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Abstract
Given data drawn from an unknown distribution,
D, to what extent is it possible to “amplify” this
dataset and faithfully output an even larger set
of samples that appear to have been drawn from
D? We formalize this question as follows: an
(n,m) amplification procedure takes as input n
independent draws from an unknown distribu-
tion D, and outputs a set of m > n “samples”
which must be indistinguishable fromm samples
drawn iid from D. We consider this sample am-
plification problem in two fundamental settings:
the case where D is an arbitrary discrete distri-
bution supported on k elements, and the case
where D is a d-dimensional Gaussian with un-
known mean, and fixed covariance matrix. Per-
haps surprisingly, we show a valid amplification
procedure exists for both of these settings, even
in the regime where the size of the input dataset,
n, is significantly less than what would be nec-
essary to learn distribution D to non-trivial accu-
racy. We also show that our procedures are opti-
mal up to constant factors. Beyond these results,
we describe potential applications of sample am-
plification, and formalize a number of curious di-
rections for future research.

1. Learning, Testing, and Sample
Amplification

How much do you need to know about a distribution, D, in
order to produce a dataset of size m that is indistinguish-
able from a set of independent draws fromD? Do you need
to learn D, to nontrivial accuracy in some natural metric,
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or does it suffice to have access to a smaller dataset of size
n < m drawn from D, and then “amplify” this dataset
to create one of size m? In this work we formalize this
question, and show that for two natural classes of distri-
bution, discrete distributions with bounded support, and d-
dimensional Gaussians, non-trivial data “amplification” is
possible even in the regime in which you are given too few
samples to learn.

From a theoretical perspective, this question is related to
the meta-question underlying work on distributional prop-
erty testing and estimation: To answer basic hypothesis
testing or property estimation questions regarding a dis-
tribution D, to what extent must one first learn D, and can
such questions be reliably answered given a relatively mod-
est amount of data drawn fromD? Much of the excitement
surrounding distributional property testing and estimation
stems from the fact that, for many such testing and esti-
mation questions, a surprisingly small set of samples from
D suffices—significantly fewer samples than would be re-
quired to learn D. These surprising answers have been re-
vealed over the past two decades. The question posed in
our work fits with this body of work, though instead of ask-
ing how much data is required to perform a hypothesis test,
we are asking how much data is required to fool an opti-
mal hypothesis test—in this case an “identity tester” which
knowsD and is trying to distinguish a set ofm independent
samples drawn from D, versus m datapoints constructed in
some other fashion.

From a more practical perspective, the question we con-
sider also seems timely. Deep neural network based sys-
tems, trained on a set of samples, can be designed to per-
form many tasks, including testing whether a given input
was drawn from a distribution in question (i.e. “discrimi-
nation”), as well as sampling (often via the popular Gen-
erative Adversarial Network (GAN) approach). There are
many relevant questions regarding the extent to which cur-
rent systems are successful in accomplishing these tasks,
and the question of how to quantify the performance of
these systems is still largely open. In this work, however,
we ask a different question: Suppose a system can accom-
plish such a task—what would that actually mean? If a
system can produce a dataset that is indistinguishable from
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a set of m independent draws from a distribution, D, does
that mean the system knows D, or are there other ways of
accomplishing this task?

1.1. Formal Problem Definition

We begin by formally stating two essentially equivalent
definitions of sample amplification and then provide an il-
lustrative example. Our first definition states that a function
f mapping a set of n datapoints to a set of m datapoints is
a valid amplification procedure for a class of distributions
C, if for all D ∈ C, letting Xn denote the random variable
corresponding to n independent draws from D, the distri-
bution of f(Xn) has small total variation distance1 to the
distribution defined by m independent draws from D.

Definition 1. A class C of distributions over domain S
admits an (n,m) amplification procedure if there exists a
(possibly randomized) function fC,n,m : Sn → Sm, map-
ping a dataset of size n to a dataset of size m, such that for
every distribution D ∈ C,

DTV (fC,n,m(Xn), Dm) ≤ 1/3,

where Xn is the random variable denoting n independent
draws from D, and Dm denotes the distribution of m in-
dependent draws from D. If no such function fC,n,m ex-
ists, we say that C does not admit an (n,m) amplification
scheme.2

Crucially, in the above definition we are considering the
random variable f(Xn) whose randomness comes from the
randomness of Xn, as well as any randomness in the func-
tion f itself. For example, every class of distributions ad-
mits an (n, n) amplification procedure, corresponding to
taking the function f to be the identity function. If, instead,
our definition had required that the conditional distribution
of f(Xn) given Xn be close to Dm, then the above defini-
tion would simply correspond to asking how well we can
learn D, given the n samples denoted by Xn.

Definition 1 is also equivalent, up to the choice of constant
1/3 in the bound on total variation distance, to the follow-
ing intuitive formulation of sample amplification as a game
between two parties: the “amplifier” who will produce a
dataset of size m, and a “verifier” who knows D and will
either accept or reject that dataset. The verifier’s protocol,
however, must satisfy the condition that given m indepen-
dent draws from the true distribution in question, the ver-
ifier must accept with probability at least 3/4, where the
probability is with respect to both the randomness of the set
of samples, and any internal randomness of the verifier. We

1We overload the notation DTV (·, ·) for total variation dis-
tance, and also use it when the argument is a random variable
instead of the distribution of the random variable.

2The constant in the definition is chosen for ease of exposition,
and we prove the theorems for general tolerance parameter.

briefly describe this formulation, as it parallels the pseudo-
randomness framework, and a number of natural directions
for future work—such as if the verifier is computationally
bounded, or only has sample access to D—are easier to
articulate here.

Definition 2. The sample amplification game consists of
two parties, an amplifier corresponding to a function
fn,m : Sn → Sm which maps a set of n datapoints in do-
main S to a set of m datapoints, and a verifier correspond-
ing to a function v : Sm → {ACCEPT,REJECT}. We
say that a verifier v is valid for distributionD if, when given
as input a set of m independent draws from D, the verifier
accepts with probability at least 3/4, where the probability
is over both the randomness of the draws and any internal
randomness of v:

Pr
Xm←Dm

[v(Xm) = ACCEPT ] ≥ 3/4.

A class C of distributions over domain S admits an (n,m)
amplification procedure if, and only if, there is an amplifier
function fC,n,m that, for every D ∈ C, can “win” the game
with probability at least 2/3; namely, such that for every
D ∈ C and valid verifier vD for D

Pr
Xn←Dn

[vD(fC,n,m(Xn)) = ACCEPT ] ≥ 2/3,

where the probability is with respect to the randomness of
the choice of the n samples, Xn, and any internal random-
ness in the amplifier and verifier, f and v.

As was the case in Definition 1, in the above definition it is
essential that the verifier only observes the output f(Xn)
produced by the amplifier. If the verifier sees both the
amplified samples, f(Xn) in addition to the original data,
Xn, then the above definition also becomes equivalent to
asking how well the class of distributions in question can
be learned given n samples.

Example 1. Consider the class of distributions C corre-
sponding to i.i.d. flips of a coin with unknown bias p.
We claim that there are constants c′ ≥ c > 0 such that
(n, n+cn) sample amplification is possible, but (n, n+c′n)
amplification is not possible. To see this, consider the am-
plification strategy corresponding to returning a random
permutation of the original samples together with cn ad-
ditional tosses of a coin with bias p̂, where p̂ is the em-
pirical bias of the n original samples. Because of the
random permutation, the total variation distance between
these samples and n + cn i.i.d. tosses of the p-biased coin
is a function of only the distribution of the total number of
heads. Hence this is equivalent to the distance between
Binomial(n + cn, p), and the distribution corresponding
to first drawing h ← Binomial(n, p), and then returning
h + Binomial(cn, h/n). It is not hard to show that the
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Figure 1: Sample amplification can be viewed as a game between an “amplifier” that obtains n independent draws from
an unknown distribution D and must output a set of m > n samples, and a “verifier” that receives the m samples and
must ACCEPT or REJECT. The verifier knows the true distribution D and is computationally unbounded but does not
know the amplifier’s training set (the set of n input samples). An amplification scheme is successful if, for every verifier,
with probability at least 2/3 the verifier will accept the output of the amplifier. [In the setting illustrated above, observant
readers might recognize that one of the images in the “Output” set is a painting which was sold in October, 2018 for over
$400k by Christie’s auction house, and which was “painted” by a Generative Adversarial Network (GAN) (Cohn, 2018)].

total variation distance between these two can be bounded
by any small constant by taking c to be a sufficiently small
constant. Intuitively, this is because both distributions have
the same mean, they are both unimodal, and have variances
that differ by a small constant factor for small constant c.
For the lower bound, to see that amplification by more than
a constant factor is impossible, note that if it were possi-
ble, then one could learn p to error o(1/

√
n), with small

constant probability of failure, by first amplifying the orig-
inal samples and then returning the empirical estimate of p
based on the amplified samples.

This constant factor amplification above is not surprising,
since the amplifier can learn the distribution to non-trivial
accuracy. It is worth observing, however, that the above
amplification scheme corresponding to a (n, n+ 1) ampli-
fier will return a set of n+1 samples, whose total variation
distance from n + 1 i.i.d. samples is only O(1/n); this is
despite the fact that the amplifier can only learn the distri-
bution to TV distance Θ(1/

√
n).

1.2. Summary of Results

Our main results provide tight bounds on the extent to
which sample amplification is possible for two funda-
mental settings, unstructured discrete distributions, and d-
dimensional Gaussians with unknown mean and fixed co-
variance. Our first result is for discrete distributions with
support size at most k. In this case, we show that sample
amplification is possible given only O(

√
k) samples from

the distribution, and tightly characterize the extent to which
amplification is possible.Note that learning the distribution
to small total variation distance requires Θ(k) samples in
this case.

Theorem 1. Let C denote the class of discrete distribu-
tions with support size at most k. For sufficiently large k,
and m = n + O

(
n√
k

)
, C admits an (n,m) amplification

procedure.

This bound is tight up to constants, i.e., there is a constant
c, such that for every sufficiently large k, C does not admit
an
(
n, n+ cn√

k

)
amplification procedure.

Our amplification procedure for discrete distributions is ex-
tremely simple: roughly, we generate additional samples
from the empirical distribution of the initial set of n sam-
ples, and then randomly shuffle together the original and
the new samples. For technical reasons, we do not exactly
sample from the empirical distribution but from a suitable
modification which facilitates the analysis.

Our second result concerns d-dimensional Gaussian dis-
tributions with unknown mean and fixed covariance. We
show that we can amplify even with only O(

√
d) samples

from the distribution. In contrast, learning to small con-
stant total variation distance requires Θ(d) samples. Un-
like the discrete setting, however, we do not get optimal
amplification in this setting by generating additional sam-
ples from the empirical distribution of the initial set of n
samples, and then randomly shuffling together the original
and new samples. Here, by empirical distribution, we refer
to the Gaussian distribution centered at the empirical mean
of the n input samples. Moreover, we show a lower bound
proving that, for n = o(d/ log d) there is no (n, n + 1)
amplification procedure which always returns a superset of
the original n samples. Curiously, however, the procedure
that generates new samples from the empirical distribution,
and then randomly shuffles together the new and old sam-
ples, is able to amplify at n = Ω(d/ log d), even though
learning is not possible until n = Θ(d). Additionally, as
n goes from 10 d

log d to 1000 d
log d , this amplification proce-

dure goes from being unable to amplify at all, to being able
to amplify by nearly

√
d samples. This is formalized in the

following proposition.

Proposition 1. Let C denote the class of d−dimensional
Gaussian distributions with unknown mean µ and covari-
ance Σ. There is an absolute constant, c, such that for
sufficiently large d, if n ≤ cd

log d , there is no (n, n+ 1) am-



Sample Amplification

plification procedure that always returns a superset of the
original n points.

On the other hand, there is a constant c′ such that for any
ε, for n = d

ε log d , and for sufficiently large d, there is an(
n, n+ c′n

1
2−9ε

)
amplification protocol for C that returns

a superset of the original n samples.

The above proposition suggests that to be able to amplify
at input size n = o(d/ log d), one must modify the input
samples. A naive way to modify the input samples is to dis-
card all the original n samples and generatem new samples
from the distribution N(µ̂,Σ), where µ̂ is empirical mean
µ̂ of the original set Xn. However this does not even give
an (n, n) amplification procedure for any value of n. To
achieve optimal amplification in the Gaussian case, the am-
plifier first computes the empirical mean µ̂ of the original
set Xn, and then draws m−n new samples from N(µ̂,Σ).
We then shift the original n samples to “decorrelate” the
original set and the new samples; intuitively, this step hides
the fact that the m− n new samples were generated based
on the empirical mean of the original samples. The final set
of returned samples consists of the shifted versions of the
n original samples along with the m− n freshly generated
ones. This procedure gives (n, n + O( n√

d
)) amplification,

and we also show that this is tight up to constant factors.

Theorem 2. Let C denote the class of d−dimensional
Gaussian distributionsN (µ,Σ) with unknown mean µ and

fixed covariance Σ. For all d, n > 0 andm = n+O
(
n√
d

)
,

C admits an (n,m) amplification procedure.

This bound is tight up to constants, i.e., there is a fixed
constant c such that for all d, n > 0, C does not admit an
(n,m) amplification procedure for m ≥ n+ cn√

d
.

1.3. Open Directions

From a technical perspective, there are a number of nat-
ural open directions for future work, including establish-
ing tight bounds on amplification for other natural distri-
bution classes, such as d dimensional Gaussians with un-
known mean and covariance. More conceptually, it seems
worth getting a broader understanding of the range of po-
tential amplification algorithms, and the settings to which
each can be applied.

Weaker or More Powerful Verifiers? Our results show-
ing that non-trivial amplification is possible even in the
regime in which learning is not possible, rely on the mod-
eling assumption that the verifier gets no information about
the amplifier’s training set, Xn (the set of n i.i.d. samples).
If this dataset is revealed to the verifier, then the question
of amplification is equivalent to learning. This prompts
the question about a middle ground, where the verifier has

some information about the set Xn, but does not see the
entire set; this middle ground also seems the most practi-
cally relevant (e.g. how much do we need to know about
a GAN’s training set to decide whether it actually under-
stands a distribution of images?).

How does the power of the amplifier vary de-
pending on how much information the verifier
has aboutXn? If the verifier is given a uniformly
random subsample of Xn of size n′ � n, how
does the amount of possible amplification scale
with n′?

Rather than considering how to increase the power of the
verifier, it might also be worth considering the conse-
quences of decreasing either the computational power, or
information theoretic power of the verifier.

If the verifier, instead of knowing distribution D,
receives only a set of independent draws from D,
how much more power does this give the ampli-
fier? Alternately, if the verifier is constrained to
be an efficiently computable function, does this
provide additional power to the amplifier in any
natural settings?

Potential Applications of Sample Amplification. An
interesting future direction is to examine if amplification is
a useful primitive in settings where the samples are given
as input to downstream analysis. Amplification does not
add any new information to the original data, but it could
still make the original information more easily accessible to
certain types of algorithms which interact with the data in
limited ways. For example, many popular algorithms and
heuristics are not information theoretically optimal, despite
their widespread use. It seems worth examining if ampli-
fication schemes could improve the statistical efficiency of
these commonly used methods. Since the amplified sam-
ples are “good” in an information theoretic sense (they are
indistinguishable from true samples), the performance of
downstream algorithms cannot be significantly hurt. Be-
low, we provide a toy example where amplification im-
proves the accuracy of a standard downstream estimator.

Example 2. Given labeled examples,
(x1, y1), . . . , (xn, yn) drawn from a distribution, D,
with xi ∈ Rd and yi ∈ R, a natural quantity to estimate
is the fraction of variance in y explainable as a linear
function of x: infθ∈Rd E(x,y)∼D[(θTx−y)2]. The standard
unbiased estimator for this quantity is the training error of
the least-squares linear model, scaled by a factor of 1

n−d .
This scaling factor makes this estimate unbiased, although
the variance is large when n is not much larger than d.
Figure 2 shows the expected squared error of this estimator
on raw samples, and on (n, n + 2) amplified samples, in
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the case where xi ∼ N(0, Id), and yi = θTxi+η for some
model ‖θ‖2 = 1 and independent noise η ∼ N(0, 14 )—
hence the true value for the “unexplainable variance”
is 1/4. Here, the amplification procedure draws two
additional datapoints, x from the isotropic Gaussian
with mean equal to the empirical mean, and labels them
according to the learned least-squares regression model θ̂
with independent noise of variance 5/n times the empirical
estimate of the unexplained variance.

Figure 2: Performance improvement by amplification. See
example 2 for a description of the setup.

One potential limitation to applications of amplification is
that our existing results show that it is only possible to am-
plify the sample size by sub-constant factors (for the set-
tings considered). If the algorithm using the amplified data
is limited, however, then we could hope for much larger
amplification factors. This is reminiscent of the open prob-
lem in the previous section on whether larger amplification
is possible against weaker classes of verifiers.

In practice, there is already growing interest in using gen-
erative models for data augmentation to improve classifi-
cation accuracy (Antoniou et al., 2017; Frid-Adar et al.,
2018; Wang et al., 2018; Yi et al., 2019). Given our re-
sults which show that amplification is significantly easier
than learning, such pipelines might be more effective than
one would initially suspect. It is also worth thinking more
generally about how to design modular data analysis or
learning pipelines, where a first component of the pipeline
could be an amplifier tailored to the specific data distribu-
tion, followed by more generic learning algorithms that do
not attempt to leverage structural properties of the data dis-
tribution. Such modular pipelines might prove to be signif-
icantly easier to develop and maintain, in practice.

Implications for Generative Models. The sample am-
plification framework has some connections to generative
modelling. Generative models such as GANs aim to pro-
duce new samples from an unknown distribution D given
a training set drawn from D. It is tempting to try to relate
the amplification setting to GANs by viewing the amplifier
and verifier as analogs of the generator and discriminator,
respectively. This is not an accurate correspondence: For
GANs, the discriminator typically evaluates examples indi-

vidually (or in small batches), and often has seen the same
training set as the generator, whereas our verifier explicitly
evaluates a full set of samples without knowledge of the
training samples. The samples generated by a generative
model are often evaluated by humans (either manually or
algorithmically). This evaluation is usually aimed at under-
standing the quality of output samples conditioned on the
training data—if some of the output samples are copies of
the training set, this is not satisfactory—which again corre-
sponds to learning rather than sample amplification.

Despite these differences, some ways that generative mod-
els are actually used, do closely mirror the amplification
setting. For example, when generative models are used
to augment a training set that is used to learn a classifier,
both the generated samples and the original dataset are fed
into the learning algorithm. The learning algorithm does
not necessarily distinguish between “new” and “old” sam-
ples. In this setting, it does make sense to evaluate the set
of “new” and “old” samples together, as a single set, rather
than evaluating the “new” samples conditioned on the “old”
ones. This exactly corresponds to our amplification for-
mulation. As amplification is often easier than learning,
it might be worthwhile trying to develop more techniques
that are explicitly trying to amplify, rather than learn.

A second, distinct connection between amplification and
GANs, relates to the question of how humans can evaluate
the samples produced by a GAN. The gap between learn-
ing (evaluating the generated samples conditioned on the
training set), and amplification (evaluating the generated
samples without knowing the training set), suggests that in
order to truly evaluate the samples produced by a GAN, we
would need to closely inspect the training data used by the
GAN. This is clearly impractical in many settings, and mo-
tivates some of the questions described above concerning
how much access a verifier needs to the input data in order
for there to be a gap between learning, and amplifying.

1.4. Related Work

The question of deciding whether a set of samples consists
of independent draws from a specified distribution D—
known as identity testing—is one of the fundamental prob-
lems at the core of distributional property testing (Goldre-
ich & Ron, 2000; Batu et al., 2001; Paninski, 2008; Valiant
& Valiant, 2017; Diakonikolas & Kane, 2016; Batu et al.,
2013; Valiant, 2011; Chan et al., 2014; Orlitsky & Suresh,
2015; Bhattacharya & Valiant, 2015; Levi et al., 2013; Di-
akonikolas & Kane, 2016)). In the majority of these works,
the assumption is that the samples are i.i.d. draws from
some fixed distribution, and the common theme in these
results is that these hypothesis tests can be accomplished
with far less data than would be required to learn the distri-
bution. While the identity testing problem is clearly related
to the amplification problem we consider, these appear to
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be quite distinct problems. In the amplification setting, the
core question is how the amplifier can leverage a set of in-
dependent samples from D to generate a larger set of (pre-
sumably) non-independent samples that can successfully
masquerade as a set of i.i.d. draws from D.

Within this line of work on distributional property testing
and estimation, there is also a recent thread of work on
designing estimators or tests, whose performance given n
i.i.d. samples is comparable to the expected performance
of a naive “plugin” estimator (which returns the property
value of the empirical distribution) based on m > n i.i.d.
draws (Valiant & Valiant, 2016; Yi et al., 2018). The term
“data amplification” has been applied to this line of work,
although it is a different problem from the one we consider.

The recent work on sampling correctors (Canonne et al.,
2018) also considers the question of how to produce a
“good” set of draws from a given distribution. That work
assumes access to draws from a distribution, D, which is
close to having some desired structural property, such as
monotonicity or uniformity, and considers how to “correct”
or “improve” those samples to produce a set of samples that
appear to have been drawn from a different distribution D′

that possesses the desired property (or is closer to possess-
ing the property).

Our formulation of sample amplification as a game be-
tween an amplifier and a verifier, closely resembles the
setup for pseudo-randomness (see (Vadhan et al., 2012) for
a relatively recent survey). There, the pseudo-random gen-
erator takes a set of n independent fair coin flips, and out-
puts a longer string of m > n outcomes. The verifier’s job
is to distinguish the output of the generator from a set of m
independent tosses of the fair coin. In contrast to our set-
ting, in pseudo-randomness, both players know that the dis-
tribution in question is the uniform distribution, the catch is
that the generator does not have access to randomness, and
the verifier is computationally bounded.

Finally, it is also worth mentioning the work of Viola on the
complexity of sampling from distributions (Viola, 2012).
That work also considers the challenge of generating sam-
ples from a specified distribution, though the problem is
posed as the computational challenge of producing sam-
ples from a specified distribution, given access to uniformly
random bits. One of the punchlines is that there are distri-
butions, such as the distribution over pairs (x, y) where x
is a uniformly random length-n string, and y = parity(x),
where small circuits can sample from the distribution, yet
no small circuit can compute y = parity(x) given x.

2. Algorithms and Proof Overview
In this section, we describe our sample amplification algo-
rithms for the discrete and Gaussian settings, and give an

overview of their analyses. The full proofs of the upper and
lower bounds are provided in the supplementary material.

2.1. Discrete Distributions with Bounded Support

We begin by providing some intuition for amplification in
the discrete distribution setting, by considering the simple
case where the distribution in question is a uniform dis-
tribution over an unknown support. We then extend this
intuition to general discrete distributions.

Intuition via the Uniform Distribution. Consider the
problem of generating (n+ 1) samples from a uniform dis-
tribution over k unknown elements, given a set of n sam-
ples from the distribution. Suppose n �

√
k. Then with

high probability, no element appears more than once in a set
of (n+ 1) samples. Therefore, as the amplifier only knows
n elements of the support with n samples, it cannot produce
a set of (n+1) samples such that each element only appears
once in the set. Hence, no amplification is possible in this
regime. Now consider the case when n = c

√
k for a large

constant c. By the birthday paradox, we now expect some
elements to appear more than once, and the number of ele-
ments appearing twice has expectation ≈ c2

2 and standard
deviation Θ(c). In light of this fact, consider an amplifica-
tion procedure which takes any element that appears only
once in the setXn, adds an additional copy it to the setXn,
and then randomly shuffles these n+ 1 samples to produce
the final setZn+1. It is easy to verify that the distribution of
Zn+1 will be close in total variation distance to a set Xn+1

of (n + 1) i.i.d. samples drawn from the original uniform
distribution. Since the standard deviation of the number of
elements in Xn+1 that appear twice is Θ(c), intuitively, we
should be able to amplify by an additional Θ(c) samples, by
taking Θ(c) elements which appear only once and repeat-
ing them, and then randomly permuting these n + Θ(c)
samples. Note that with high probability, most elements
only appear once in the setXn, and hence the previous am-
plifier is almost equivalent to an amplifier which generates
new samples by sampling from the empirical distribution
of the original n samples, and then randomly shuffles them
with the original samples. Our amplification procedure for
general discrete distributions is based on this sample-from-
empirical procedure.

Algorithm and Upper Bound. To facilitate the analy-
sis, our general amplification procedure which applies to
any discrete distributionD, deviates from the sample-from-
empirical-then-shuffle scheme in two ways. The modifi-
cations avoid two sources of dependencies in the sample-
from-empirical-then-shuffle schemes. First, we use the
“Poissonization” trick and go from working with the multi-
nomial distribution to the Poisson distribution—making the
element counts independent for all≤ k elements. And sec-
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ond, note that the new samples are dependent on the old
samples if we generate the new samples from the empirical
distribution. To leverage independence, we instead (i) di-
vide the input samples into two sets, (ii) use the first set to
estimate the empirical distribution, (iii) generate new sam-
ples using this empirical distribution, and (iv) randomly
shuffle these new samples with the samples in the second
set. More precisely, we simulate two sets XN1 and XN2 ,
of Poisson(n/4) samples from the distributionD, using the
original set Xn of n samples from D. This is straightfor-
ward to do, as a Poisson(n/4) random variable is ≤ n/2
with high probability. We then estimate the probabilities
of the elements using the first set XN1

, and use these esti-
mated probabilities to generate R ≈ m − n more samples
from a Poisson distribution, which are then randomly shuf-
fled with the samples in XN2

to produce ZN2+R. Then the
set of output samplesZm just consist of the samples inXN1

concatenated with those inZN2+R. This describes the main
steps in the procedure, more technical details can be found
in the full description in the supplementary. We show that
this procedure achieves (n, n+O

(
n√
k

)
) amplification.

To prove this upper bound, first note that the counts of each
element in a shuffled set Zm are a sufficient statistics for
the probability of observing Zm, as the ordering of the el-
ements is uniformly random. Hence we only need to show
that the distribution of the counts in the set Zm is close
in total variation distance to the distribution of counts in
a set Xm of m elements drawn i.i.d. from D. Since the
first set XN1

is independent of the second set XN2
, the

additional samples added to XN2
are independent of the

samples originally in XN2
, which avoids additional depen-

dencies in the analysis. Using this independence, we show
a technical lemma that with high probability over the first
setXN1

, the KL-divergence between the distribution of the
set ZN2+R and DN2+R of N2 + R i.i.d. samples from D
is small. Then using Pinsker’s inequality, it follows that
the total variation distance is also small. The final result
then follows by a coupling argument, and showing that the
Poissonization steps are successful with high probability.

Lower Bound. We now describe the intuition for show-
ing our lower bound that the class of discrete distributions
with support at most k does not admit an (n,m) amplifica-
tion scheme for m ≥ n + cn√

k
, where c is a fixed constant.

For n ≤ k
4 , we show this lower bound for the class of uni-

form distributions D = Unif[k] on some unknown k ele-
ments. In this case, a verifier can distinguish between true
samples fromD and a set of amplified samples by counting
the number of unique samples in the set. Note that as the
support of D is unknown, the number of unique samples
in the amplified set is at most the number of unique sam-
ples in the original set Xn, unless the amplifier includes
samples that are outside the support of D, in which case

the verifier will trivially reject this set. The expected num-
ber of unique samples in n and m draws from D differs
by c1n√

k
, for some fixed constant c1. We use a Doob mar-

tingale and martingale concentration bounds to show that
the number of unique samples in n samples from D con-
centrates within a c2n√

k
margin of its expectation with high

probability, for some fixed constant c2 � c1. This implies
that there will be a large gap between the number of unique
samples in n andm draws fromD. The verifier uses this to
distinguish between true samples from D and an amplified
set, which cannot have sufficiently many unique samples.

Finally, we show that for n > k
4 , a

(
n, n + c′k√

k

)
ampli-

fication procedure for discrete distributions on k elements
implies a (k4 ,

k
4+c′

√
k) amplification procedure for the uni-

form distribution on (k − 1) elements, and for sufficiently
large c′ this is a contradiction to the previous part. This re-
duction follows by considering the distribution which has
1 − k

4n mass on one element and k
4n mass uniformly dis-

tributed on the remaining (k − 1) elements. With suffi-
ciently large probability, the number of samples in the uni-
form section will be ≈ k

4 , and hence we can apply the pre-
vious result.

2.2. Gaussian Distributions with Unknown Mean and
Fixed Covariance

Given the success of the simple sampling-from-empirical
scheme for the discrete case, it is natural to consider the
analogous algorithm for d-dimensional Gaussian distri-
butions. In this section, we first show that this analo-
gous procedure achieves non-trivial amplification for n =
Ω(d/ log d). We then describe the idea behind the lower
bound that any procedure which does not modify the input
samples does not work for n = o(d/ log d). Inspired by the
insights from this lower bound, we then discuss a more so-
phisticated procedure, which is optimal and achieves non-
trivial amplification for n = Ω(

√
d).

Upper Bound for Algorithm which Samples from the
Empirical Distribution. Let µ̂ be the empirical mean
of the original set Xn. Consider the (n,m) amplifica-
tion scheme which draws (m − n) new samples from
N(µ̂,Σ) and then randomly shuffles together the original
samples and the new samples. We show that for any ε,
this procedure—with a small modification to facilitate the
analysis—achieves

(
n, n+O

(
n

1
2−9ε

))
amplification for

n = d
ε log d . This is despite the empirical distribution

N(µ̂,Σ) being 1− o(1) far in total variation distance from
the true distribution N(µ,Σ), for n = o(d).

We now provide the proof intuition for this result. First,
note that it is sufficient to prove the result for Σ = I .
This is because all the operations performed by our am-
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plification procedure are invariant under linear transforma-
tions. The intuition for the result in the identity covari-
ance case is as follows. Consider n = Θ(d/ log d). In
this case, with high probability, the empirical mean µ̂ sat-
isfies ‖µ − µ̂‖ = O(

√
log d) ≤

√
c log n for a fixed con-

stant c. If we center and rotate the coordinate system, such
that µ̂ has the coordinates (‖µ− µ̂‖, 0, . . . , 0), then the dis-
tribution of samples from N(µ̂, I) and N(µ, I) only dif-
fers along the first axis, and is independent across different
axes. Hence, with some technical work, our problem re-
duces to the following univariate problem: what is the total
variation distance between (n + 1) samples from the uni-
variate distributions N(0, 1) and D̃, where D̃ is a mixture
distribution where each sample is drawn fromN(0, 1) with
probability 1 − 1

n+1 and from N(
√
c log n, 1) with proba-

bility 1
n+1? We show that the total variation distance be-

tween these distributions is small, by bounding the squared
Hellinger distance between them. Intuitively, the reason
for the total variation distance being small is that, even
though one sample from N(

√
c log n, 1) is easy to distin-

guish from one sample from N(0, 1), for sufficiently small
c it is difficult to distinguish between these two samples in
the presence of n other samples from N(0, 1). This is be-
cause for n draws fromN(0, 1), with high probability there
are O(n1−c) samples in a constant length interval around√
c log n, and hence it is difficult to detect the presence or

absence of one extra sample in this interval.

Lower Bound for any Procedure which Returns a Su-
perset of the Input Samples. We show that procedures
which return a superset of the input samples are inherently
limited in this Gaussian setting, in the sense that they can-
not achieve (n, n+ 1) amplification for n ≤ cd

log d , where c
is a fixed constant.

The idea behind the lower bound is as follows. If we con-
sider any arbitrary direction and project a true sample from
N(µ, I) along that direction, then with high probability, the
projection lies close to the projection of the mean. How-
ever, for input set Xn with mean µ̂, the projection of an
extra sample added by any amplification procedure along
the direction µ − µ̂ will be far from the projection of the
mean µ. This is because after seeing just cd

log d samples, any
amplification procedure will have high uncertainty about
the location of µ relative to µ̂. Based on this, we construct
a verifier which can distinguish between a set of true sam-
ples and a set of amplified samples, for n ≤ cd

log d .

More formally, Let x′i be the i-th sample returned by the
procedure, and let µ̂−i be the mean of all except the i-th
sample. Let “new” be the index of the additional point
added by the amplifier to the original setXn, hence the am-
plifier returns the set {x′new, Xn}. Note that µ̂← N(µ, In ),
hence ‖µ − µ̂‖2 ≈ d

n with high probability. Suppose the
verifier evaluates the following inner product for the addi-

tional point x′new,

〈x′new − µ̂−new, µ− µ̂−new〉. (1)

Note that µ̂−new = µ̂ as the amplifier has not modified any
of the original samples in Xn. For a point x′new drawn from
N(µ, I), this inner product concentrates around ‖µ−µ̂‖2 ≈
d
n . We now argue that if the true mean µ is drawn from
the distribution N(0,

√
dI), then the above inner product

is much smaller than d
n with high probability over µ. The

reason for this is as follows. After seeing the samples in
Xn, the amplification algorithm knows that µ lies in a ball

of radius ≈
√

d
n centered at µ̂, but µ could lie along any

direction in that ball. Formally, we can show that if µ is
drawn from the distribution N(0,

√
dI), then the posterior

distribution of µ | Xn is a Gaussian N(µ̄, σ̄I) with µ̄ ≈
µ̂ and σ̄ ≈ 1

n . As µ − µ̂ is a random direction, for any
x′new that the algorithm returns, the inner product in (1) is

≈ ‖x′new− µ̂‖‖µ− µ̂‖
(

1√
d

)
with high probability over the

randomness in µ | Xn. The verifier checks and ensures
that ‖x′new − µ̂−new‖ = ‖x′new − µ̂‖ ≈

√
d. Hence for any

(n, n + 1) amplification scheme, the inner product in (1)

is at most ≈
√

d
n with high probability over µ | Xn. In

contrast, we know that this inner product is ≈ d
n for a true

sample from N(µ, I).

Finally, note that the algorithm can randomly shuffle the
samples, and hence the verifier does the above inner prod-
uct test for every returned sample x′i, for a total of (n+ 1)
tests. If (n + 1) tests are performed, then the inner prod-

uct is expected to deviate by
√

d logn
n around its expected

value of dn , even for (n+1) true samples drawn for the dis-

tribution. But if n� d
log d , then

√
d
n �

d
n −

√
d logn
n , and

hence any (n, n + 1) amplification scheme in this regime
fails at least one of the following tests with high proba-
bility over µ: (1) ∀ i ∈ [n + 1], 〈x′i − µ̂−i, µ− µ̂−i〉 ≥
d
n −

√
d logn
n , and (2) ∀ i ∈ [n + 1], ‖x′i − µ̂−i‖ ≈

√
d.

As true samples pass all the tests with high probability, this
shows that (n, n + 1) amplification without modifying the
provided samples is impossible for n� d

log d .

Optimal Amplification Procedure for Gaussians: Algo-
rithm and Upper Bound. The above lower bound shows
that it is necessary to modify the input samples Xn to
achieve amplification for n = o(d/ log d). What would be
the most naive amplification scheme which does not out-
put a superset of the input samples? One candidate could
be an amplifier which first estimates the sample mean µ̂
of Xn, and then just outputs m samples from N(µ̂, I). It
is not hard to see that this scheme does not even give a
valid (n, n) amplification procedure. The verifier in this
case could check the distance between the true mean and
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Algorithm 1 Sample Amplification for Gaussian with Unknown Mean and Fixed Covariance
Input: Xn = (x1, x2, . . . , xn), where xi ← N(µ,Σd×d).
Output: Zm = (x′1, x

′
2, . . . , x

′
m), such that DTV (Dm, Zm) ≤ 1

3 , where D is N(µ,Σd×d)

procedure AMPLIFYGAUSSIAN(Xn)
µ̂ :=

∑n
i=1

xi

n
εi ← N(0,Σd×d), for i ∈ {n+ 1, n+ 2, . . . ,m} . Draw m− n i.i.d samples from N(0,Σd×d)
x′i := µ̂+ εi, for i ∈ {n+ 1, n+ 2, . . . ,m}
x′i := xi −

∑m
j=n+1

εj
n , for i ∈ {1, 2, . . . , n} . Remove correlations between old and new samples

return Zm := (x′1, x
′
2, . . . , x

′
m)

the mean of the returned samples, which would be signifi-
cantly more than expected, with high probability.

How should one modify the input samples then? The above
lower bound also shows what such an amplification pro-
cedure must achieve—the inner product in (1) should be
driven towards its expected value of d

n for a true sample
drawn from the distribution. Note that the inner product
is too small for the algorithm which samples from the em-
pirical distribution N(µ̂, I) as the generated point x′new is
too correlated with the mean µ̂−new = µ̂ of the remaining
points. We can fix this by shifting the original points in Xn

themselves, to hide the correlation between x′new and the
original mean µ̂ of Xn. The full procedure is quite simple
to state, and is described in Algorithm 1. Note that unlike
our other amplification procedures, this procedure does not
involve any random shuffling of the samples. We show that
this procedure achieves (n,m) amplification for all d > 0

and m = n+O
(
n√
d

)
.

We now provide a brief proof sketch for this upper bound,
for the case when m = n + 1. Note that the returned
samples in Zm can also be thought of as a single sam-
ple from a (m × d)-dimensional Gaussian distribution
N
(

(µ, µ, . . . , µ)︸ ︷︷ ︸
m times

, Σ̃md×md

)
, as the returned samples are

linear combinations of Gaussian random variables. Hence,
it is sufficient to find their mean and covariance, and use
that to bound their total variation distance to true sam-
ples from the distribution (which can also be though of
as a single sample from a (d × m)-dimensional Gaus-
sian distribution N

(
(µ, µ, . . . , µ), Imd×md

)
). The TV

distance between the two distributions is proportional to
‖Σ̃md×md − Imd×md‖F. Our modification procedure re-
moves the correlations between the original samples and
the generated samples to ensure that the non-diagonal en-
tries of Σ̃md×md are small, and hence the total variation
distance is also small.

General Lower Bound for Gaussians. We show a lower
bound that there is no (n,m) amplification procedure for
Gaussian distibutions with unknown mean form ≥ n+ cn√

d
,

where c is a fixed constant. The intuition behind the lower
bound is that any such amplification procedure could be
used to find the true mean µ with much smaller error than
what is possible with n samples.

To show this formally, we define a verifier such that for
µ ← N(0,

√
dI) and m > n + cn√

d
, m true samples from

N(µ, I) are accepted by the verifier with high probability
over the randomness in the samples, but m samples gener-
ated by any (n,m) amplification scheme are rejected by the
verifier with high probability over the randomness in the
samples and µ. In this case, the verifier only needs to eval-
uate the squared distance ‖µ− µ̂m‖2 of the empirical mean
µ̂m of the returned samples from the true mean µ, and ac-
cept the samples if and only if this squared distance is less
than d

m + c1
√
d

m for some fixed constant c1. It is not difficult
to see why this test is sufficient. Note that for m true sam-
ples drawn from N(µ, I), ‖µ − µ̂m‖2 = d

m ± O
(√

d
m

)
.

Also, the squared distance ‖µ − µ̂2‖ of the mean µ̂ of
the original set Xn from the true mean µ is concentrated
around d

n ± O
(√

d
n

)
. Using this, for m > n + cn√

d
, we

can show that no algorithm can find a µ̂m which satisfies
‖µ − µ̂m‖2 ≤ d

m ± O
(√

d
m

)
with decent probability over

µ← N(0,
√
dI). This is because the algorithm only knows

µ up to squared error d
n ± O

(√
d
n

)
based on the original

set Xn.

3. Conclusion
We introduce the notion of sample amplification, which
formalizes what it means to enlarge a dataset that consists
of independent draws from an unknown distribution, D.
For two fundamental classes of distributions—discrete dis-
tributions and high dimensional Gaussians—we show that
non-trivial amplification is possible even when one does
not have enough data to learn D. Beyond these results, we
present a toy example illustrating one potential application
of sample amplification, and outline several intriguing di-
rections of future work in this vein. We believe that further
exploration of sample amplification may inform how we
view and evaluate generative models.
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