery of a target signal.
In the context of these applications, decreasing sparsity by
even a small amount while not increasing the accuracy can
have a significant impact.

Sparse Optimization Given a function f : Rn → R
and any s∗-sparse (unknown) target solution x∗, the Sparse
Optimization problem is to find an s-sparse solution x, i.e.
a solution with at most s non-zero entries, such that f(x) ≤
f(x∗) + ε and s ≤ s∗γ, where ε > 0 is a desired accuracy
and γ ≥ 1 is an approximation factor for the target sparsity.
Even if f is a convex function, the sparsity constraint makes
this problem non-convex, and it has been shown that it
is an intractable problem, even when γ = O

(
2log

1−δ n
)

and f is the Linear Regression objective (Natarajan, 1995;
Foster et al., 2015). However, this worst-case behavior is not
observed in practice, and so a large body of work has been
devoted to the analysis of algorithms under the assumption

that the restricted condition number κs+s∗ =
ρ+
s+s∗

ρ−
s+s∗

(or

just κ = ρ+

ρ− ) of f is bounded (Natarajan, 1995; Shalev-
Shwartz et al., 2010; Zhang, 2011; Bahmani et al., 2013;
Liu et al., 2014; Jain et al., 2014; Yuan et al., 2016; Shen &
Li, 2017a;b; Jain et al., 2014; Somani et al., 2018). Note:
Here, ρ+s+s∗ is the maximum smoothness constant of any
restriction of f on an (s+ s∗)-sparse subset of coordinates
and ρ−s+s∗ is the minimum strong convexity constant of any
restriction of f on an (s+ s∗)-sparse subset of coordinates.

The first algorithm for this problem, often called Orthogo-
nal Matching Pursuit (OMP) or Greedy, was analyzed by
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(Natarajan, 1995) for Linear Regression, and subsequently
for general f by (Shalev-Shwartz et al., 2010), obtaining
the guarantee that the sparsity of the returned solution is
O
(
s∗κ log f(x0)−f(x∗)

ε

)
1. In applications where having

low sparsity is crucial, the dependence of sparsity on the
required accuracy ε is undesirable. The question of whether
this dependence can be removed was answered positively
(Shalev-Shwartz et al., 2010; Jain et al., 2014) giving a spar-
sity guarantee ofO(s∗κ2). As remarked in (Shalev-Shwartz
et al., 2010), this bound sacrifices the linear dependence on
κ, while removing the dependence on ε and f(x0)− f(x∗).

Since then, there has been some work on improving these
results by introducing non-trivial assumptions, such as the
target solution x∗ being close to globally optimal. More
specifically, (Zhang, 2011) defines the Restricted Gradient
Optimal Constant (RGOC) at level s, ζs (or just ζ) as the
`2 norm of the top-s elements in ∇f(x∗) and analyzes an
algorithm that gives sparsity s = O (s∗κ log (s∗κ)), and
such that f(x) ≤ f(x∗) +O(ζ2/ρ−). (Somani et al., 2018)
strengthens this bound to f(x) ≤ f(x∗) +O(ζ2/ρ+) with
sparsity s = O (s∗κ log κ). However, this means that f(x)
might be much larger than f(x∗) + ε in general. To the
best of our knowledge, no improvement has been made over
the O

(
s∗min

{
κ f(x

0)−f(x∗)
ε , κ2

})
bound in the general

case.

Another line of work studies a maximization version of the
sparse convex optimization problem as well as its gener-
alizations for matroid constraints (Altschuler et al., 2016;
Elenberg et al., 2017; Chen et al., 2018).

Sparse Solution and Support Recovery Often, as is the
case in Compressed Sensing, one needs a guarantee on
the closeness of the solution x to the target solution x∗

in absolute terms, rather than in terms of the value of f .
The goal is usually either to recover (a superset of) the
target support, or to ensure that the returned solution is
close to the target solution in `2 norm. The results for
this problem either assume a constant upper bound on the
Restricted Isometry Property (RIP) constant δr := κr−1

κr+1 for
some r (RIP-based recovery), or that x∗ is close to being
a global optimum (RIP-free recovery). This problem has
been extensively studied and is an active research area in
the vast Compressed Sensing literature. See also the survey
by (Boche et al., 2015).

In the seminal papers of (Candes & Tao, 2005; Candes et al.,
2006; Donoho, 2006; Candes, 2008) it was shown that for
the Linear Regression problem when δ2s∗ <

√
2−1 ≈ 0.41,

the LASSO algorithm (Tibshirani, 1996) can recover a so-
lution with ‖x− x∗‖22 ≤ Cf(x∗), where C is a constant

1Even though (Natarajan, 1995) states a less general result, this
is what is implicitly proven.

depending only on δ2s∗ and f(x∗) = 1
2 ‖Ax

∗ − b‖22 is the
error of the target solution2. Since then, a multitude of re-
sults of similar flavor have appeared, either giving related
guarantees for the LASSO algorithm while improving the
RIP upper bound (Foucart & Lai, 2009; Cai et al., 2009;
Foucart, 2010; Cai et al., 2010; Mo & Li, 2011; Anders-
son & Strömberg, 2014) which culminate in a bound of
δ2s∗ < 0.6248, or showing that similar guarantees can
be obtained by greedy algorithms under more restricted
RIP conditions, but that are typically faster than LASSO
(Needell & Vershynin, 2009; 2010; Needell & Tropp, 2009;
Blumensath & Davies, 2009; Jain et al., 2011; Foucart, 2011;
2012). See also the comprehensive surveys (Foucart &
Rauhut, 2017; Mousavi et al., 2019).

(Needell & Tropp, 2009) presents a greedy algorithm called
CoSaMP and shows that for Linear Regression it achieves a
bound in the form of (Candes, 2008) while having a more ef-
ficient implementation. Their method works for the more re-
stricted RIP upper bound of δ2s∗ < 0.025, or δ4s∗ < 0.4782
as improved by (Foucart & Rauhut, 2017). (Blumensath &
Davies, 2009) proves that another greedy algorithm called
Iterative Hard Thresholding (IHT) achieves a similar bound
to that of CoSaMP for Linear Regression, with the condition
δ3s∗ < 0.067, which is improved to δ2s∗ < 1

3 by (Jain et al.,
2011) and to δ3s∗ < 0.5774 by (Foucart, 2011).

The RIP-free line of research has shown that strong re-
sults can be achieved without a RIP upper bound, given
that the target solution is sufficiently close to being a
global optimum. These results typically require that s is
significantly larger than s∗. In particular, (Zhang, 2011)
shows that if ζ is the RGOC of f it can be guaranteed
that ‖x− x∗‖2 ≤ 2

√
6 ζ
ρ− (or (1 +

√
6) ζ
ρ− with a slightly

tighter analysis). (Somani et al., 2018) strengthens this

bound to
(

1 +
√

1 + 5
κ

)
ζ
ρ− . Furthermore, it has been

shown that as long as a “Signal-to-Noise” condition holds,
one can actually recover a superset of the target support.
Typically the condition is a lower bound on |x∗min|, the
minimum magnitude non-zero entry of the target solution.
Different lower bounds that have been devised include

Ω

(√
s+s∗‖∇f(x∗)‖∞

ρ−
s+s∗

)
(Jain et al., 2014), which was later

improved to Ω
(√

f(x∗)−f(x∗)
ρ−2s

)
, where x∗ is an optimal

s-sparse solution (Yuan et al., 2016). Finally, (Somani et al.,
2018) improves the sparsity bound to O(s∗κ log (s∗κ)) in
the statistical setting and (Shen & Li, 2017b) shows that
the sparsity can be brought down to s = s∗ + O(κ2) if a
stronger lower bound of Ω

(√
κ ζρ

)
is assumed.

2f(x∗) is also commonly denoted as 1
2
‖η‖22, where Ax∗ =

b+ η, i.e. η is the measurement noise.
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1.1. Our work

In this work we present a new algorithm called Adaptively
Regularized Hard Thresholding (ARHT), that closes the
longstanding gap between the O

(
s∗κ f(x

0)−f(x∗)
ε

)
and

O
(
s∗κ2

)
bounds by getting a sparsity of O(s∗κ) and thus

achieving the best of both worlds. As (Foster et al., 2015)
shows that for a general class of algorithms (including
greedy algorithms like OMP, IHT as well as LASSO) the
linear dependence on κ is necessary even for the special case
of Sparse Regression, our result is tight for this class of al-
gorithms. In the supplementary material we briefly describe
this example and also state a conjecture that it can be turned
into an inapproximability result. Furthermore, there we also
show that the O(s∗κ2) sparsity bound is tight for OMPR,
thus highlighting the importance of regularization in our
method. Our algorithm is efficient, as it requires roughly
O
(
s log3 f(x0)−f(x∗)

ε

)
iterations, each of which includes

one function minimization in a restricted support of size s
and is simple to describe and implement. Furthermore, it
directly implies non-trivial results in the area of Compressed
Sensing.

We also provide a new analysis of OMPR (Jain et al., 2011)
and show that under the condition that s > s∗ κ

2

4 , or equiv-

alently under the RIP condition δs+s∗ <
2
√

s
s∗−1

2
√

s
s∗+1

, it is

possible to approximately minimize the function f up to
some error depending on the RIP constant and the closeness
of x∗ to global optimality. More specifically, we show that
for any ε > 0 OMPR returns a solution x such that

f(x) ≤ f(x∗) + ε+ C1(f(x∗)− f(xopt))

where xopt is the globally optimal solution, as well as

‖x− x∗‖22 ≤ ε+ C2(f(x∗)− f(xopt))

where C1, C2 are constants that only depend on s
s∗ and

δs+s∗ . An important feature of our approach is that it pro-
vides a meaningful tradeoff between the RIP constant upper
bound and the sparsity of the solution, even when the spar-
sity s is arbitrarily close to s∗. In other words, one can relax
the RIP condition at the expense of increasing the sparsity
of the returned solution. Furthermore, our analysis applies
to general functions with bounded RIP constant.

Experiments with real data suggest that ARHT and a variant
of OMPR which we call Exhaustive Local Search achieve
promising performance in recovering sparse solutions.

1.2. Comparison to previous work

Sparse Optimization Our Algorithm 2 (ARHT) returns
a solution with s = O(s∗κ) without any additional as-
sumptions, thus significantly improving over the bound

Table 1. Compressed Sensing tradeoffs implied by Theorem 3.7:
Sparsity vs RIP condition

s RIP CONDITION

s∗ δ2s∗ < 0.33
2s∗ δ3s∗ < 0.47
3s∗ δ4s∗ < 0.55
30s∗ δ31s∗ < 0.83

O
(
s∗min

{
κ f(x

0)−f(x∗)
ε , κ2

})
that was known in previ-

ous work. This proves that neither any dependence on the
required solution accuracy ε, nor the quadratic dependence
on the condition number κ is necessary. Furthermore, no
assumption on the function or the target solution is required
to achieve this bound. Importantly, previous results imply
that our bound is tight up to constants for a general class of
algorithms, including Greedy-type algorithms and LASSO
(Foster et al., 2015).

Sparse Solution Recovery In Corollary 3.5, we show that
the improved guarantees of Theorem 3.3 immediately imply
that ARHT gives a bound of ‖x− x∗‖2 ≤ (2 + θ) ζ

ρ− for
any θ > 0, where ζ is the Restricted Gradient Optimal
Constant. This improves the constant factor in front of the
corresponding results of (Zhang, 2011; Somani et al., 2018).

As we saw, our Theorem 3.7 directly implies that OMPR
gives an upper bound on ‖x− x∗‖22 of the same form as the
RIP-based bounds in previous work, under the condition

δs+s∗ <
2
√

s
s∗−1

2
√

s
s∗+1

. While previous results either concentrate

on the case s = s∗, or s� s∗, our analysis provides a way
to trade off increased sparsity for a more relaxed RIP bound,
allowing for a whole family of RIP conditions where s
is arbitrarily close to s∗. Specifically, if we set s = s∗

our work implies recovery for δ2s∗ < 1
3 ≈ 0.33, which

matches the best known bound for any greedy algorithm
(Jain et al., 2011), although it is a stricter condition than the
δ2s∗ < 0.62 required by LASSO (Foucart & Rauhut, 2017).
Table 1 contains a few such RIP bounds implied by our
analysis and shows that it readily surpasses the bounds for
Subspace Pursuit δ3s∗ < 0.35, CoSaMP δ4s∗ < 0.48, and
OMP δ31s∗ < 0.33 (Jain et al., 2011; Zhang, 2011). Another
important feature compared to previous work is that all our
guarantees are not restricted to Linear Regression and are
true for any function f , as long as it satisfies the required
RIP condition, which makes the result more general.

Sparse Support Recovery Corollary 3.6 shows that as
a direct consequence of our work, the condition |x∗min| >
ζ
ρ− suffices for our algorithm to recover a superset of the
support with size s = O(s∗κ). Compared to (Jain et al.,
2014), we improve both the size of the superset, as well as
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the condition, since
√
s
‖∇f(x∗)‖∞

ρ− ≥
√

s
s∗

ζ
ρ− = Ω

(
ζ
ρ−

)
.

Compared to (Shen & Li, 2017b), the bounds on the superset
size are incomparable in general, but our |x∗min| condition
is more relaxed, since

√
κ ζ
ρ− = Ω( ζ

ρ− ). Finally, compared
to (Yuan et al., 2016) we have a stricter lower bound on
|x∗min|, but with a better bound on the superset size (O(s∗κ)
instead of O(s∗κ2)). Although not explicitly stated, (Zhang,
2011; Somani et al., 2018) also give a similar lower bound

of
√

1 + 10
κ

ζ
ρ− which we improve by a constant factor.

Runtime discussion ARHT has the advantage of being
very simple to implement in practice. The runtime of Algo-
rithm 2 (ARHT) is comparable to that of the most efficient
greedy algorithms (e.g. OMP/OMPR), as it requires a single
function minimization per iteration.

Naming Conventions The algorithm that we call Orthog-
onal Matching Pursuit (OMP), is also known as “Greedy”
(Natarajan, 1995), “Fully Corrective Forward Greedy Selec-
tion” or just “Forward Selection”. What we call Orthogonal
Matching Pursuit with Replacement (OMPR) (Jain et al.,
2011) is also known by various other names. It is refer-
enced in (Shalev-Shwartz et al., 2010) as a simpler variant
of their “Fully Corrective Forward Greedy Selection with
Replacement” algorithm, or just Forward Selection with
Replacement, or “Partial Hard Thresholding with parameter
r = 1 (PHT(r) where r = 1)” (Jain et al., 2017) which is a
generalization of Iterative Hard Thresholding. Finally, what
we call Exhaustive Local Search is essentially a variant of
“Orthogonal Least Squares” that includes replacement steps,
and also appears in (Shalev-Shwartz et al., 2010) as “Fully
Corrective Forward Greedy Selection with Replacement”,
or just “Forward Stepwise Selection with Replacement”.
See also (Blumensath & Davies, 2007) regarding naming
conventions.

Remark 1.1. Most of the results in the literature either only
apply to, or are only presented for the Linear Regression
problem. Since all of our results apply to general function
minimization, we present them as such.

2. Preliminaries
Remark 2.1. An addendum to this section can be found in
the Supplementary Material.

We denote [i] := {1, 2, . . . , i}. For any x ∈ Rn and R ⊆

[n], we define xR ∈ Rn as (xR)i =

{
xi i ∈ R
0 otherwise

Additionally, for any differentiable function f : Rn →
R with gradient ∇f(x), we will denote by ∇Rf(x) the
restriction of∇f(x) to R, i.e. (∇f(x))R.

In Lemma 2.2 we state a standard martingale concentration

inequality that we will use. See also (Chung & Lu, 2006)
for more on martingales.

Lemma 2.2 (Martingale concentration inequality (Special
case of Theorem 6.5 in (Chung & Lu, 2006))). Let Y0 =
0, Y1, . . . , Yn be a martingale with respect to the sequence
i1, . . . , in such that

Var (Yk | i1, . . . , ik−1) ≤ σ2

and
Yk−1 − Yk ≤M

for all k ∈ [n], then for any λ > 0,

Pr [Yn ≤ −λ] ≤ e−λ
2/(2(nσ2+Mλ/3))

Definition 2.3. For any x ∈ Rn, we denote the support of
x by supp(x) = {i : xi 6= 0}
Definition 2.4 (Restricted Condition Number). Given a dif-
ferentiable function f , the Restricted `2-Smoothness (RSS)
constant, or just Restricted Smoothness constant, of f at
sparsity level s is the minimum ρ+s ∈ R such that

f(y) ≤ f(x) +∇f(x)>(y − x) +
ρ+s
2
‖y − x‖22

for all x, y ∈ Rn with |supp(y − x)| ≤ s. Similarly, the
Restricted `2-Strong Convexity (RSC) constant, or just Re-
stricted Strong Convexity constant, of f at sparsity level s
is the maximum ρ−s ∈ R+ such that

f(y) ≥ f(x) +∇f(x)>(y − x) +
ρ−s
2
‖y − x‖22

for any x, y ∈ Rn with |supp(y − x)| ≤ s. Given that
ρ+s , ρ

−
s > 0, the Restricted Condition Number of f at spar-

sity level s is defined as κs = ρ+s /ρ
−
s . We will also make

use of κ̃s = ρ+2 /ρ
−
s which is at most κs as long as s ≥ 2.

Definition 2.5 (Restricted Isometry Property (RIP)). We say
that a differentiable function f has the Restricted Isometry
Property at sparsity level s if ρ+s , ρ

−
s > 0, and the RIP

constant of f at sparsity level s is then defined as δs =
κs−1
κs+1 .3

Definition 2.6 (Restricted Gradient Optimal Constant
(RGOC)). Given a differentiable function f and a “tar-
get” solution x∗, the Restricted Gradient Optimal Constant
(Zhang, 2011) at sparsity level s is the minimum ζs ∈ R+

such that
|〈∇f(x∗), y〉| ≤ ζs ‖y‖2

for all s-sparse y. Setting y = ∇Sf(x∗) for some set S with
|S| ≤ s, this implies that ζs ≥ ‖∇Sf(x∗)‖. An alternative
definition is that ζs is the `2 norm of the s elements of
∇f(x∗) with highest absolute value.

3We note that this is a more general definition than the one
usually given for quadratic functions (i.e. Linear Regression).
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Definition 2.7 (S-restricted minimizer). Given f : Rn →
R, x∗ ∈ Rn, and S ⊆ [n], we will call x∗ an S-restricted
minimizer of f if supp(x∗) ⊆ S and for all x such that
supp(x) ⊆ S we have f(x∗) ≤ f(x).

3. Theoretical Results
In this section we will call the current solution x and the
target solution x∗, with respective supports S and S∗ and
sizes s = |S| and s∗ = |S∗|. The results in this section are

stated in terms of κ̃, but since κ̃ =
ρ+2

ρ−
s+s∗

≤ ρ+
s+s∗

ρ−
s+s∗

= κ,

the same statements where κ̃ is replaced by κ automatically
follow.

3.1. Adaptively Regularized Hard Thresholding
(ARHT)

Our algorithm is essentially a Hard Thresholding algorithm
(and more specifically OMPR also known as PHT(1)) with
the crucial novelty that it is applied on an adaptively regu-
larized objective function.

Hard thresholding algorithms maintain a solution x sup-
ported on S ⊆ [n], which they iteratively update by insert-
ing new elements into the support set S and removing the
same number of elements from it, in order to preserve the
sparsity of x. More specifically, OMPR makes one insertion
and one removal in each iteration. In order to evaluate the
element i to be inserted into S, OMPR uses the fact that,
because of smoothness, (∇if(x))2

2ρ+2
is a lower bound on the

decrease of f(x) caused by inserting i into the support, and
therefore picks i to maximize |∇if(x)|. Similarly, in order
to evaluate the element j to be removed from S, OMPR
uses the fact that ρ

+
2

2 x
2
j upper bounds the increase of f(x)

caused by setting xj = 0, and therefore picks j to mini-
mize |xj |. However, the real worth of j might be as small

as ρ−2
2 x

2
j , so the upper bound can be loose by a factor of

ρ+2
ρ−2
≥ ρ+2

ρ−
s+s∗

= κ̃.

We eliminate this discrepancy by running the algorithm on
the regularized function g(z) := f(z) +

ρ+2
2 ‖z‖

2
2. As the

restricted condition number of g is nowO(1), the real worth
of a removal candidate j matches the upper bound up to a
constant factor.

However, even though g is now well conditioned, the analy-
sis can only guarantee the quality of the solution in terms of
the original objective f if the regularization is not applied
on elements S∗, i.e. ρ+2

2

∥∥xR\S∗∥∥22 for some sufficiently
large R ⊆ [n]; if this is the case, a solution with sparsity
O(s∗κ̃) can be recovered. Unfortunately, there is no way
of knowing a priori which elements not to regularize, as
this is equivalent to finding the target solution. As a result,

the algorithm can get trapped in local minima, which are
defined as states in which one iteration of the algorithm does
not decrease g(x), even though x is a suboptimal solution
in terms of f (i.e. f(x) > f(x∗)).

The main contribution of this work is to characterize such
local minima and devise a procedure that is able to success-
fully escape them, thus allowing x to converge to a desired
solution for the original objective.

When x has significant `22 mass in the target support, the

regularization term ρ+2
2 ‖x‖

2
2 might penalize the target solu-

tion too much, leading to a Type 2 iteration. In this case, we
use random sampling to detect an element in the optimal
support and unregularize it. This procedure escapes all local
minima, thus leading to a bound in the total number of Type
2 iterations.

More concretely, we show that if at some iteration of the
algorithm the value of g(x) does not decrease sufficiently
(Type 2 iteration), then roughly at least a 1

κ̃ -fraction of
the `22 mass of x lies in the target support S∗. We exploit
this property by sampling an element i proportional to x2i
and removing its corresponding term from the regularizer
(unregularizing it). We show that with constant probability
this will happen at most O(s∗κ̃) times, as after that all the
elements in S∗ will have been unregularized.

The core algorithm is presented in Algorithm 1. The full
algorithm additionally requires some standard routines like
binary search and is presented in Algorithm 2.

Let R ⊆ [n] be the set of currently regularized elements.
The following invariant is a crucial ingredient for bringing
the sparsity from O(s∗κ̃2) down to O(s∗κ̃), and we intend
to enforce it at all times. It essentially states that there will
always be enough elements in the current solution that are
being regularized.

Invariant 3.1.

|R ∩ S| ≥ s∗max{1, 8κ̃}

To give some intuition on this, ARHT owes its improved
κ̃ dependence on the regularizer ρ+

2 ‖x‖
2
2. However, dur-

ing the algorithm, some elements are being unregularized.
Our analysis requires that the current solution support al-
ways contains Ω (s∗κ̃) regularized elements, which is what
Invariant 3.1 states.

In the following, we will let opt denote a guess on the target
value f(x∗). Also, x0 will denote the initial solution, which
is an S0-restricted minimizer an arbitrary set S0 ⊆ [n] with
|S0| = s. In Algorithm 1, S0 is defined explicitly as [s],
however in practice one might want to pick a better initial
set (e.g. returned by running OMP).
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Algorithm 1 ARHT core routine
1: function ARHT core(s, opt, ε)
2: function to be minimized f : Rn → R
3: target sparsity s
4: target value opt (current guess for the optimal value)
5: target error ε
6: Define gR(x) := f(x) +

ρ+2
2 ‖xR‖

2
2 for all R ⊆ [n].

7: R0 ← [n]
8: S0 ← [s]
9: x0 ← argmin

supp(x)⊆S0

gR0(x)

10: T = 2s log
gR0 (x

0)−min
x
f(x)

ε (number of iterations)
11: for t = 0 . . . T − 1 do
12: if min

supp(x)⊆St
f(x) ≤ opt then

13: return argmin
supp(x)⊆St

f(x)

14: end if
15: i← argmax

i∈[n]
|∇igRt(xt)|

16: j ← argmin
j∈St

|xj |

17: St+1 ← St ∪ {i}\{j}
18: xt+1 ← argmin

supp(x)⊆St+1

gRt(x)

19: if gRt(xt) − gRt(x
t+1) < 1

s (gRt(x
t)− opt)

then
20: St+1 ← St

21: Sample i ∈ Rt proportional to (xti)
2

22: Rt+1 ← Rt\{i}
23: xt+1 ← argmin

supp(x)⊆St+1

gRt+1(x)

24: end if
25: end for
26: return xT
27: end function

We begin with a lemma analyzing Algorithm 1, which is the
core of our algorithm.

Lemma 3.2. If s ≥ s∗max{4κ̃ + 7, 12κ̃ + 6} and opt ≥
f(x∗), with probability at least 0.2 ARHT core(s, opt, ε)
returns an s-sparse solution x such that f(x) ≤ opt + ε.

In other words, as long as opt ≥ f(x∗), a solution of value
≤ opt + ε will be found. As the value opt is not known
a priori, we perform binary search on it, as described in
Algorithm 2. Furthermore, the probability of success in the
previous lemma can be boosted by repeating multiple times.

The following theorem encapsulates the main result of this
section.

Theorem 3.3. Given a function f and an (unknown) s∗-
sparse solution x∗, with probability at least 1 − 1

n Algo-
rithm 2 returns an s-sparse solution xwith f(x) ≤ f(x∗)+ε,
as long as s ≥ s∗max{4κ̃ + 7, 12κ̃ + 6}. The number of

Algorithm 2 ARHT
1: function ARHT robust(s, opt, ε, B)
2: function to be minimized f : Rn → R
3: lower bound on target value B
4: xret ← ~0
5: for z = 1 . . . 5 log

(
6n log f(~0)−B

ε

)
do

6: x← ARHT core(s, opt, ε)
7: if f(x) < f(xret) then
8: xret ← x
9: end if

10: end for
11: return xret
12: end function
13: function ARHT(s, ε)
14: function to be minimized f : Rn → R
15: target sparsity s
16: target error ε
17: B ← min

x
f(x)

18: l← B
19: b← ~0
20: r ← f(b)
21: while r − l > ε do
22: m← l+r

2
23: x← ARHT robust(s,m, ε/3, B)
24: if f(x) > m+ ε/3 then
25: l← m
26: else
27: b← x
28: r ← f(x)
29: end if
30: end while
31: return b
32: end function

iterations is O
(
s log2 f(~0)−B

ε log
(
n log f(~0)−B

ε

))
where

B = min
x

f(x).

The following corollary that bounds the total runtime can
be immediately extracted. Note that in practice the total
runtime heavily depends on the choice of f , and it can
often be improved for various special cases (e.g. linear
regression).

Corollary 3.4 (Theorem 3.3 runtime). If we denote
by G the time needed to compute ∇f and by M
the time to minimize f in a restricted subset of
[n] of size s, the total runtime of Algorithm 2 is
O
(

(G+M)s log2 f(~0)−B
ε log

(
n log f(~0)−B

ε

))
. If gra-

dient descent is used for the implementation of the inner
optimization problem, then M = O

(
Gκ̃ log f(~0)−B

ε

)
and so the total runtime can be bounded by
O
(
Gsκ̃ log3 f(~0)−B

ε log
(
n log f(~0)−B

ε

))
.
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As the first corollary of the above theorem, we show that it
directly implies solution recovery bounds similar to those
of (Zhang, 2011), while also improving the recovery bound
by a constant factor.

Corollary 3.5 (Solution recovery). Given a function f and
an (unknown) s∗-sparse solution x∗, such that the Restricted
Gradient Optimal Constant at sparsity level s is ζ, i.e.

|〈∇f(x∗), y〉| ≤ ζ ‖y‖2

for all s-sparse y and as long as

s ≥ s∗max {4κ̃+ 7, 12κ̃+ 6}

Algorithm 2 ensures that

f(x) ≤ f(x∗) + ε

and

‖x− x∗‖2 ≤
ζ

ρ−

(
1 +

√
1 + 2ε

ρ−

ζ2

)

For any θ > 0 and ε ≤ ζ2

ρ− θ(1 + θ
2 ), this implies that

‖x− x∗‖2 ≤ (2 + θ)
ζ

ρ−

The next corollary shows that our Theorem 3.3 can be also
used to obtain support recovery results under a “Signal-to-
Noise” condition given as a lower bound to |x∗min|.
Corollary 3.6 (Support recovery). As long as

s ≥ s∗max {4κ̃+ 7, 12κ̃+ 6}

and |x∗min| >
ζ
ρ− , Algorithm 2 with ε < − 1

2ρ− ζ
2 +

ρ−

2 (x∗min)2 returns a solution x with support S such that

S∗ ⊆ S

3.2. Analysis of Orthogonal Matching Pursuit with
Replacement (OMPR)

The OMPR algorithm was first described (under a different
name) in (Shalev-Shwartz et al., 2010). It is an extension of
OMP but after each iteration some element is removed from
St so that the sparsity remains the same. It is described in
Algorithm 3.

When x (with support S) and x∗ (with support S∗) are clear
from context, we will also define a solution

x̃ = argmin
supp(z)⊆S∪S∗

f(z)

Algorithm 3 Orthogonal Matching Pursuit with Replace-
ment

1: function OMPR(s)
2: function to be minimized f : Rn → R
3: output sparsity s
4: S0 ← [s]
5: x0 ← argmin

{
f(x)

∣∣ supp(x) ⊆ S0
}

6: t← 0
7: while true do
8: i← argmax

{
|∇if(xt)|

∣∣ i ∈ [n]\St
}

9: j ← argmin
{
|xtj |

∣∣ j ∈ St}
10: St+1 ← St ∪ {i}\{j}
11: xt+1 ← argmin

{
f(x)

∣∣ supp(x) ⊆ St+1
}

12: if f(xt+1) ≥ f(xt) then
13: break
14: end if
15: t← t+ 1
16: end while
17: T ← t
18: return xT
19: end function

Furthermore, we will denote by x∗ the optimal (s + s∗)-
sparse solution, i.e.

x∗ = argmin
|supp(z)|≤s+s∗

f(z)

By definition, for any x, x∗ the following chain of inequali-
ties holds

min
z∈Rn

f(z) ≤ f(x∗) ≤ f(x̃) ≤ min{f(x), f(x∗)}

The following theorem is the main result of this section. Its
strength lies in its generality, and various useful corollaries
can be directly extracted from it.
Theorem 3.7. Given a function f , an (unknown) s∗-sparse
solution x∗, a desired solution sparsity level s, and error
parameters ε > 0 and 0 < θ < 1, Algorithm 3 returns an
s-sparse solution x such that

• If κ̃
√

s∗

s ≤ 1, then

f(x) ≤ f(x∗) + ε

in O
(√

ss∗ log f(x0)−f(x∗)
ε

)
iterations.

• If 1 < κ̃
√

s∗

s < 2− θ, then

f(x) ≤ f(x∗) +B

where

B = ε+
4(1− θ)

(
κ̃
√

s∗

s − 1
)

(
2− κ̃

√
s∗

s − θ
)2 (f(x∗)− f(x∗))
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in O
(√

ss∗

θ log f(x0)−f(x∗)
B

)
iterations.

The first corollary states that in the “noiseless” case (i.e.
when the target solution is globally optimal), the returned
solution can reach arbitrarily close to the target solution:

Corollary 3.8 (Noiseless case). If κ̃
√

s∗

s < 2 and x∗ is a
globally optimal solution, i.e. f(x∗) = min

z
f(z), Algo-

rithm 3 returns a solution with

f(x) ≤ f(x∗) + ε

in O
( √

ss∗

2−κ̃
√

s∗
s

log f(x0)−f(x∗)
ε

)
iterations.

Proof. We apply Theorem 3.7 with θ = 1
2

(
2− κ̃

√
s∗

s

)
.

The following result is in the usual form of sparse recovery
results, which provide a bound on ‖x− x∗‖2 given a RIP
constant upper bound. It provides a tradeoff between the
RIP constant and the sparsity of the returned solution.

Corollary 3.9 (`2 solution recovery). Given any parameters
ε > 0 and 0 < θ < 1, the returned solution x of Algorithm 3
will satisfy

‖x− x∗‖22 ≤ ε+ C
(
f(x)−min

z
f(z)

)
as long as

δs+s∗ <
(2− θ)

√
s
s∗ − 1

(2− θ)
√

s
s∗ + 1

where C is a constant that depends only on θ, δs+s∗ , and
s
s∗ .

In particular, for s = s∗, the above lemma implies recovery
under the condition δ2s∗ < 1

3 .

4. Experiments
Remark 4.1. More details about the datasets used for eval-
uation can be found in the Supplementary material.

In this section we evaluate the training performance of differ-
ent algorithms in the tasks of Linear Regression and Logistic
Regression. More specifically, for each algorithm we are
interested in how the loss over the training set (the quality
of the solution) evolves as a function of the the sparsity of
the solution, i.e. the number of non-zeros.

The algorithms that we will consider are LASSO, Orthogo-
nal Matching Pursuit (OMP), Orthogonal Matching Pursuit
with Replacement (OMPR), Adaptively Regularized Hard

Thresholding (ARHT) (Algorithm 2), and Exhaustive Lo-
cal Search (which is a version of OMPR that examines
all possible insertions/removals in each iteration). We run
our experiments on publicly available regression and binary
classification datasets, out of which we have presented those
on which the algorithms have significantly different perfor-
mance between each other. In some of the other datasets
that we tested, we observed that all algorithms had sim-
ilar performance. The results are presented in Figure 1
and Figure 2. Another relevant class of algorithms that
we considered was `p Appproximate Message Passing al-
gorithms (Donoho et al., 2009; Zheng et al., 2017). Brief
experiments showed its performance in terms of sparsity for
p ≤ 0.5 to be promising (on par with OMPR and ARHT al-
though these had much faster runtimes), however a detailed
comparison is left for future work.

In both types of objectives (linear and logistic) we include
an intercept term, which is present in all solutions (i.e. it is
always counted as +1 in the sparsity of the solution). For
consistency, all greedy algorithms (OMPR, ARHT, Exhaus-
tive Local Search) are initialized with the OMP solution of
the same sparsity.

The experiments make it clear that Exhaustive Local Search
outperforms the other algorithms. However, ARHT also has
promising performance and it might be preferred because
of better computational efficiency. As a general conclusion,
however, both Exhaustive Local Search and ARHT offer an
advantage compared to OMP and OMPR. As a limitation,
we observe that ARHT has inconsistent performance in
some cases, oscillating between the Exhaustive Local Search
and OMPR solutions.
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Figure 1. Comparison of different algorithms in the Regression
datasets cal housing and year using the Linear Regression loss.

Figure 2. Comparison of different algorithms in the Binary clas-
sification datasets census and kddcup04 bio using the Logistic
Regression loss.
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5. Supplementary
5.1. Definitions

Definition 5.1 (`p Norms). For any p ∈ R+, we define

‖x‖p =

(∑
i

|xi|p
)1/p

as well as the special cases ‖x‖0 = |{i : xi 6= 0}| and
‖x‖∞ = max

i
|xi|

The following lemma stems from the definitions of ρ+2 , ρ
+
1

and can be used to relate ρ+2 with ρ+1

Lemma 5.2. For any function f that has the RSC property
at sparsity level ≥ 2 and RSS constants ρ+1 , ρ

+
2 at sparsity

levels 1 and 2 respectively, we have ρ+2 ≤ 2ρ+1 .

Proof. For any x, y ∈ Rn such that |supp(y − x)| ≤ 2, We
will prove that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
2ρ+1

2
‖y − x‖22

Let y = x + α~1i + β~1j for some i, j ∈ [n] and α, β ∈ R.
We assume i 6= j and since otherwise the claim already
follows from RSS at sparsity level 1. We apply the RSS
property with sparsity level 1 to get the inequalities

f(x+ 2α~1i)

≤ f(x) + 2〈∇f(x), α~1i〉+ 4
ρ+1
2

∥∥∥α~1i∥∥∥2
2

and

f(x+ 2β~1j)

≤ f(x) + 2〈∇f(x), β~1j〉+ 4
ρ+1
2

∥∥∥β~1j∥∥∥2
2

Now, by using convexity (more precisely restricted convex-
ity at sparsity level 2 that is implied by RSC) we have

f(y)

= f(x+ α~1i + β~1j)

≤ 1

2

(
f(x+ 2α~1i) + f(x+ 2β~1j)

)
≤ f(x) + 〈∇f(x), α~1i + β~1j〉+

2ρ+1
2

∥∥∥α~1i + β~1j

∥∥∥2
2

= f(x) + 〈∇f(x), y − x〉+
2ρ+1

2
‖y − x‖22

5.2. Algorithms

5.2.1. `1 OPTIMIZATION (LASSO)

The LASSO approach is to relax the `0 constraint into an `1
one, thus solving the following optimization problem:

min
x

f(x) + λ ‖x‖1 (1)

for some parameter λ > 0.

5.2.2. ITERATIVE HARD THRESHOLDING (IHT):

(Blumensath & Davies, 2009) define the hard thresholding
operator Hr(x) as

[Hr(x)]i =


xi if |xi| is one of the r entries of x

with largest magnitude
0 otherwise

Using this, the algorithm is described in Algorithm 4.
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Algorithm 4 Iterative Hard Thresholding (IHT)
1: function IHT(s, T )
2: function to be minimized f : Rn → R
3: number of iterations T
4: output sparsity s
5: x0 ← ~0
6: for t = 0 . . . T − 1 do
7: xt+1 ← Hs (xt − η∇f(xt))
8: end for
9: return xT

10: end function

5.2.3. ORTHOGONAL MATCHING PURSUIT
(GREEDY/OMP/FWD STEPWISE SELECTION)

The algorithm is described in Algorithm 5.

Algorithm 5 Greedy/OMP/Fwd stepwise selection
1: function greedy(s)
2: function to be minimized f : Rn → R
3: output sparsity s
4: S0 ← ∅
5: x0 ← ~0
6: for t = 0 . . . s− 1 do
7: i← argmax

{
|∇if(xt)|

∣∣ i ∈ [n]\St
}

8: St+1 ← St ∪ {i}
9: xt+1 ← argmin

{
f(x)

∣∣ supp(x) ⊆ St+1
}

10: end for
11: return xs
12: end function

5.2.4. EXHAUSTIVE LOCAL SEARCH

The algorithm in this section is similar to OMPR, in that
it iteratively inserts a new element in the support while
removing one from it at the same time. While, as in OMPR,
the element to be removed is the minimum magnitude entry,
the one to be inserted is chosen to be the one which results
in the maximum decrease in the value of the objective. It is
described in Algorithm 6.

6. Tightness of Theorem 3.3 result for Greedy
algorithms

6.1. Ω(s∗κ) lower bound due to (Foster et al., 2015)

In Appendix B of (Foster et al., 2015) a matrix A ∈ Rm×n
and a vector b ∈ Rm are constructed and let us define
f(x) = 1

2 ‖Ax− b‖
2
2. If we let S∗ = {1, . . . , n − 2} and

S∗ = {n− 1, n}, then f has the property that

min
supp(x)⊆S∗

f(x) = min
supp(x)⊆S∗

f(x) = 0

Algorithm 6 Exhaustive Local Search
1: function to be minimized f : Rn → R
2: target sparsity s
3: number of iterations T
4: S0 ← [s]
5: x0 ← argmin

{
f(x)

∣∣ supp(x) ⊆ S0
}

6: for t = 0 . . . T − 1 do
7: j ← argmin

j∈St
x2j

8: i← argmin
i∈[n]\St

 min
x : supp(x)⊆
St∪{i}\{j}

f(x)


9: St+1 ← St ∪ {i}\{j}

10: xt+1 ← argmin
{
f(x)

∣∣ supp(x) ⊆ St+1
}

11: if f(xt+1) ≥ f(xt) then
12: return xt
13: end if
14: end for
15: return xT

but for any S ⊂ S∗,

min
supp(x)⊆S

f(x) > 0

Furthermore, for any S ⊂ S∗ and x = argmin
supp(x)⊆S

f(x), it is

true that

max
i∈S∗

|∇if(x)| < min
i∈S∗\S

|∇if(x)|

This means that for any algorithm with an OMP-like crite-
rion like Orthogonal Matching Pursuit, Orthogonal Match-
ing Pursuit with Replacement, Iterative Hard Thresholding,
and Partial Hard Thresholding, if the initial solution does
not have an intersection with S∗, then it will never have,
therefore implying that the sparsity returned by the algo-
rithm is |S| = n − 2 = Ω(n). As for this construction
κ =

ρ+n
ρ−n

= O (n), there exists a constant c such that the
sparsity of the returned solution cannot be less than cs∗κ),
since s∗κ = O(n) = O(|S|). Therefore none of these algo-
rithms can improve the bound O(s∗κ) of Theorem 3.3 by
more than a constant factor. This example also applies to
ARHT and Exhaustive Local Search.

It seems difficult to get past this example and achieve spar-
sity s = O(s∗κ1−δ) for some δ > 0. We conjecture that
there might be a way to turn the above example into an
inapproximability result:

Conjecture 6.1. For any δ > 0, there is no polynomial time
algorithm that given a matrix A ∈ Rm×n, a vector b ∈ Rm,
a target sparsity s∗ ≥ 1, and a desired accuracy ε > 0,
returns an s = O(s∗κ1−δs+s∗)-sparse solution x such that
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‖Ax− b‖22 ≤ min
‖x∗‖0≤s∗

‖Ax∗ − b‖22 + ε, if such a solution

exists.

6.2. Ω(s∗κ2) lower bound for OMPR

The following lemma shows that, without regularization,
OMPR requires sparsity Ω(s∗κ2) in general, and therefore
the sparsity upper bound is tight. We assume that the algo-
rithm is run for T iterations (even when the solution stops
improving).

Lemma 6.2. There is a function f(x) = 1
2 ‖Ax− b‖

2
2

where A ∈ Rn×n and b ∈ Rn and a target solution
x∗ of f with sparsity s∗, as well as a set S ⊆ [n] with
|S| = Θ(s∗κ2) such that OMPR initialized with support set
S returns a solution x with f(x) = f(x∗) + Θ(s∗κ2).

Proof. Without loss of generality we assume that κ is an
even integer and set n = s∗

(
1 + κ+ κ2

)
. We then partition

[n] into three intervals I1 = [1, s∗], I2 = [s∗+1, s∗(1+κ)],
I3 = [s∗(1+κ)+1, s∗(1+κ+κ2)]. We define the diagonal
matrix A ∈ Rn×n such that

Aii =


1 if i ∈ I1√
κ if i ∈ I2

1 if i ∈ I3

and vector b ∈ Rn such that

bi =


κ
√

1− 4δ if i ∈ I1√
κ
√

1− 2δ if i ∈ I2
1 if i ∈ I3

where δ > 0 is a sufficiently small scalar used to avoid ties
in the steps of the algorithm. The target solution is defined
as

x∗i =

{
κ(1− 4δ) if i ∈ I1
0 if i ∈ I2 ∪ I3

and its value is f(x∗) = s∗κ2(1 − δ). Now consider any
initial support set S0 ⊂ I3 such that |S0| = s∗κ2/2. The
initial solution will then be

x0i =

{
0 if i ∈ I1 ∪ I2 ∪ I3\S0

1 if i ∈ S0

and its value f(x0) = s∗κ2
(
5
4 − 3δ

)
= f(x∗) + Θ(s∗κ2).

The gradient at x0 is

∇if(x0) =


−κ
√

1− 4δ if i ∈ I1
−κ
√

1− 2δ if i ∈ I2
−1 if i ∈ I3\S0

0 if i ∈ S0

therefore the algorithm will pick S1 = S0 ∪ {i0}\{j0} for
some i0 ∈ I2 and some j0 ∈ S0, since the gradient entries
in I2 have the largest magnitude among those in [n]. The
new solution will be

x1i =


0 if i ∈ I1 ∪ I2 ∪ I3\S1

√
1− 2δ if i = i0

1 if i ∈ S1\{i0}

with value f(x1) = s∗κ2
(
5
4 − 3δ

)
− 1

2 (κ(1−2δ)−1) and
gradient

∇if(x1) =


−κ
√

1− 4δ if i ∈ I1
−κ
√

1− 2δ if i ∈ I2\S1

−1 if i ∈ I3\S1

0 if i ∈ S1

and therefore the algorithm will pick S2 = S1 ∪ {i1}\{i0}
for some i1 ∈ I2. i0 will be the one to be removed from
S1 because xi0 has the smallest magnitude out of all entries
in S1. Continuing this process, the algorithm will always
have St ∩ I2 = 1 and St ∩ I3 = |St| − 1, and so f(xt) =
s∗κ2

(
5
4 − 3δ

)
− 1

2 (κ(1−2δ)−1) = f(x∗) + Θ(s∗κ2) for
t ≥ 1.

7. Proofs
In the following, we will denote the minimization objective
by f(x). We will also write its RSS and RSC parameters ρ+2
and ρ−s+s∗ as ρ+ and ρ− respectively, as well as κ̃ =

ρ+2
ρ−
s+s∗

.

The use of ρ+2 is not restrictive. As shown in Lemma 5.2,
ρ+2 ≤ 2ρ+1 and so in all the bounds involving κ̃, it can be

replaced by 2
ρ+1

ρ−
s+s∗

, therefore only losing a factor of 2.

7.1. Adaptively Regularized Hard Thresholding
(ARHT)

We will denote the regularized objective by gt(x) = f(x) +
Φt(x). Let s be such that s ≥ s∗max{4κ̃ + 7, 12κ̃ + 6}
and (ρ+2 )′ and (ρ−s+s∗)

′ be RSS and RSC parameters of gt.

Now, for some Rt ⊆ [n], let Φt(x) =
ρ+2
2 ‖xRt‖

2
2 be the

regularizer. We start with a lemma regarding the RSC and
RSS of the regularized function.

Lemma 7.1 (RSC, RSS of regularized function). (ρ+2 )′ ≤
2ρ+2 and (ρ−s+s∗)

′ ≥ ρ−s+s∗
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Proof. Φt is a quadratic restricted on Rt

Φ(y)− Φ(x)−∇Φ(x)T (y − x)

=
ρ+2
2

(
‖yRt‖22 − ‖xRt‖

2
2 − 2xTRt(yRt − xRt)

)
=
ρ+2
2
‖yRt − xRt‖22 ∈

[
0,
ρ+2
2
‖y − x‖22

]
and so for any x, y with |supp(y − x)| ≤ s + s∗ (resp.
|supp(y − x)| ≤ 1) we have

g(y)− g(x)−∇g(x)T (y − x)

= f(y)− f(x)−∇f(x)T (y − x)

+ Φ(y)− Φ(x)−∇Φ(x)T (y − x)

≥
ρ−s+s∗

2
‖y − x‖22 (resp. ≤ ρ+2 ‖y − x‖

2
2 )

Now, when referring to Algorithm 1, let our current solu-
tion be xt, where xt is an St-restricted minimizer and the
optimal solution be x∗ with support S∗ = supp(x∗). We
will use the shorthand ρ+ = ρ+2 and ρ− = ρ−s+s∗ . Note
that by definition of the algorithm, xt is an St-restricted
minimizer of gt. When referring to Algorithm 1, let us call
iterations Type 1 if the condition in Line 19 is false, and
Type 2 otherwise.

Lemma 7.2. If opt ≥ f(x∗), the progress gt(xt) −
gt(xt+1) in Line 19 of Algorithm 1 is

gt(xt)− gt(xt+1)

≥ ρ−

2|S∗\St|ρ+
(
f(xt)− f(x∗) + 〈∇St\S∗Φt(xt), xtSt\S∗〉

− 1

2ρ−
∥∥∇St∩S∗Φt(xt)∥∥22 )− ρ+(xtj)

2

Proof. First of all, since the condition in Line 12 (“if
min
x⊆St

f(x) ≤ opt”) was not triggered, we have that

min
x⊆St

f(x) > opt ≥ f(x∗) and so S∗\St 6= ∅. By

Lemma 7.1 we have that (ρ+)′ ≤ 2ρ+, therefore the de-
crease in gt that is achieved is

gt(xt)− gt(xt+1)

≥ max
η∈R

{
gt(xt)− gt(xt + η~1i − xtj~1j)

}
≥ max

η∈R

{
−〈∇gt(xt), η~1i − xtj~1j〉 − ρ+η2 − ρ+(xtj)

2
}

:= B

Note that, as defined by the algorithm, xt is an St-restricted
minimizer of gt and since j ∈ St, we have ∇jgt(xt) = 0.
Therefore

B = max
η
{−〈∇gt(xt), η~1i〉 − ρ+η2 − ρ+(xtj)

2}

=
[∇igt(xt)]

2

4ρ+
− ρ+(xtj)

2

≥ max
k∈S∗\S

[∇kgt(xt)]
2

4ρ+
− ρ+(xtj)

2

≥
∥∥∇S∗\Stgt(xt)∥∥22

4|S∗\St|ρ+
− ρ+(xtj)

2

(2)

where we used the fact that i was picked to maximize
|∇kgt(xt)|. Now we would like to relate this to gt(xt) −
f(x∗) (and not gt(xt)−gt(x∗)). By applying the Restricted
Strong Convexity property,

f(x∗)− f(xt)

≥ 〈∇f(xt), x∗ − xt〉+
ρ−

2

∥∥xt − x∗∥∥2
2

≥ 〈∇f(xt), x∗ − xt〉

+
ρ−

2

∥∥∥x∗S∗\St∥∥∥2
2

+
ρ−

2

∥∥(xt − x∗)St∩S∗
∥∥2
2

Now note that f(xt) = gt(xt) − Φt(xt), ∇Stgt(xt) =
~0 (since xt is an St-restricted minimizer of gt), and
∇Φt(xt) = ∇StΦt(xt) therefore

〈∇f(xt), x∗ − xt〉
= 〈∇gt(xt), x∗ − xt〉 − 〈∇Φt(xt), x∗ − xt〉
= 〈∇gtS∗\St(x

t), x∗S∗\St〉+ 〈∇St\S∗Φt(xt), xtSt\S∗〉
+ 〈∇St∩S∗Φt(xt), (xt − x∗)St∩S∗〉

Plugging this into the previous inequality, we get

f(x∗)− f(xt)

≥ 〈∇gtS∗\St(x
t), x∗S∗\St〉+

ρ−

2

∥∥∥x∗S∗\St∥∥∥2
2

+ 〈∇St\S∗Φt(xt), xtSt\S∗〉

+ 〈∇St∩S∗Φt(xt), (xt − x∗)St∩S∗〉+
ρ−

2

∥∥(xt − x∗)St∩S∗
∥∥2
2

≥ − 1

2ρ−
∥∥∇S∗\Stgt(xt)∥∥22 + 〈∇St\S∗Φt(xt), xtSt\S∗〉

− 1

2ρ−
∥∥∇St∩S∗Φt(xt)∥∥22

where we twice used the inequality 〈u, v〉 + λ
2 ‖v‖

2
2 ≥

− 1
2λ ‖u‖

2
2 for any λ > 0. This inequality is derived

by expanding 1
2

∥∥∥ 1√
λ
u+
√
λv
∥∥∥2
2
≥ 0. So plugging in
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B ≥ ρ−

2|S∗\St|ρ+
(
f(xt)− f(x∗) + 〈∇St\S∗Φt(xt), xtSt\S∗〉

− 1

2ρ−
∥∥∇St∩S∗Φt(xt)∥∥22 )− ρ+(xtj)

2

In the following we will use the following important prop-
erty of our regularizer:

Observation 7.3. The definition of Φt(xt) implies that

〈∇St\S∗Φt(xt), xtSt\S∗〉 = ρ+〈xtRt\S∗ , x
t
St\S∗〉

= ρ+
∥∥∥xtRt\S∗∥∥∥2

2

and ∥∥∇St∩S∗Φt(xt)∥∥22 = (ρ+)2
∥∥xtRt∩S∗∥∥22

which also means that

Φt(xt)

=
1

2
〈∇St\S∗Φt(xt), xtSt\S∗〉+

1

2ρ+
∥∥∇St∩S∗Φt(xt)∥∥22

We proceed to show that with constant probability Algo-
rithm 1 will only have O(s∗κ̃) Type 2 iterations.

Lemma 7.4. If opt ≥ f(x∗), then with probability at least
0.2 the number of Type 2 iterations is at most (s∗− 1)(4κ̃+
6).

Proof. Initially we have
∣∣R0 ∩ S0

∣∣ =
∣∣S0
∣∣ = s. Since in

each Type 2 iteration we have Rt+1 = Rt − 1,∣∣Rt ∩ St∣∣ ≥ s− [number of Type 2 iterations up to t]

This implies that for the first (s∗ − 1)(4κ̃ + 6) Type 2
iterations,

|Rt ∩ St| ≥ s− (s∗ − 1)(4κ̃+ 6) ≥ s∗max{1, 8κ̃} (3)

since s ≥ s∗max {4κ̃+ 7, 12κ̃+ 6}. From this it follows
that

|(Rt ∩ St)\S∗|
= |Rt ∩ St| − |Rt ∩ St ∩ S∗|
≥ s∗max{1, 8κ̃} − |St ∩ S∗|
≥ |S∗\St|8κ̃

= |S∗\St|8ρ
+

ρ−

and so

(xtj)
2 ≤ 1

|(Rt ∩ St)\S∗|

∥∥∥xt(Rt∩St)\S∗∥∥∥2
2

≤ ρ−

8|S∗\St|ρ+
∥∥∥xtRt\S∗∥∥∥2

2

=
ρ−

8|S∗\St|(ρ+)2
〈∇St\S∗Φt(xt), xtSt\S∗〉

by Observation 7.3. Combining this inequality with the
statement of Lemma 7.2 we have

gt(xt)− gt(xt+1)

≥ ρ−

2|S∗\St|ρ+
(
f(xt)− f(x∗) + 〈∇St\S∗Φt(xt), xtSt\S∗〉

− 1

2ρ−
∥∥∇St∩S∗Φt(xt)∥∥22 )− ρ+(xtj)

2

≥ ρ−

2|S∗\St|ρ+
(
f(xt)− f(x∗) +

3

4
〈∇St\S∗Φt(xt), xtSt\S∗〉

− 1

2ρ−
∥∥∇St∩S∗Φt(xt)∥∥22 )

(4)
By definition of a Type 2 iteration,

gt(xt)− gt(xt+1) <
1

s

(
gt(xt)− opt

)
≤ ρ−

2|S∗\St|ρ+
(
gt(xt)− f(x∗)

)
=

ρ−

2|S∗\St|ρ+
(
f(xt)− f(x∗) + Φt(xt)

)
(5)

where we used the fact that s ≥ 2s∗κ̃ ≥ 2|S∗\St|κ̃ and
f(x∗) ≤ opt. Combining inequalities (4) and (5) we get

Φt(xt)

>
3

4
〈∇St\S∗Φt(xt), xtSt\S∗〉 −

1

2ρ−
∥∥∇St∩S∗Φt(xt)∥∥22

or equivalently, by replacing Φt(xt) from Observation 7.3,

1

2

(
1

ρ−
+

1

ρ+

)∥∥∇St∩S∗Φt(xt)∥∥22
>

1

4
〈∇St\S∗Φ(xt), xtSt\S∗〉

Further applying Observation 7.3, we equivalently get

2 (1 + κ̃)
∥∥xtRt∩S∗∥∥22 > ∥∥∥xtRt\S∗∥∥∥22 (6)

Now, note that in Lines 21-22 the algorithm picks an el-
ement i ∈ Rt with probability proportional to (xti)

2 and
unregularizes it, i.e. sets Rt+1 ← Rt\{i}. We denote this
probability distribution over i ∈ Rt by D. From what we
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have established already in (6), we can lower bound the
probability that i lies in the target support:

Pr
i∼D

[i ∈ S∗] =
‖xtRt∩S∗‖

2

2∥∥xtRt∩S∗∥∥22 +
∥∥∥xtRt\S∗∥∥∥2

2

>

1
2(1+κ̃)

1 + 1
2(1+κ̃)

=
1

2κ̃+ 3

:= p

(7)

Note that this event can happen at most once for each i ∈ S∗
during the whole execution of the algorithm, since each ele-
ment can only be removed once from the set of regularized
elements.

We will prove that with constant probability the number of
Type 2 steps will be at most (s∗ − 1)(4κ̃ + 6) := b. For
1 ≤ k ≤ b, we define the following random variables:

• ik ∈ [n] is the index picked in the k-th Type 2 iteration,
or ⊥ if there are less than k Type 2 iterations.

• qk is the probability of picking an index in the optimal
support in the k-th Type 2 iteration (i.e. ik ∈ S∗):

qk =

{∥∥xtk
Rtk∩S∗

∥∥2
2
/
∥∥xtk

Rtk

∥∥2
2

if ik 6=⊥
0 otherwise

where tk ∈ [T ] is the index of the k-th Type 2 iteration
within all iterations of the algorithm.

• Xk is 1 if the index picked in the k-th Type 2 step was
in the optimal support:

Xk =

{
1 with probability qk
0 otherwise

Our goal is to upper bound Pr

[
b∑

k=1

Xk ≤ s∗ − 1

]
. This au-

tomatically implies the same upper bound on the probability
that there will be more than b Type 2 iterations.

We define another sequence of random variables Y0, . . . , Yb,
where Y0 = 0, and

Yk =

{
Yk−1 + p

qk
− p if Xk = 1

Yk−1 − p if Xk = 0

for k ∈ [b]. Since if qk > 0 we have p
qk
≤ 1, it is immediate

that
Yk − Yk−1 ≤ Xk − p

and so Yb ≤
b∑

k=1

Xk − bp. Furthermore,

E [Yk | i1, . . . , ik−1]

= Yk−1 + qk

(
p

qk
− p
)
− (1− qk) p

= Yk−1

meaning that Y0, . . . , Yb is a martingale with respect to
i1, . . . , ib. We will apply the inequality from Lemma 2.2.
We compute a bound on the differences

Yk−1 − Yk

=

{
p− p

qk
if Xk = 1

p if Xk = 0
(8)

≤ p

and the variance

Var (Yk | i1, . . . , ik−1)

= E
[
(Yk − E [Yk | i1, . . . , ik−1])

2 | i1, . . . , ik−1
]

= E
[
(Yk − Yk−1)

2 | i1, . . . , ik−1
]

= qk ·
(
p− p

qk

)2

+ (1− qk) · p2

= qk · p2
(

1− 2

qk
+

1

q2k

)
+ (1− qk) · p2

= p2
(

1

qk
− 1

)
≤ p

where we used (8) along with the fact that qk ≥ p. Using
the concentration inequality from Lemma 2.2 we obtain

Pr

[
b∑

k=1

Xk ≤ s∗ − 1

]
≤ Pr [Yb ≤ s∗ − 1− b · p]

≤ e−(bp−s
∗+1)2/(2(b·p+p·(bp−s∗+1)/3))

= e−(s
∗−1)/(2(2+p/3))

≤ e−1/(2(2+1/9))

< 0.8

where we used the fact that bp = 2(s∗ − 1), s∗ ≥ 2 (other-
wise the problem is trivial), and p = 1

2κ̃+3 ≤
1
3 . Therefore

we conclude that the probability that we have not unregular-
ized the whole set S∗ after b steps is at most 0.8. Since we
can only have a Type 2 step if there is a regularized element
in S∗ (this is immediate from (7)), this implies that with
probability at least 0.2 the number of Type 2 steps is at most
b = (s∗ − 1)(4κ̃+ 6).
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Proof of Lemma 3.2.

By Lemma 7.4, with probability at least 0.2 there will be
at most (s∗ − 1)(4κ̃ + 6) Type 2 iterations. This means
that the number of Type 1 iterations is at least T − (s∗ −
1)(4κ̃+ 6) ≥ s log g0(x0)−f(x∗)

ε . Lemma 7.7 then implies
that f(xT ) ≤ f(x∗) + ε.

We turn the result of Lemma 3.2 into a high probability
result by repeating multiple times:

Lemma 7.5. As long as s ≥ s∗max{4κ̃ + 7, 12κ̃ + 6}
and opt ≥ f(x∗), ARHT robust(s, opt, ε, B) returns an
s-sparse solution x such that f(x) ≤ opt+εwith probability
at least 1− 1

6n log
f(~0)−B

ε

.

Proof. From Lemma 3.2, the probability that a given call
to ARHT core fails is at most 0.8. Since this random
experiment is executed 5 log

(
6n log f(~0)−B

ε

)
times inde-

pendently, the probability that it never succeeds is at most

(0.8)
5 log

(
6n log

f(~0)−B
ε

)
< 1

6n log
f(~0)−B

ε

, therefore the state-

ment follows.

Lemma 7.6. As long as s ≥ s∗max{4κ̃ + 7, 12κ̃ + 6},
ARHT(s, ε) (in Algorithm 2) returns an s-sparse solution
x such that f(x) ≤ f(x∗) + ε. The algorithm succeeds
with probability at least 1− 1

n . and the number of calls to

ARHT robust is ≤ 6 log f(~0)−B
ε .

Proof. First we will bound the number of calls to
ARHT robust. Let Lk be the equal to r − l before the
k-th iteration in Line 21 of Algorithm 2. Then either
Lk+1 = Lk/2 (Line 25) or Lk+1 ≤ Lk/2 + ε/3 < 5Lk/6
(Line 28). Therefore in any case we have Lk+1 < 5Lk/6

which implies that after T = 6 log f(~0)−B
ε iterations we will

have r − l ≤ ε.

Now let us compute the probability that all the calls to
ARHT robust are successful. The number of such calls is
at most 6 log f(~0)−B

ε and we know each one of them inde-
pendently fails with probability less than 1

6n log
f(~0)−f(B)

ε

, so

by a union bound the probability that at least one call fails
is less than 1

n .

To prove correctness, note that by Lemma 7.5, for each r ≥
f(x∗) we have f(ARHT robust(s, r, ε/3, B)) ≤ r + ε/3.
After Line 20 of Algorithm 2, we will have l = B ≤ f(x∗).
In the while construct, it is always true that f(x∗) ≥ l.
This is initially true, as we saw. For each m chosen in
Line 22 and x in Line 23, note that if f(x) > m + ε/3,
then by Lemma 7.5 f(x∗) > m and so the invariant that
f(x∗) ≥ l stays true. On the other hand, it is always true
that f(b) ≤ r. Initially this is so because f(~0) = r, and
when we decrease r to some f(x) we also update b = x.

This implies that in the end of the algorithm the returned
solution will have the required property, since we will have
f(b) ≤ r ≤ l + ε ≤ f(x∗) + ε.

Proof of Theorem 3.3. Lemma 7.6 already establishes
the correctness of the algorithm whp. For the run-
time, note that ARHT core takes O

(
s log f(~0)−B

ε

)
it-

erations, ARHT robust takes O
(

log
(
n log f(~0)−B

ε

))
iterations, and ARHT takes O

(
log f(~0)−B

ε

)
itera-

tions. In conclusion, the total number of iterations is
O
(
s log2 f(~0)−B

ε log
(
n log f(~0)−B

ε

))
, each of which re-

quires a constant number of minimizations of f .

Lemma 7.7 (Convergence rate). If Algorithm 1 executes
at least T1 = s log g(x0)−f(x∗)

ε Type 1 iterations, then
f(xT ) ≤ f(x∗) + ε.

Proof. By Lemma 7.2, and if we set τ = 1
s , in each Type 1

step we have

g(xt)− g(xt+1) ≥ τ
(
g(xt)− f(x∗)

)
⇒g(xt+1)− f(x∗) ≤ (1− τ)(g(xt)− f(x∗))

and in each Type 2 step we have

g(xt+1)− f(x∗) ≤ g(xt)− f(x∗)

(since g can only decrease when unregularizing), therefore

f(xT )− f(x∗)

≤ g(xT )− f(x∗)

≤ (1− τ)T1(g(x0)− f(x∗))

≤ e−τT1(g(x0)− f(x∗))

≤ ε

where we used the fact that T1 = 1
τ log g(x0)−f(x∗)

ε .

Proof of Corollary 3.5. By strong convexity we have

ε ≥ f(x)− f(x∗)

≥ 〈∇f(x∗), x− x∗〉+
ρ−

2
‖x− x∗‖22

≥ −ζ ‖x− x∗‖2 +
ρ−

2
‖x− x∗‖22

therefore

ρ−

2
‖x− x∗‖22 − ζ ‖x− x

∗‖2 − ε ≤ 0
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looking at which as a quadratic polynomial in ‖x− x∗‖2, it
follows that

‖x− x∗‖2 ≤
ζ +

√
ζ2 + 2ερ−

ρ−

=
ζ

ρ−

(
1 +

√
1 + 2ε

ρ−

ζ2

)

= (2 + θ)
ζ

ρ−

by setting ε = ζ2

ρ−

(
θ + 1

2θ
2
)
.

Proof of Corollary 3.6. Let us suppose that S∗\St 6= ∅.
By restricted strong convexity we have

− 1

2ρ−
ζ2 +

ρ−

2
(x∗min)

2

> ε

≥ f(x)− f(x∗)

≥ 〈∇f(x∗), x− x∗〉+
ρ−

2
‖x− x∗‖22

≥ 〈∇f(x∗), x〉+
ρ−

2

∥∥xSt\S∗∥∥22 +
ρ−

2

∥∥∥x∗S∗\St∥∥∥2
2

≥ − 1

2ρ−
∥∥∇St\S∗f(x∗)

∥∥2
2

+
ρ−

2

∥∥∥x∗S∗\St∥∥∥2
2

≥ − 1

2ρ−
ζ2 +

ρ−

2
(x∗min)

2

a contradiction. Here we used the fact that by local opti-
mality ∇S∗f(x∗) = ~0, the inequality 〈u, v〉 + λ

2 ‖v‖
2
2 ≥

− 1
2λ ‖u‖

2
2 for any vectors u, v and scalar λ > 0, and the fact

that
∥∥∇St\S∗f(x∗)

∥∥2
2
≤ ζ2 by Definition 2.6. Therefore

S∗ ⊆ St.

7.2. Analysis of Orthogonal Matching Pursuit with
Replacement

We will assume that s ≤ 20κ̃s∗, as the other case is sub-
sumed by Algorithm 2. Let us denote µ =

√
s∗

s .

The following technical lemma is at the core of our ap-
proach, and roughly states that if there is significant `2 norm
difference between xt and x∗, at least one of xt, x∗ is signif-
icantly larger than x̃t in function value. Its importance lies
on the fact that instead of directly applying strong convexity
between xt and x∗, it gets a tighter bound by making use of
x̃t.

Lemma 7.8. For any function f with RSC constant ρ−

at sparsity level s + s∗ and any two solutions xt,x∗ with
respective supports St, S∗ and sparsity levels s, s∗, we have

that (√
f(xt)− f(x̃t) +

√
f(x∗)− f(x̃t)

)2
≥ ρ−

2

(∥∥∥x∗S∗\St∥∥∥2
2

+
∥∥∥xtSt\S∗∥∥∥2

2

)

Proof. We have(√
f(xt)− f(x̃t) +

√
f(x∗)− f(x̃t)

)2
≥ ρ−

2

(∥∥xt − x̃t∥∥
2

+
∥∥x∗ − x̃t∥∥

2

)2
≥ ρ−

2

∥∥xt − x∗∥∥2
2

≥ ρ−

2

(∥∥∥x∗S∗\St∥∥∥2
2

+
∥∥∥xtSt\S∗∥∥∥2

2

)
where the first inequality follows by applying strong convex-
ity to lower bound f(xt)− f(x̃t) and f(x∗)− f(x̃t) com-
bined with the fact that by definition of x̃t,∇St∪S∗f(x̃t) =
~0, and the second is a triangle inequality.

We now provide the main technical lemma for this section,
which bounds the progress of Algorithm 2 in one iteration.

Lemma 7.9. We can bound the progress of one step of the
algorithm by distinguishing the following three cases:
• If µκ̃ ≤ 1, then

f(xt+1)− f(x∗) ≤
(
f(xt)− f(x∗)

)(
1− µ

|S∗\St|

)
• If µκ̃ > 1 and f(x∗) = f(x̃t), then

f(xt+1)− f(x∗) ≤
(
f(xt)− f(x∗)

)
·
(

1− µ

|S∗\St|
(2− µκ̃)

)
• If µκ̃ > 1 and f(x∗) > f(x̃t), then

f(xt+1)− f(x∗) ≤
(
f(xt)− f(x∗)

)
·

1− µ

|S∗\St|

2− µκ̃− 2(µκ̃− 1)√
f(xt)−f(x̃t)
f(x∗)−f(x̃t) − 1



Proof. First of all, if S∗ ⊆ St then, since xt is an St-
restricted minimizer, we have f(xT ) ≤ f(xt) ≤ f(x∗)
and we are done. So suppose otherwise, i.e. S∗\St 6= ∅
and f(xt) > f(x∗). Let i = argmax

i/∈St
|∇if(xt)| and j =
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argmin
j∈St

∣∣xtj∣∣. By definition of OMPR (Algorithm 3) and

restricted smoothness of f , we have

f(xt+1)

≤ min
η∈R

f(xt + η~1i − xtj~1j)

≤ min
η∈R

f(xt) + 〈∇f(xt), η~1i − xtj~1j〉+
ρ+

2

∥∥∥η~1i − xtj~1j∥∥∥2
2

= min
η∈R

f(xt) + η∇if(xt) +
ρ+

2
η2 +

ρ+

2
(xtj)

2

= f(xt)− (∇if(xt))
2

2ρ+
+
ρ+

2
(xtj)

2

≤ f(xt)−
∥∥∇S∗\Stf(xt)

∥∥2
2

2ρ+|S∗\St|
+

ρ+

2|St\S∗|

∥∥∥xtSt\S∗∥∥∥2
2

where the second to last equality follows from the fact that
∇jf(xt) = ~0, as xt is an St-restricted minimizer of f , and
the last inequality since

(xtj)
2 = min

j∈St\S∗
(xtj)

2 ≤

∥∥∥xtSt\S∗∥∥∥2
2

|St\S∗|

Re-arranging, we get

|S∗\St|(f(xt)− f(xt+1)) (9)

≥
∥∥∇S∗\Stf(xt)

∥∥2
2

2ρ+
− ρ+

2

|S∗\St|
|St\S∗|

∥∥∥xtSt\S∗∥∥∥2
2

(10)

On the other hand, by restricted strong convexity of f ,

f(x∗)− f(xt)

≥ 〈∇f(xt), x∗ − xt〉+
ρ−

2

∥∥x∗ − xt∥∥2
2

= 〈∇S∗\Stf(xt), x∗S∗\St〉+
ρ−

2

∥∥x∗ − xt∥∥2
2

≥ 〈∇S∗\Stf(xt), x∗S∗\St〉+
ρ−

2

∥∥∥x∗S∗\St∥∥∥2
2

+
ρ−

2

∥∥∥xtSt\S∗∥∥∥2
2

≥ 〈∇S∗\Stf(xt), x∗S∗\St〉+
µρ+

2

∥∥∥x∗S∗\St∥∥∥2
2

+
ρ− − µρ+

2

∥∥∥x∗S∗\St∥∥∥2
2

+
ρ−

2

∥∥∥xtSt\S∗∥∥∥2
2

≥ − 1

2µρ+
∥∥∇S∗\Stf(xt)

∥∥2
2

+
ρ− − µρ+

2

∥∥∥x∗S∗\St∥∥∥2
2

+
ρ−

2

∥∥∥xtSt\S∗∥∥∥2
2

where the first equality follows from the fact that
∇Stf(xt) = ~0 as xt is an St-restricted minimizer of f and
the last inequality from using the fact that 〈u, v〉+ λ

2 ‖v‖
2
2 ≥

− 1
2λ ‖u‖

2
2 for any λ > 0.

Re-arranging, we get

1

2µρ+
∥∥∇S∗\Stf(xt)

∥∥2
2

≥ f(xt)− f(x∗)− µρ+ − ρ−

2

∥∥∥x∗S∗\St∥∥∥2
2

+
ρ−

2

∥∥∥xtSt\S∗∥∥∥2
2

By substituting this into (10),

|S∗\St|(f(xt)− f(xt+1))

≥ µ
(
f(xt)− f(x∗)

)
− µ2ρ+ − µρ−

2

∥∥∥x∗S∗\S∥∥∥2
2

+
µρ−

2

∥∥∥xtSt\S∗∥∥∥2
2

− ρ+

2

|S∗\St|
|St\S∗|

∥∥∥xtSt\S∗∥∥∥2
2

Note that by our choice of µ and since s∗ ≤ s,

µ2ρ+ = ρ+
s∗

s
≥ ρ+ s

∗ − |S∗ ∩ St|
s− |S∗ ∩ St|

= ρ+
|S∗\St|
|St\S∗|

and so

µ
(
f(xt)− f(x∗)

)
− µ2ρ+ − µρ−

2

∥∥∥x∗S∗\S∥∥∥2
2

+
µρ−

2

∥∥∥xtSt\S∗∥∥∥2
2

− ρ+

2

|S∗\St|
|St\S∗|

∥∥∥xtSt\S∗∥∥∥2
2

≥ µ(f(xt)− f(x∗))

− µ

2

(
µρ+ − ρ−

)(∥∥∥x∗S∗\St∥∥∥2
2

+
∥∥∥xtSt\S∗∥∥∥2

2

)
concluding that

|S∗\St|(f(xt)− f(xt+1))

≥ µ(f(xt)− f(x∗))

− µ

2

(
µρ+ − ρ−

)(∥∥∥x∗S∗\St∥∥∥2
2

+
∥∥∥xtSt\S∗∥∥∥2

2

)
For µκ̃ ≤ 1⇔ µρ+ − ρ− ≤ 0, this automatically implies
that

f(xt)− f(xt+1) ≥ µ

|S∗\St|
(
f(xt)− f(x∗)

)
⇔f(xt+1)− f(x∗) ≤

(
1− µ

|S∗\St|

)(
f(xt)− f(x∗)

)
On the other hand, if µκ̃ > 1 we have

|S∗\St|
(
f(xt)− f(xt+1)

)
≥ µ(f(xt)− f(x∗))

− µ

2

(
µρ+ − ρ−

)(∥∥∥x∗S∗\St∥∥∥2
2

+
∥∥∥xtSt\S∗∥∥∥2

2

)
≥ µ(f(xt)− f(x∗))

− µ (µκ̃− 1)
(√

f(xt)− f(x̃t) +
√
f(x∗)− f(x̃t)

)2
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where we used Lemma 7.8. If f(x∗) = f(x̃t) it is immedi-
ate that

f(xt+1)− f(x∗) ≤
(

1− µ

|S∗\St|
(2− µκ̃)

)(
f(xt)− f(x∗)

)
so let us from now on assume that f(x∗) > f(x̃t) and
set a = f(xt) − f(x̃t), a′ = f(xt+1) − f(x̃t), and b =
f(x∗)− f(x̃t). From what we have concluded before

|S∗\St| (a− a′) ≥ µ(a− b)− µ(µκ̃− 1)
(√

a+
√
b
)2

or equivalently

a′ − b

≤
(

1− µ

|S∗\St|

)
(a− b) +

µ

|S∗\St|
(µκ̃− 1)

(√
a+
√
b
)2

= (a− b)

1− µ

|S∗\St|

1− (µκ̃− 1)

(√
a+
√
b
)2

a− b




= (a− b)

(
1− µ

|S∗\St|

(
1− (µκ̃− 1)

√
a
b + 1√
a
b − 1

))

= (a− b)

(
1− µ

|S∗\St|

(
1− (µκ̃− 1)

(
1 +

2√
a
b − 1

)))

= (a− b)

(
1− µ

|S∗\St|

(
2− µκ̃− 2(µκ̃− 1)√

a
b − 1

))

Replacing back a, a′, b, the desired statement follows:

f(xt+1)− f(x∗) ≤ (f(xt)− f(x∗))

·

1− µ

|S∗\St|

2− µκ̃− 2(µκ̃− 1)√
f(xt)−f(x̃t)
f(x∗)−f(x̃t) − 1



Having established the above lemma, the proof of Theo-
rem 3.7 follows easily.

Proof of Theorem 3.7.

Case 1: µκ̃ ≤ 1. By Lemma 7.9, we have

f(xT )− f(x∗)

≤
(
f(xT−1)− f(x∗)

)(
1− µ

|S∗\ST−1|

)
≤
(
f(xT−1)− f(x∗)

) (
1− µ

s∗

)
≤
(
f(xT−1)− f(x∗)

)
e−

µ
s∗

≤ . . .

≤
(
f(x0)− f(x∗)

)
e−T

µ
s∗

≤ ε

for our choice of T = O
(√

ss∗ log f(x0)−f(x∗)
ε

)
and re-

placing µ =
√

s∗

s .

Case 2: µκ̃ > 1. Let A be the set of 0 ≤ t ≤ T − 1 such
that f(x∗) = f(x̃t) and B the set of 0 ≤ t ≤ T − 1 such
that f(x∗) > f(x̃t). By Lemma 7.9, for t ∈ A we then
have

f(xt+1)− f(x∗)

≤
(
f(xt)− f(x∗)

)(
1− µ

|S∗\St|
(2− µκ̃)

)
≤
(
f(xt)− f(x∗)

) (
1− µ

s∗
(2− µκ̃)

)

We now consider the case t ∈ B. By Lemma 7.9,

f(xt+1)− f(x∗) ≤
(
f(xt)− f(x∗)

)
·

1− µ

|S∗\St|

2− µκ̃− 2(µκ̃− 1)√
f(xt)−f(x̃t)
f(x∗)−f(x̃t) − 1


(11)

Let us suppose that the Theorem statement is not true. This
implies

f(xt)− f(x∗)

≥ f(xT )− f(x∗)

> ε+
4(1− θ)(µκ̃− 1)

(2− µκ̃− θ)2
(f(x∗)− f(x∗))

≥ ε+
4(1− θ)(µκ̃− 1)

(2− µκ̃− θ)2
(f(x∗)− f(x̃t))

≥ 4(1− θ)(µκ̃− 1)

(2− µκ̃− θ)2
(f(x∗)− f(x̃t))

(12)
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for all 0 ≤ t ≤ T . Therefore

f(xt)− f(x̃t)

>

(
4(1− θ)(µκ̃− 1)

(2− µκ̃− θ)2
+ 1

)
(f(x∗)− f(x̃t))

=

(
4(1− θ)(µκ̃− 1) + 4 + (µκ̃+ θ)2 − 4(µκ̃+ θ)

(2− µκ̃− θ)2

)
· (f(x∗)− f(x̃t))

=
(µκ̃− θ)2

(2− µκ̃− θ)2
(f(x∗)− f(x̃t))

or equivalently for all t ∈ B√
f(xt)− f(x̃t)

f(x∗)− f(x̃t)
− 1 >

µκ̃− θ
2− µκ̃− θ

− 1 =
2(µκ̃− 1)

2− µκ̃− θ

Replacing this into (11), we get that for any t ∈ B

f(xt+1)− f(x∗)

≤ (f(xt)− f(x∗))

·

1− µ

|S∗\St|

2− µκ̃− 2(µκ̃− 1)√
f(xt)−f(x̃t)
f(x∗)−f(x̃t) − 1


≤ (f(xt)− f(x∗))

(
1− µ

|S∗\St|
θ

)
and so combining it with the case t ∈ A and using the fact
that µκ̃ < 2− θ ⇔ θ < 2− µκ̃,

f(xT )− f(x∗)

≤
(
f(xT−1)− f(x∗)

)(
1− µ

|S∗\ST−1|
min {2− µκ̃, θ}

)
≤
(
f(xT−1)− f(x∗)

) (
1− µ

s∗
θ
)

≤
(
f(xT−1)− f(x∗)

)
e−

µ
s∗ θ

≤ . . .

≤ (f(x0)− f(x∗))e−T
µ
s∗ θ

= ε+
4(1− θ)(µκ̃− 1)

(2− µκ̃− θ)2
(f(x∗)− f(x∗))

where the last equality follows by our choice of

T =

√
ss∗

θ
log

f(x0)− f(x∗)

B

and replacing µ =
√

s∗

s . This is a contradiction.

8. Experiments
For experimental evaluation we used well known and pub-
licly available datasets. Their names and basic properties
are outlined in Table 2.

Table 2. Datasets used for experimental evaluation. The columns
are the dataset name, the number of examples m, and the number
of features n. The datasets can be downloaded here.

NAME n d PROBLEM

KDDCUP04 BIO 145750 74 BINARY
CAL HOUSING 20639 8 REGRESSION
CENSUS 299284 401 BINARY
COMP-ACTIV-HARDER 8191 12 REGRESSION
IJCNN1 24995 22 BINARY
LETTER 20000 16 BINARY
SLICE 53500 384 REGRESSION
YEAR 463715 90 REGRESSION

8.1. Setup details

8.1.1. BASIC DEFINITIONS

The two quantities that take part in our experiments are
the sparsity and the loss of a particular solution. We have
already defined and discussed the former at length. The
latter refers to the training loss for the problems of Linear
Regression and Logistic Regression. We let m denote the
number of examples and n the number of features in each
example.

In the Linear Regression task we are given the dataset (A, b),
where A ∈ Rm×n, b ∈ Rm. The columns of A corre-
spond to features and the rows to examples. The (`2 Lin-
ear Regression) loss of a solution x ∈ Rn is defined as
`2 loss(x) = 1

2 ‖Ax− b‖
2
2.

In the Logistic Regression task we are given the dataset
(A, b), where A ∈ Rm×n, b ∈ {0, 1}m. The
columns of A correspond to features and the rows
to examples. The (Logistic Regression) loss of a
solution x ∈ Rn is defined as logistic loss(x) =∑
i∈[m]

(−bi log σ(Ax)i − (1− bi) log(1− σ(Ax)i)), where

σ : R → R defined as σ(t) = 1
1+e−t is the sigmoid func-

tion.

8.1.2. DATA PRE-PROCESSING

We apply a very basic form of pre-processing to the data.
More specifically, we use one-hot encoding to turn cate-
gorical features into numerical ones. Then, we discard any
examples with missing data so that all the entries ofA are de-
fined. We also augment the matrix A with an extra all-ones
column (i.e. ~1) in order to encode the constant (y-intercept)
term into A, and we scale all the columns of A so that their
`2 norm is 1. Finally, for the case of ARHT we further
augment A in order to encode the regularizer as well. We
do this by adding an identity matrix as extra rows. In other

words, A←
(
A
I

)
and b←

(
b
~0

)
.

https://drive.google.com/open?id=1RDu2d46qGLI77AzliBQleSsB5WwF83TF
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8.2. Implementation details

The code has been implemented in python3, with libraries
numpy, sklearn, and scipy.

8.2.1. INNER OPTIMIZATION PROBLEM

All the algorithms except for LASSO rely on an inner op-
timization routine in a restricted subset of coordinates in
each step. The inner optimization problem consists of solv-
ing a standard Linear Regression or Logistic Regression
problem using only a submatrix of A defined by a subset
of s of its columns. For that, we use LinearRegression and
LogisticRegression from sklearn.linear model. For Logistic
Regression we used an LBFGS solver with 1000 iterations.

8.2.2. OVERALL ALGORITHM

The LASSO solver we used is Lasso from
sklearn.linear model with 1000 iterations. As LASSO is
not tuned in terms of a required sparsity s, but rather in
terms of the regularization parameter α, for each sparsity
level we applied binary search on α in order to find a
parameter α that gives the required sparsity.

For ARHT, we used a fixed number of 20 iterations at Line
5 of Algorithm 2. In Line 19 of Algorithm 1 we slightly
weaken the progress condition to

gRt(x
t)− gRt(xt+1) ≥ 10−3

s

(
gRt(x

t)− opt
)

(13)

so that it does not depend Furthermore, we do not perform
a fixed number of iterations. Instead, we use a stopping
criterion: If the progress condition (13) is not met and at
least half the elements in xt have already been unregular-
ized, i.e. |St\Rt| ≥ 1

2 |S
t|, then we stop. If a desirable

solution has not been found, it means that this might be an
unsuccessful run, and early termination can be used to de-
tect such runs early and re-start, thus improving the runtime.
The routine which samples an index i proportional to x2i
was implementing by a standard sampling method that uses
binary search on i and flips a random coin at each step. This
requires computation of interval sums of x2i , which is done
by computing partial sums.

8.3. Additional experiments

In Figure 3 and Figure 4 we present some additional experi-
ments, as an addendum to Section 4. One can observe that
in these datasets the performance of all algorithms is very
close, except for LASSO which performs worse in some
cases.

Figure 3. Comparison of different algorithms in the Regression
datasets comp-activ-harder and slice using the Linear Regression
loss.
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Figure 4. Comparison of different algorithms in the Binary classi-
fication datasets letter and ijcnn1 using the Logistic Regression
loss.


