Sample Amplification:
Increasing Dataset Size even when Learning is Impossible

(Supplementary Material)

A. Proofs: Gaussian with Unknown Mean and Fixed Covariance
A.1. Upper Bound

In this section, we prove the upper bound in Theorem 2 by showing that Algorithm 1 can be used as a (n,n + %)
amplification procedure.

First, note that it is sufficient to prove the theorem for the case when input samples come from an identity covariance
Gaussian. This is because, for the purpose of analysis we can transform our samples to those coming from indentity
covariance Gaussian, as our amplification procedure is invariant to linear transformations to samples. In particular, let
fx denote our amplification procedure for samples coming from N (p, ), and, Y, = (y1,¥2, - . ., yn) denote the random
variable corresponding to n samples from N (u, ). Let X,, = (21, 2, . . ., T, ) denote n samples from N (u, I), such that
Y, =%2 (Xpn—p)+p= (Z% (21— p)+ u, DE (xa—p)+ 1ty ..., E (25, — 1) + ). Due to invariance of our amplification
procedure to linear transformations, we get that X2 (f7(X,,) — 1) +  is equal in distribution to fg(E% (Xpn —p)+p) =
f=(Y,,). This gives us

Drv(f(Yn), Yim) = Dy (F(37 (X — ) + 1), £7 (X, — 1) + p1)
= Dy (S5 (f1(Xn) — 1) + 1, 22 (X — p1) + 1)
< Drv(fi(Xn), Xm),

where the last inequality is true because the total variation distance between two distributions can’t increase if we apply the
same transformation to both the distributions. Hence, we can conclude that it is sufficient to prove our results for identity
covariance case. This is true for both the amplification procedures for Gaussians that we have discussed. So in this whole
section, we will work with identity covariance Gaussian distributions.

Proposition 1. Let C denote the class of d—dimensional Gaussian distributions N (u, I) with unknown mean u. For all

d,n>0andm=n+ O (%), C admits an (n, m) amplification procedure.

Proof. The amplification procedure consists of two parts. The first uses the provided samples to learn the empirical mean
i and generate m — n new samples from N (ji, I'). The second part adjusts the first n samples to “hide” the correlations
that would otherwise arise from using the empirical mean to generate additional samples.

>

Let €41, €nt2, - - - » €m be m —n ii.d. samples generated from N (0, I), and let ji = % The amplification procedure

will return 2, . ..,z with:

L E;’L=71+1 €5 .
m;:{xz szt 2 o fori € {1,2,...,n} 0

i+ €, forie {n+1,n+2,...,m}.

We will show later in this proof that subtracting @

samples.

will serve to decorrelate the first n samples from the remaining

Let fc n,m : S™ — S™ be the random function denoting the map from X, to Z,, as described above, where S = RY. We
need to show

DTV (Zm = fC,n,m (Xn) 7X'HL) < 1/3,

where X, and X,,, denote n and m independent samples from N (u, I') respectively.
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For ease of understanding, we first prove this result for the univariate case, and then extend it to the general setting.

So consider the setting where d = 1. In this case, X,,, corresponds to m i.i.d. samples from a Gaussian with mean y, and
variance 1. X, can also be thought of as a single sample from an m—dimensional Gaussian N ( (fy fby e ooy 1), Ime)-
—_———

m times
Now, fc n,m is a map that takes ni.i.d samples from N (p, 1), m—n i.i.d samples (¢;) from N (0, 1), and outputs m samples

that are a linear combination of the m input samples. So, fc ..m (X5) can be thought of as a m—dimensional random

variable obtained by applying a linear transformation to a sample drawn from N((lh/% ey 14,0,0, ... 7()),]mxm).
—— ——

As a linear transformation applied to Gaussian random variable outputs a Gaussian randoT;Itlmxlfe:lriablg v:euzeest that Z,,, =
(2}, 2%, ..., 2)) is distributed according to N (fi, Xy xm ), Where i and X, denote the mean and covariance. Note
that o = (u, i, ..., 1) as

m times

n

E[a] +Ele] = p+0=p, fori e {n+1,n+2,...,m}.

ST e .
Elz;| — E | ==Y | — 0=y, forie{1,2,...,
{[m} [ | =u p, foric { n} o

Next, we compute the covariance matrix X, x ., .

Fori = j,andi € {1,2,...,n}, we get

Fori=j,andi € {n+1,n+2,...,n+ m}, we get

Yi=E [(ff/i - M)Q}
—E (i - n)?| +E[€]

=—+41.
n

Forie {1,2,...,n},je{n+1,n+2,...,n+m}, we get
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Fori,j € {1,2,...,n},i # j, we get

¥ij = El(z] — ) (1'; — )]
—E[(3+ e — 1) (B + €5 — )]
. 2
=E [(u ) }
1
=
This gives us
met 14 mee 00 0
m—_n PR :
n? .
Limxm = 0 e 0 14 L 1 1
0 o 1T ugr ol
L0 e e 0 1 L + 1]

Now, finding Dry (Z,,, X;n) reduces to computing Dy (N (&, Lxm) » N (fi, Zmxm)). From (?)Theorem 1.1]de-

vroye2018total, we know that Drv (N (fi, Imxm) » N (fi, Smxm)) < min (1, 2||S — I||r). This gives us

. - . 3
Dry (N (i Tysem) . N (i Sumsens)) < min (1, S I|F)

<\ ((mn ”)2n2+;<mn>2>

VB (m—n)

n

3)

Now, for d > 1, by a similar argument as above, X,,, can be thought of as d independent samples from the following d

distributions: N( (11, 41y« e s 01)s Ime), e N( (Ldy [y - - - 11d), Ime)- Or equivalently, as a single sample from
——— —_— ——
m times m times

N((,ul, Wiy ooy o1y oy Moy oy - - - ,ud),Idemd). Similarly, Z,, can be thought of as d independent samples from

m times m times
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N( (Biy iy - - o i), mem), or equivalently, a single sample from N((ul, Py eevs hlyeees fbds Hdy - - - ,,ud),i]demd)
—_———

m times m times m times

where X, 4xmd 1s a block diagonal matrix with block diagonal entries equal to X, ., (denoted as X in the figure).

Y 0 e -ee 0
by 0
Smdxmd = S0 .0
0 . 0
0 0 2]

Similar to (3), we get

DTV(N(<IJ’17M17"'HU’17"'a,uda,U/d7"'7/”‘d)7Imd><md)7N((Ml7M1a"'7//"17"'7/’6d7,ud7"'a/j/d)7imd><’md))

m times m times m times m times

< min (Lzlli—fllp)

< d(i ((mn;”>2n2+nl2(m—n)2>>
\/37d(m—n).

n

If we want the total variation distance to be less than §, we get m—n = O (\"/—%) . Setting § = %, we getm = n—+0 (%) ,

which completes the proof. O

A.2. Lower Bound

n

In this section we prove the lower bound from Theorem 2 and show that it is impossible to amplify beyond O ( \/E) more

samples. The intuition behind the lower bound is that any such amplification procedure could be used to find the true mean
 with much smaller error than what is possible with n samples.

To show this formally, we define a verifier such that for y < N(0,+/dI) and m > n + 75> m true samples from N (u, 1)
are accepted by the verifier with high probability over the randomness in the samples, but m samples generated by any
(n, m) amplification scheme are rejected by the verifier with high probability over the randomness in the samples and .

In this case, the verifier only needs to evaluate the squared distance i — fi,, ||? of the empirical mean fi,, of the returned
samples from the true mean p, and accept the samples if and only if this squared distance is less than % + CIT‘/E for some
fixed constant ¢;. It is not difficult to see why this test is sufficient. Note that for m true samples drawn from N (u, I),
= fim|? =2 +0 (g) Also, the squared distance ||z — 1% || of the mean /i of the original set X,, from the true mean

1 s concentrated around % +0 (%) Using this, for m > n + %, we can show that no algorithm can find a ji,,, which

satisfies || — fi ||> < £ £ O (%) with decent probability over 1 <— N(0,+/dI). This is because the algorithm only
knows p up to squared error % +0 (%) based on the original set X,.

Proposition 2. Ler C denote the class of d—dimensional Gaussian distributions N (u, I) with unknown mean . There
is a fixed constant c such that for all sufficiently large d,n > 0, C does not admit an (n, m) amplification procedure for

mzn—i—c—\/%.

Proof. Note that it is sufficient to prove the theorem for m = n 4 cn/+/d for a fixed constant ¢, as an amplification
procedure for m > n + en/ V/d implies an amplification procedure for m = n + en/ Vd by discarding the residual
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samples. To prove the theorem for m = n + c¢n/ \/&, we will define a distribution D,, over u and a verifier v(Zm)
for the distribution N (u,I) which takes as input a set Z,, of m samples, such that: (i) for all u, the verifier v(Z,,)
will accept with probability 1 — 1/e? when given as input a set Z,, of m i.i.d. samples from N(u,I), (ii) but will
reject any (n,m) amplification procedure for m = n + cn/+/d with probability 1 — 1/e2, where the probability is
with respect to the randomness in p < D, the set X, and in any internal randomness of the amplifier. Note that by
Definition 2 of an amplification procedure, this implies that there is no (n, m) amplification procedure for m = n+cn/ V.

We now define the distribution D,, and the verifier v(Z,,). We choose D,, to be N (0, VdI). Let fi,, be the mean of the
samples Z,,, returned by the amplification procedure. The verifier v(Z,,) performs the following test, accepts if fi,, passes
the test, and rejects otherwise—

[om = pll® = d/m| < 10Vd/m. @

We first show that 1 i.i.d. samples from N (u, I) pass the above test with probability 1 — 1/e?. We will use the following
concentration bounds for a x? random variable Z with d degrees of freedom (??),

Pr{Zde2\/$+2t}§e’t,Vt>0, (5)
Pr {\Z—d| > di] < 2¢7U/3 vt e (0,1). ©6)

Note that fi,, < N(u, =) for m i.i.d. samples from N (s, I). Hence by using (6) and setting t = 10//4d,

|

liim = 1l = d/m| > 10Vd/m] < 1/¢

Hence m i.i.d. samples from N (y, I) pass the test with probability at least 1 — 1/¢2.

We now show that for x sampled from D,, = N(0,+/dI), the verifier rejects any (n,m) amplification procedure for
m=mn+cn/ \/d with high probability over the randomness in . Let D, x,, be the posterior distribution of y conditioned
on the set X,,. We will show that for any set X, received by the amplifier, the amplified set Z,, is accepted by the verifier
with probability at most 1/e? over y D, x,, . This implies that with probability 1 — 1/ e? over the randomness in
w < D, the set X,, and any internal randomness in the amplifier, the amplifier cannot output a set Z,,, which is accepted
by the verifier, completing the proof of Proposition 2.

To show the above claim, we first find the posterior distribution D, x, of u conditioned on the amplifier’s set X,,. Let
to be the mean of the set X,,. By standard Bayesian analysis (see, for instance, (?)), the posterior distribution D, x, =
N (ji,5%I), where,
— n _92 ].
= ——Ng, 0°=—-—.
T yva nt 1/vd

We show that any set Z,, returned by the amplifier for m = n + 100n,/+/d fails the test (4) with probability 1 — 1/e? over
the randomness in p | X,,. We expand ||fi,,, — 1/|? in the test as follows,

it = ol = Nl =7 = (0 = B)|?

= Nt = 1ll* = 2{fom — s o = 1) + |l = >
By using (6) and setting t = 10/+/d, with probability 1 — 1/e?,

d 10vd
n+1/Vd n+1/Vd
(d)(l 1 )_10\/Zl

n n

lpe = all* >

nVd
= d/n —Vd/n?* —10Vd/n
> d/n —12Vd/n.
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As p | X,, < N(ji,6%), {fim — fi,pt — fi) is distributed as N (0, 52|/, — j1]|?). Hence with probability 1 — 1/e3,
(i — [ g — 1) < 10||ftrm — ll/A/n + 1/v/d < 10| fim — fi|]/ /. Therefore, with probability 1 — 2/e,

liim = pl® = [l — 1 = (20/3/R) | i = fal| + d/n — 12V/d/n.
We claim that ||fi,, — ji||* — 20|t — ji]| /v/7 > —100/n. To verify, note that ||, — fil|*> — 20||ftm — fi]|//n + 100/n
is a non-negative quadratic function in ||/i,,, — i||. Therefore, with probability at least 1 — 2/e3,

| fim — pl|> > =100/n + d/n — Vd/n? — 10V/d/n > d/n — 20V/d/n.

To pass (4), || fm — u||? < d/m+10+/d/m. Therefore, if an amplifier passes the test with probability greater than 1 —2/¢?
over the randomness in | X,, form = n + 100n/ V/d, then,
d/n —20vVd/n < ||jim — pl|* < d/m +10Vd/m,

— d/n —20Vd/n < d/m+ 10Vd/m,

— d/n — 20Vd/n < d/(n + 100n/Vd) + 10vV/d/(n + 100n/Vd),

— d/n—20Vd/n < d/n(1+100/vVd)~" + 10vV/d/n(1 + 100/Vd) ~*

— d/n —20Vd/n < d/n(1 — 50/Vd) + 10V/d/n(1 — 50/Vd),

— —20Vd/n < —40v/d/n — 1000/n,

— —20Vd/n < —30Vd/n,
which is a contradiction. Hence for m = n + 100n/+/d, every (n, m) amplifier is rejected by the verifier with probability
greater than 1 — 1/e? over the randomness in 1, the set X,,, and any internal randomness of the amplifier.

O

A.3. Upper Bound for Procedures which Returns a Superset of the Input Samples

In this section we prove the upper bound in Proposition 1. The algorithm itself is presented in Algorithm 1. Before we
proceed with the proof we prove a brief lemma that will be useful for bounding the total variation distance.

Lemma 1. Let X,Y1,Ys be random variables such that with probability at least 1 — € over X, Dy (Y1]X,Y2]|X) < ¢
then Dy (X, Y1), (X,Y3)) <e+¢€.

Proof. From the definition of total variation distance, we know

Dry((X, Y1), (X,Y2)) = %Z [Pr((X, Y1) = (z,9)) — Pr((X,Y2) = (z,y)))|
:fZPr o) Pr(Yi=y|X=2)-Pr(Ya=y| X =2)|

:ZPr )§Z|Pr<Y1:y|X:x>fPr<Y2:y|X::r)|
—ZPr =2)dpy(V1 | X =2,V | X =a).

Since with probability (1 — €) over X, drv (Y7 | X,Ys | X) is at most €/, and total variation distance is always bounded
byl,weget) Pr(X=xz)drv(Y1|X=2Ys|X=2)<(1-€+e<e+e
This same proof with summations appropriately replaced with integrals will go through when the random variables in

consideration are defined over continuous domains. O

Now we prove the upper bound from Proposition 1. As in Proposition 1, it is sufficient to prove this bound only for the
case of identity covariance gaussians as our algorithm in this case is also invariant to linear transformation.
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Proposition 3. Let C denote the class of d—dimensional Gaussian distributions N (p, I) with unknown mean p. There is

. . 1_ . .
a constant ¢’ such that for any €, and n = and for sufficiently large d, there is an (n, n+cdnz 95) amplification

_d
elogd’
protocol for C that returns a superset of the original n samples.

Algorithm 1 Sample Amplification for Gaussian with Unknown Mean and Fixed Covariance Without Modifying Input
Samples
Input: X,, = (z1,22,...,2y), where 2; < N(u, Xaxd)-
Output: Z,,, = (¢}, 5, ...,),), such that Dy (D™, Z,,) < %, where D is N (1, Sqxa)
. procedure AMPLIFYGAUSSIAN2(X,,)

ri=m-—-n
n
] — 2 T;

1
2
3 M= i=1 n/2

4: xj=x, fori € {1,2,...,5}
5: Xremdlnmg (.’ﬂ L4, L2422y ,LL‘n)
6:

7

8

fori=5+1 to mdo

T « Bernoulll( Ta72) > Set T' = 1 with probability 27, and 0 otherwise
: if T equals 1 then
9: (E; — N(ﬂ, ded)
10: else
11: if X cmaining 18 not empty then
12: x} := Random Element Drawn without Replacement from Xremaining
13: else
14: xh =1 > Happens with small probability
15: T = (2, 2h, .. 2h)
16: return 2,

Proof. Let m = n + r ,where r = O (n%‘gf) We begin by describing the procedure to generate m samples Z,,, =

(z}, 2, ..., 2!), given nii.d. samples X,, = (z1,x2,...,Z,) drawn from N (u, I). Let i = ZR/Q i denote the mean

of first samples in X,. For distributions P and @, let (1 — a)) P + o) denote the mixture distribution where (1—a)and
« are the respective mixture weights.

We first describe how to generate Z,,, = (x,xY,..., 2, ), given n ii.d samples X,,. Fori € {1,2,..., 5}, we set

xf = x;. Fori € {§ + 1,5 +2,...,m}, we set z; to a random independent draw from the mixture distribution

(1 - ff%) N(p, Laxa) + Tlffl N(fi, Laxa)-

Now, the construction of Z,, is very similar to Z/, except that we don’t have access to N(u, I4x4) to sample points

from the mixture distribution. So, for Z,,, set 2; = x; fori € {1,2,...,5}. Fori € {§ + 1,5 +2,...,m}, we use

samples from (rz 41,22 42,...,%y) instead of producing new samples from N (i, I4xq). With probability (1 — Tlfr)% ),

we generate a random sample without replacement from (a:%H, Taig,..., :z:n) , and with probability fi we generate a

sample from N ({1, I), and set ; equal to that sample. As we sample from (Tn41,2n49,...,2,) without replacement, we

can generate only 5 samples this way. The expected number of samples needed is (5 + 7)(1 — Tlfz ) = & — 9r, and with
2

high probability, we won’t need more than 5 samples. If the total number of required samples from (Ig+1, Tryo, ..., xn)

turns out to be more than 5, we set x; to an arbitrary d—dimensional vector (say 1) but this happens with low probability,
leading to insignificant loss in total variation distance.

Let X, denote the random variable corresponding to m i.i.d. samples from N (s, I'). We want to show that Dry (X, Zp)
is small. By triangle inequality, Drv (X, Zm) < Drv(Xm, Z),) + Drv (2], Zm).

We first bound Dy (Z,, Z,). Let Y, Y’ < Binomial (r +5,1— Tlfg ) be random variables that denotes the number of
2
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107
r+%

samples from (1 — ) mixture component in Z,, and Z/ respectively. Let € denote the sample space of Z,,, and Z,.

Dry(Zun, Zyy) = wax [Pr(Zy, € E) ~ Pr(Z}, € )|

= max [Pr (Z, € E|Y < D) Pr(Y < 2) +Pr (Zue B|Y > ) Pr (v > 3)

—Pr(z;neE|Y’gg)Pr(Y'gg)—Pr(Z;neE|Y’>%)Pr(Y’>g)|

Since Y and Y’ have the same distribution, we have Pr (Y’ < g) =Pr (Y < g), and Pr (Y’ > g) =Pr (Y > g) This
gives us

2 2 2

—Pr(Z,’neE\Y’gg)Pr(Ygg)fPr(aneE|Y'>%>Pr<Y>g)\

<maxPr (Y <2} [Pr(Zme BlY <)~ Pr (2, c BIY <2 |
ECQ 2 2 2

DTV(Zm,Z;%)ngaéqPr(Zm€E|Y§g>Pr(Y§E)+Pr(Zm€E|Y>Q>Pr(Y>E)

+Pr<Y>g) |Pr(ZmeE|Y>g)—Pr(Z{neE\Y’>%)\.

where the last inequality holds because of the triangle inequality. Now, note that Pr(Z,, € E|Y < %) = Pr(Z], €
ElY' < %) forall £, and |[Pr(Z,, € E|Y > %) — Pr(Z,, € E|Y’ > %)| < 1. This gives us

Dy (Zm, Z,) < Pr (Y > g) .

We know E[Y] = % — 9r, and Var[Y] = (% + ) (1 — R ) ( 10 ) < 10r. Using Bernstein’s inequality, we get

n n
7 tT 2 tr

Pr [Y > g} — Pr(Y — E[Y] > 9r)

< exp <—81r>
- 26 '

Next, we calculate Dpy (X, Z! ). We write X,,, = (X, X2) and Z/, = (Z, Z%) where X, and Z!. denote the first
2 samples of X,,, and Z), , and X2, and Z2, denote rest of their samples. Since X, and Z;, are drawn from the same
distribution, IT2 | N (11, T), and Z, X\, X2, are independent, we get (Z\, X2,) and (X}, X2,) are equal in distribution.
This gives us

So we get Dy (Zpm, Zl,) < exp (=51r).

) (Z3: Z2) = Drv((Zyys X7.), (Ziys Zo)-

m? m m? m m

Dry (X, Z! ) = Dpy (X)), X2

m m? m

From Lemma 1, we know that, if with probability at least 1 — e; over Z\., Dpy(X2|ZL Z2|ZY) < e, then
Dy ((Z),X2),(ZL, Z2)) < €1 + 3. Here, Z} and X2, are independent, and the only dependency between Z} and
Z?2 is via the mean i of the elements of Z},. So Dy (X2 |ZL, Z2|ZL) = Dry (X2, Z2 |ji). We will show that with

high probability over /i, this total variation distance is small.

We first estimate || — p|. Note that E,./ [[|i — p|?] = 22, and 2|2 — | is a x? random variable with d degrees of

n’
freedom. To bound the deviation of ||fi — p||? around it’s mean, we will use the following concentration bound for a 2
random variable R with d degrees of freedom (?, Example 2.5).

Pr[|R — d| > dt] < 2¢~%"/3 forallt € (0,1).
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This gives us Pr(| 2| — pl|* — d| > 0.5d) < 2e~4/32, thatis, ||z — pl| < /3¢ < /3elogd with probability at least
1—2e=4/32,

X2, is distributed as the product of 5 + 7 gaussiaus HgMN (1, Igxa) and Z?,; |fi is distributed as the product of % + r

mixture distributions 1‘[2?(1 _ %wfr) N(p, Igxa) + 319:7,]\7 (fi, Iaxq). We evaluate the total variation distance between
these two distributions by bounding their squared Hellinger distance, since squared Hellinger distance is easy to bound for
product distributions and is within a quadratic factor of the total variation distance for any distribution. By the subadditivity

of the squared Hellinger distance, we get

2
ny,. ny,. 10r 10r B
(NG L T (1 259 ) N i) + 59V (i)

3T g+ -
n 10r 10r . 2
S (§+T) H N(N’>Id><d)7 1-— r N(M,Idxd)—i— N(uw[dxd) .
bl +7r 9 T
For sufficiently large d, r and n satisfy » < {¢, so we can use Lemma 2 to get
10r 107 . 2 57602 -
H N, Lixa);, (1= 5 N (1 Lixa) + 5N (i, Laxa) | < Z—edli—nl’
Y Y ’ ®)
576r2d"
S— 7
n

with probability at least 1 — 2e~%/32 over ji. From (7) and (8), we get that with probability at least 1 — 2e~%/32 over fi,

ni, ny 1
H (Hfj N(Nafdxd)vniit (1 T o

2

2 2 19¢ 2 19¢
- n 576r<d 576r<d
TN(/“’L7Id><d)) S (§+T) p) S )

n n

10r

)N(M, Tixa) +
r 2

where the last inequality holds because 7 < . As the total variation distance between two distributions is upper bounded
by v/2 times their Hellinger distance, we get that with probability at least 1 — 2e~%/32 over /i,

10r
B

10r
F+r

Dry (Hfer(%IdXd),Hf_tr (1 -
_ 24V2rd* 2 24y/2rn®
= Va T Un

where the last inequality is true because n > v/d.

) N (s Laa) + N(ﬂ,fdxd))

Now, from Lemma 1, we know that if with probability at least 1 — €; over Z}r:, Dry (X2, \le Z2/|Z,1,;) < €9,

m?

then Dpy((ZY,X2),(Z%.Z2)) < e + €. In this case, ¢ = 2e %32 and ¢ = %, so we get
Drv (24, X2), (2}, 22)) = Drv(Xom, Z),) < 2e4/32 4 20207 We also know that Dy (Zm, Z),) < e 517/,

Using triangle inequality, we get

24+/2rn —817/26

T +e .

For § > 2( —d/32 4 o=817/26) "and for r < ”428; , we get Dy (X, Zm) < 6. For d large enough, setting 6 = % and
r< 2 1 4 1 f we get the desired result. Note that we haven’t tried to optimize the constants in this proof.

Dy (Xom, Zm) < 2e7%32 4

Lemma 2. Let P = N(0,Ixq) and Q@ = N(fi, Iqxa) be d-dimensional gaussian distributions. For r < I

18’
22
H(P(l— 1OT)P+T1JE% )S%e%

Proof. We work in the rotated basis where @ = N((]|iz]],0,0,...,0),I4xq) and P = N(0, I4xq). Let P, = N(0,1)
——

d—1 times

and Q1 = N(||i],1) denote the projection of P and ) along the first coordinate axis respectively. Note that the
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mixture distribution in question is the product of ((1 — :fl;) P+ Tlf’;
2
Since the squared Hellinger distance is subadditive for product distributions, we get

uct of P; and N (0, Ig—1xd—1)-
2
H (P (1 _ 107 )

Ql) and N(0,I4-1%x4—1), and P is the prod-

10r)P+T+%

2
10r
Ql) e HN(O0, L 1a 1), N(O, Ta1xa-1)

1
gH(RJO— OZ)P
7‘+§
2
1 1
:H(RJO— OZ)P OZQO.
r—+ b r -+ b1

102) P+ 1220y

107 10r
H(Ph(lfr+g>PA+r+n

Therefore, to bound the required Hellinger distance, we just need to bound
Ql) Let p; and ¢; denote the probability densities of P, and ((1 —

) = I (- ) e

2

10T ) P1 + TI_E% Q1

respectively. We get H (Pl, (1 —
i 1 ) 107 1 2 107 N
_ e—a2/2 _ 1— /2 4 —(@@=lah?/2 | dx
/—oc (\/\/QW \/( ) or r+g v )
2
_ /OO 1 o212 1~ 107“n 4 10rn Zlal2s2)ale
T 4*‘5 T 4*‘5

oo V2T

We will evaluate this integral as a sum of integral in two regions

1. From —oo to ||ji]| /2:

a2 4 29 10r 10 —yan2+21a)e ’
e~ / 1— 1— — + — e 2 dx <
r+ 5 r—+ b

ez

— 00

2
llall/2 )

/ 1 e /2 (11— 10Tn dx.
_ 7"+§

0o V2w

Since r < ﬁ;,weget Lor < 1. Usingl —y <y/1—yfor0 <y <1, we get
o\ a2y 10r 2
dr < e /2 (n> dzx
+ oo V2T T+ 5

/lﬂl/2 1 e (o ]
_ V2T T+ 5

40072

< .

n2
- 2
— |l a 2|4«
2. From H/‘“ to oo, we get fH#”/Q \/— ( \/ 1}:2 + Tlffz 64”’ 2424 ) d.
- 2
</ ( 107“n SITALESTTTEN 1) do.
llall/2 +3

107 Now, using /I +y < 1+ 2, we get
2

PUTE, SIPTIN
107 =lalP+2lale
e 2 > g

r+5

This is because = > ||/i]| /2, and therefore



Sample Amplification

2
/ 1 o2 /2 14 lOrn e—um@;wmm 1) de
lall/2 V2 Tty

o 1 2 /9 5 —lal?+2)ale ?
§/ e/ <1+ —e 2 1> dx
lall/2 V2T rt+3
2 [ee]
. 100r / L jal?+2lalzg-a®/2,,
|

=0 Sy V2
2 oo
_ %(;Hﬂuz/ Ll /g /gy
n? lall/2 V2

Since 2| ||z — 22 /4 < 4]|a|%, we get

2 . o) . 2 . 0
10027” o lal? / liale—z/a_L_ a2\ g 100; EE / L o) 4o
n Al /2 V2r n lal/2 V27

2 00
S loofr 63Hﬂ\|2 (/ 1 ex2/4) daj

—oo VAT

< L00V2rT sy

100v/2r2
n2
Adding the two integrals, we get

2 2 2 .
= (Pl, <1 10rn> P+ 10rn Q1> - 400; N 100\?r Sl
r+3 r+3 n

n

2
< 27677 sian?

n2

This gives us H (P, (1 e ) P+ 1 0) < %Te?ﬂmnzﬂ which completes the proof. O

r+5 r+5

A .4. Lower Bound for Procedures which Return a Superset of the Input Samples

In this section we prove the lower bound from Proposition 1.

Proposition 4. Let C denote the class of d—dimensional Gaussian distributions N (u, I) with unknown mean p. There is
an absolute constant, ¢, such that for sufficiently large d, if n < %, there is no (n,n + 1) amplification procedure that
always returns a superset of the original n points.

Proof. The outline of the proof is very similar to the proof of Proposition 2. As in the proof of Proposition 2, we define a
verifier v(Z,, 1) for the distribution N (1, I') which takes as input (n+1) samples {x} € R?,i € [n+1]}, and a distribution
D,, over p, such that if n < O(d/log(d)); (i) for all y, the verifier will accept with probability 1 — 1/e* when given as
input a set Z,,11 of (n + 1) i.i.d. samples from N (u, I), (i) but will reject any (n,n + 1) amplification procedure which
does not modify the input samples with probability 1 — 1/e?, where the probability is with respect to the randomness
in p < D, the set X,, and in any internal randomness of the amplifier. Note that by Definition 2 of an amplification
procedure, this implies that there is no (n,n + 1) amplification procedure which does not modify the input samples for
n < O(d/log(d)). We choose D,, to be N(0,+/dI). Let fi_; be the mean of the all except the i-th sample returned by the
amplification procedure. The verifier performs the following tests, and accepts if all tests pass, and rejects otherwise—

1. Vie[n+1], |2 — pl|* < 15d.
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2. Vi €+ 1], (@) — fisy p— i) = df (4n).

We first show that for a sufficiently large constant C and n < O(d/log(d)), (n + 1) i.i.d. samples from N (u, I') pass the
above tests with probability at least 1 — 1/e2. As ||z} — p|? is a x? random variable with d degrees of freedom, by the
concentration bound for a x? random variable (5), a true sample 2, passes the first test with failure probability e ~3¢. Hence
by a union bound, all samples {z;,7 € [n + 1]} pass the first test with probability at least 1 — de™3% > 1 — 1/e3. Let E
denote the following event,

Vi€ [n+1], || — pul® > d/n— /20dlogd/n > d/(2n),
Vi€ n+1], ||t —pul? <d/n+ /20dlogd/n < 2d/n.

Note that ji_; + N(u, %) Hence, by using (6) with ¢t = 20 ! sd, and a union bound over all i € [n + 1],

Pr[E] >1—1/é.

Note that as ;< N(u, I), for a fixed fi_;, (@} — fi_s, o — i) = N(||ai—i — p||?, ||fi—i — u||?). Hence conditioned on
E, by standard Gaussian tail bounds,

Pr [ (2] — fii, i — fis) < d/(2n) — \/20d log d/n] <1/n?,

— Pr [<x; i — i) < d/(4n)] <1/n?,

where in the last step we use the fact that n < 01 - for alarge constant C. Therefore, conditioned on E, {z;,i € [n+1]}
pass the third test with probability at least 1 — 1 / e®. Hence by a union bound, (n + 1) samples drawn from N (u, I) will
satisfy all 3 tests with failure probability at most 1 / e2. Hence for any p, the verifier accepts n + 1 i.i.d. samples from
N (u, I') with probability at least 1 — 1/¢2.

We now show that for n < C%gd and p sampled from D,, = N(0,V/dI), the verifier rejects any (n,n + 1) amplification
procedure which does not modify the input samples with high probability over the randomness in p and the set X,,. Let
D, x, be the posterior distribution of 1 conditioned on the set X,,. As in Proposition 2, D, x, = N(f, a2I), where,

— n _92 ].
= —Flp, 0" =—""=.
T yva n+1/Vd

We will show that with probability 1—e~3% over the randomness in the set X, received by the amplifier and with probability
1 —1/e% over p D, x, and any internal randomness of the amplifier, the amplifier cannot output a set Z, 1 which
contains the set X, as a subset and which is accepted by the verifier. To show this, we first claim that ||ug|| < 30d%/*
with probability 1 — e?. Note that yo < N (i, n) where 1 < N(0,v/dI). By (5), with probability at least 1 — e3¢,
]| < 15d%/* and || — po|| < 15v/d. Hence by the triangle inequality, ||| < 30d®/* with probability at least 1 — e3¢
We now show that for sets X, such that ||| < 30d/%, Z,, 1 cannot pass the verifier with probability more than 1 — ¢?
over the randomness in p|X,,. The proof consists of two cases, and the analysis of the cases is similar to the proof of
Proposition 2. Without loss of generality, assume that Z,,; = {z}, X,,}, hence z is the only sample not present in the
set. We will show that either 2 or ji_; fail one of the three tests performed by the verifier with high probability.

CASE 1: ||z} — ji]|*> > 100d.

We show that the first test is not satisfied with high probability in this case. As u|X,, < N(ji, ), hence by (5), ||u—ji|? <
15d/n with probability 1 — e~3%. Therefore, if ||z} — fz||? > 100d, then with probability e =3¢,

2} — pll* > (V100d — \/15d/n)* > 15d,

in which case the first test is not satisfied. Hence in the first case, the amplifier succeeds with probability at most e3¢,
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CASE 2: ||z} — i* < 100d.

Note that for the sample ', p1—1 = po as the last n samples are the same as the original set X,,. We now bound ||i—1 — f|
as follows,

s = il = a0 — — | < el < 304,
n+1/vVd 1~ n/d~ n

We now expand (x} — fi_1,u — fi_1) in the third test as follows,

(@) = fir, p— i) = (@) — o — 5) = (i1 — By pp = 1) — (@7 — By oy — ) + [la—a — 1%,
<@y = fyp =) = (i = = ) + oy = Allla-y = Al + la-y = all*.
Note that {(fi_; — ji,u — fi) is distributed as N(0,52|fi—1 — ji]|*) and hence with probability 1 — 1/e? it is at most

10[|fi_1 — fil|/+/n. Similarly, with probability 1 — 1/e3, (2} — fi, u — i) is at most 10|z} — fi||/\/n. Therefore, with
probability 1 — 2/e?,

(@) = fior,p = fiox) <102y — )l /v +10]ier =l /vn+ [l = allll -1 = Al + -1 — Al

d d3/4 d3/4 d
< 100\/74— 300—— +300—— + 900£
n n? n n?

< 100\/E+ 1500
n n
=100y/5(3) + G ()

Hence for a sufficiently large constant C, n < C%gd and d sufficiently large, with probability 1 — 2/e3,
d
5 )

which implies that the second test is not satisfied. Hence the amplifier succeeds in this case with probability at most 2/e3.

The overall success probability of the amplifier is the maximum success probability across the two cases, hence for sets
X, such that the ||;10]| < 30d°/4, the verifier accepts the amplified set Z,, . with probability at most 2/e%. As Pr ||| o] <

30d°/ 4] > 1 — e~34, the overall success probability of the amplifier over the randomness in y, X,, and any internal

randomness of the amplifier is at most 1/¢2. O

B. Proofs: Discrete Distributions with Bounded Support
B.1. Upper Bound

In this section we prove the upper bound from Theorem 1. The algorithm itself is presented in Algorithm 2. For clarity of
writing, we assume that the number of input samples is 4n, instead of n.

Proposition 5. Let C denote the class of discrete distributions with support size at most k. For sufficiently large k, and
=4n+ 0O ( ) C admits an (4n, m) amplification procedure.

Proof. To avoid dependencies between the count of different elements, we first prove our results in a Poissonized setting,
and then in lemma 4, we describe how to use the amplifier for Poissonized setting to get an amplifier for the original
multinomial setting. Let D € C be an unknown probability distribution over [k], and let p; denote the probability mass
associated with ¢ € [k]. Throughout the proof, we use random variable X, to denote ¢ independent samples from D,
where ¢ can also be a random variable. Suppose we are given N = N; + N independent samples from D, denoted by
Xn, and Xy,, where N; and N» are drawn from Poisson(n). We show how to amplify them to M = N + R samples,
denoted by Z;, such that Dpy (Z,;, Xar) is small, where M < Poisson(2n + r).



Sample Amplification

Algorithm 2 Sample Amplification for Discrete Distributions

Input: X4, = (21,22, ..., Z4n), where z; < D, for any discrete distribution D over [£].
Output: Z,,, = (2}, 5, ...,},), such that Dy (D™, Z,) < &.

1:
2
3
4
5:
6
7
8

10:
11:
12:

13:
14:

15:

16:
17:

18:
19:

procedure AMPLIFYDISCRETE(X4,,)

Ni, Ny + Poisson(n) > Draw two i.i.d samples N; and N5 from Poisson(n)
N = Nl + NQ
if N < 4n then

XN1 = (1'171‘2,. .. ,iCNl)

XNy = (TN 41, TN 425+ -+ TN 4N
else > Uninteresting case: happens with low probability

‘X']\]1 = ($17£E1, N ,xl)

N times
AX'N2 = (iEl,ZL'l, e ,Zl)
T Nt

r:=8(m—n)
(#),25,..., 2 r) = AMPLIFYDISCRETEPOISSONIZED(X v, , X,, T, 1)
Amplify first Ny + N5 samples to N1 + No + R samples, for R roughly distributed as Poisson(r)

Ry :=max(R,r/8)

if R < r/8 then > Uninteresting case: happens with low probability
(7,29, .. ., 2N g, ) = (T, %Y, ..., Ty gy T1, 21,0, 71)
—————
g — It times
/ / / p—
(xN+Rl+1’ xN+R1+27 e ,xm) = (xN+1,xN+2, P ,J}4n,(R1,§))
Add the remaining samples to get 4n + r/8 samples in total
L = (2, b, .. 2))
return 2,

20: procedure AMPLIFYDISCRETEPOISSONIZED(X v, , Xn,, T, 1)

21:
22:

23:

24
25:
26:
27:
28:

29:

Generates approximately Poisson(r) more samples given Ny + Ny input samples
XN, = (21,29, ., 2N, )y XNy, = (TN, 41, TNy 42, -« - s TN+ N, ), and 7 = 8(m — n)

count; := Zj\Ql 1(x; = j), for j € [k] > Find the count of each element in first Ny samples

;= < for j € [K]
Z; < Poisson(p;r), for j € [k]

R:=Y" %
('r/17xl27~'-az§\[1) = (Ihx%--'axl\h)
(%N, 415+ TN, 4 Ny 4 r) = RandomPermute((Tn, 41, TNy 425 -+ s TN 4 No» L Loy Lo Rk oK)

21 times 2} times
o /
return (z7, 75, ..., Ty 4 N, 4 R)
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Our amplifying procedure involves estimating the probability of each element using Xy, , generating 12 independent sam-
ples using these estimates, and randomly shuffling these samples with X y,. Let u; be the count of element ¢ in X, and y;
be the count of 7 in X, noting they are both distributed as Poisson(np;). The amplification procedure proceeds through
the following steps:

1. Estimate the frequency p; of each element using u;, that is, p; = **.
2. Draw Z; < Poisson(rp;) additional samples of element i for all ¢ € [k].
3. Append these generated samples to X, to get Zn, 1 g.

4. Randomly permute the elements of Z, 1 r, and append them to X, to get Z,;.

We first show that Z; is close in total variation distance, to Poisson(2n + r) samples generated from D. We will prove
this by showing that with high probability over the choice of X, , the distribution of Zy, g is close to Poisson(n + r)
samples generated from D. After this, we can use lemma 1 to show that appending Zy,+ r to the samples in X, results
in a sequence with low total variation distance to X ;. Since our amplification procedure randomly permutes the last
N3 + R elements, we can argue this using only the count of each element. Recall y; is the count of element ¢ in Xy,
and Z; is the number of additional samples of element ¢ added by our amplification procedure. Let z; < Poisson(rp;),
and let v; = y; + 2; and 0; = y; + 2;. Here, v; denotes the count of element ¢ in Poisson(n + r) samples drawn from D,
and v; denotes the corresponding count in samples generated using our amplification procedure. We use P, to denote the
distribution associated with random variable v.

Lemma 3. For r < ne'®/(4\/k), with probability 1 — € over the randomness in {u;,i € [k]},

k k
drv <H U%Hﬁz) < 6/2.

i=1 i=1

where | refers to the product distribution.

Proof. We partition the support [k] into two sets. Let S = {i : p; > ¢/(2nk)} and S = [k]\S. Let |S| = k’. Without
loss of generality, assume that S = {i:1<:¢<k'} and S¢ = {i: k' +1<i<k}. We will separately bound the
contribution of the variables in the set S and S° to the total variation distance. For the first set .S, we will upper bound
Zf;l Dk (v; || 9;), and use Pinsker’s inequality to then bound the total variation distance. For the second set S¢, we
will directly bound Zf: k41 drv (vi, ©;). All our bounds will be with high probability over the randomness in the first set
{ui, i € [k]}.

We first bound the total variation distance for the variables in the first set .S. Note that because the sum of two Poisson
random variables is a Poisson random variable, v; is distributed as Poisson(np; +rp;) and 9; is distributed as Poisson(np; +
ru;/n). We will use the following expression for the KL divergence Dx 1. (P || @) between two Poisson distributions P
and ) with means \; and A, respectively—

A
Dkr(P || Q) = A log (A;) + A2 — A 9)

Using this expression, we can write the KL divergence between the distributions of v; and ¥; as follows,

pi(n+r)
pin + ru;/n

Dxr(vi || ;) = pi(n+1)log ( ) + (ru;/n —rp;).

Let §; = u; — np;. We can rewrite the above expression as follows,

pi(n+r)
pi(n+7r)+71d/n
1
1+ 76;/(npi(n+71))

Dict(v; || 95) = pa(n + 1) log ( ) by /m,

=pi(n+r) log< )*TW”-
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Note that log(1 + ) > = — 222 for x > 0.8. As §; > —np;, therefore rd; /(np;(n + 1)) > —0.8 for r < n. Therefore,

(n+7)] 1 < roi/n+ 2r252
i(n+ 1) lo < —ré/n+ ———"—,
p &\1 +76;/(np;(n+ 1)) n2p;(n+ 1)
21282
= D i || 95) < 5———,
e 0 = S )
K’ K’
) 212 52
— ZDKL(W || Ui) < F 4 npi' (10)
i=1 =1
We will now bound 25;1 7?; As a Poisson(\) random variable has variance A and 0; = w; — np; where u; <+
Poisson(np;), therefore,
E Ll =K.
i1 P
Also, the fourth central moment of a Poisson(A) random variable is A(1 4+ 3)), hence
Var[6?] = E [6] — E [67]°,
= np;(1+ 3np;) — (np;)* = np; (1 + 2np;),
K’ K’
52 14 2np;
— Var = T
As p; > €/(2nk) fori € S and k' < k, therefore,
K’ 52
V. L < 2K% e+ 2k < 4k? /e
ar ; vl e+ 2k < /€
Hence by Chebyshev’s inequality,
K52 i
P — K >4k/e| <e/4
r ; o >dk/e| <e/4,
K52 i
= Pr L >4k/e| <e/4. (11)
2 g, = W] =

Let E; be the event that Ziil 7:,;2 < 4k/e. By (11), Pr(E;) > 1 — ¢/4. Conditioned on the event F; and using (10), we

can bound the KL divergence as follows,
k/

2k
Dxkr (H Vi Hﬁl) = Dip(vi | ;) < 87:26 :

i€S i€S i=1

Hence for r < ne'®/(4v/k) and conditioned on the event F;,
DKL(H'Ui Hﬁl) §€2/2.
icS

icS
Hence using Pinsker’s inequality, conditioned on the event F/,

dTV (H Vi, H’f)l> S 6/2.

i€S €S
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We will now bound the total variation distance for the variables in the set S¢. Let F5 be the event that u; = 0, V i € S°.
Note that as u; ~ Poisson(np;) where p; < ¢/(2nk), u; = 0 with probability at least e~/ () hence Pr(E;) > e~/ >
1 — €/2. We now condition on the event F5. Recall that v; = y; + z;, where z; ~ Poisson(rp;) and 0; = y; + 2;, where
Z; = 0 conditioned on Es. By a coupling argument on y;, the total variation distance between the distributions of v; and v;
equals the total variation distance between the distributions of z; and Z;. As 2; = 0, conditioned on the event Fs,

dry (’Ui,’[/i) = PI‘[ZfL' ?é 0] =1—-e " <1~ efre/(an)
Te €

— < —,
— 2nk — 2k

A

asr < n.

Hence conditioned on Fs,

k
d A7 <H Vi, H ﬁz> S Z dTV(Ui,ﬁi)SC/Q-

i€Se €8¢ i=k’+1

Hence conditioned on the events F; and Es,

drv (HUL,HUJ < dry (H vl,Hvt> +dry <H vi, [] UZ> <e

€S €S i€S*® i€S*e

AsPr(E;) > 1—¢/4 and Pr(E2) > 1 — ¢/2, by a union bound Pr(E; U E3) > 1 — e. Hence with probability 1 — € over
the randomness in {u;, 7 € [k]},

k k
drv (H%H%) <e
=1 =1
O

Lemma 3 says that with high probability over the first N; samples, the N + IR samples are close in total variation distance
to Poisson(n + r) samples drawn from D. Using lemma 3 and lemma 1, we can conclude that for 7 < ne'®/(4v/k),
Drv (X, Zyp) < e+¢/2 = 3¢/2.

Next, we show how to use the above amplification procedure to amplify samples in the non-Poissonized setting. Given
N = Nj + N, samples from D, we have shown how to amplify them to get M=N+R samples. Given such an amplifier
as a black box, and 4n samples from D, one can use the first N samples to generate M samples. Then append these M
samples with the remaining 4n — N samples to get an amplifier in our original non-Poissonized setting.

Lemma 4. Let N = Ny + Ny where Ny, Ny < Poisson(n), and let M <+ Poisson(2n + r). Suppose we are given an
(N, M) amplifier f (as described above) satisfying DTV(f(XN) X)) < 35, forall D € C. Then there exists an amplifier

J o [k]*™ — [K]*"5, such that Dpy (f'(Xan), Xantz) < 5, fore > 220 + e ~5%, and for v < ne'® /(4VE).

Proof. We divide the proof into three steps:

e Step 1: f takes as input X, and X, samples of size N; and Ny drawn from D. To simulate these samples, we
use the 4n samples available to us from D. We draw N{, N5 < Poisson(n), and let N’ = N + Nj. If N' < 4n,

we set Xns = (21, %2,...,2n7) and Xy = (Tn741, TNs 42, - - -, Ty ). Otherwise, we set X7 = (21, 21,...,71),
—_———
N times
and Xy, = (x1,21,...,21), but this happens with very small probability leading to small total variation distance
—_—
N/ times

between f(Xn,, Xn,) and f(Xn;, Xn;), and by triangle inequality, small TV distance between f (X7, Xn;) and
X We denote (X, , Xn,) by Xy and (X, Xn;) by Xy

o Step 2: We Would like to finally output ¢ more samples. Let us denote the number of samples in f(Xy-) by M'.
If M/ < N' + %, we append N'+ ¢ M " arbitrary samples to it (say x1) so that the total sample size is equal to
N'+ 5. If M’ 2 N’ + £, we don’ tdo anything in this step. Let ¢ (f(Xn-)) denote the samples outputted in this step.
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Since the number of new samples added by f is roughly distributed as Poisson(r), the probability that the number of
new samples is less than r/8 is small, leading to small 'V distance between ¢1 (f (X)) and f(X /), and by triangle
inequality, small TV distance between ¢1 (f(Xn/)) and X ;.

e Step 3: Let M| denote the number of samples in 1 (f(Xn-)), and let Q) = 4n+ g — M| denote the number of extra
samples needed to output 4n + g samples in total. If Q] > 0, we append @ i.i.d. samples from D to ¢, (f(Xn-)), and
if Q) < 0, we remove last |Q’ | samples from ¢1(f(Xn+)). We use t2(t1(f(Xn+))) to denote the output of this step.
Step 2 ensures M; > N’ + ¢, which implies Q) < 4n — N'. Let X4y, N = (TN/11,TN'42, - -, Tan) denote the
leftover samples in X4, after removing the first N’ samples. When @} > 0, we use the first Q] samples from X, _
to simulate i.i.d. samples from D, that is, t2(t1(f(Xn-))) = append(ti(f(Xn')), (TN/41, TN/ 425+ TN/ 4Q)))-
ta2(t1(f(Xn))) is the final output of our amplifier f’.

Similarly, let @1 = 4n + g — M denote the number of extra samples needed to be appended to X to output
4n + g samples in total. If Q1 > 0, t2(X ) correspond to appending @1 samples from D to X, and otherwise,
it corresponds to removing last |Q1| samples from Xj,. Since applying the same transformation to two random
variables can’t increase their total variation distance, and from step 2, we know that Dy (t1(f (X n+)), Xas) is small,

we get Dy (tQ (t1<f<XN/))), to (XM)) is small.

As t2(Xpr) corresponds to 4n + g i.i.d. samples from D, Dry (Xun+z,t2(Xar)) = 0. Using triangle inequality, we
get Dry (t2(t1(f(Xn1))), Xans £ ) is small which is the desired result.

Next, we prove that the total variation distances involved in each of these steps are small.

e Step 1: We first bound Dy (f(Xn), f(Xn/)).

Drv(f(Xn), f(Xn)) < Dry (XN, Xnv)
= % > IPr(Xy =) — Pr(Xy = )|

1

52 |Pr(Xy =2 | N <4n)Pr(N < 4n) — Pr(Xy: = 2 | N’ < 4n) Pr(N' < 4n)
xT

+Pr(Xy =2 | N>4n)Pr(N > 4n) — Pr(Xn =z | N' > 4n) Pr(N' > 4n))|

where the first inequality holds as applying the same transformation to two random variables can’t increase their total
variation distance. Now, note that X and X - have the same distribution conditioned on N < 4n and N’ < 4n.
Also, Pr(N < 4n) = Pr(N’ < 4n) and Pr(N > 4n) = Pr(N’ > 4n), as both N and N’ are drawn from
Poisson(2n) distribution. This gives us

Drv(f(XN), f(Xn)) = %Z Pr(N > 4n)|Pr(Xy =z | N > 4n) — Pr(Xn =z | N' > 4n)|

< Pr(N > 4n)

Using the triangle inequality, we get Drv (Xar, f(X%)) < Pr(N > 4n) + 3¢/2. To bound Pr(N > 4n), we use the
following Poisson tail bound (?): for X + Poisson()),

Pr[X > A+ 2], Pr[X < A —z] <ex=. (12)

As N is distributed as Poisson(2n), we get Pr(N > 4n) < e~", which implies Dyv (Xpy, f(X})) < e " + 3£

e Step 2: In this step, we need to show Dpy (t1(f(Xn+)), Xar) is small. Note that ¢;(f(Xn/)) is equal to

J(Xnv) except when M’ < N’ + ¢. From step 1, we know that Dpy (f(Xnv), Xas) is small. If we show

Dry(f(Xn'),t1(f(Xn))) is small, then by triangle inequality, we get Dry (Xps,t1(f(Xnv))) is small. Let
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M' = N’ + R’ where R’ denote the number of new samples added by the amplification procedure f to X .
Dry (t1 (f (Xn)), f(XnN7))

= 3 3P a1 (F (X)) = ) = Pr(f (Xwr) = )

- ;gj Pr (R < %) (Pr (12 (F (Xn) = | R < %) —Pr(f (X)) =2 | R < g))
+Pr (R > g) (Pr (1 (f (Xn)) =2 | R > %) —Pr(f(Xy) =2 | R > g))|

We know Pr (1 (f (Xn/)) =2 | B' > £) = Pr (f (Xn/) = x| R > L). This gives
Dyv (1 (f (Xn)), f (Xnv)

)
,Z|P (R’ )( ( fF(Xn) —m|R'<%)—Pr(f(XN'):ff|Rl<g)>|

<Pr (R’ < 7)

- 8

Now, we need to bound Pr (R’ < %) From the description of f, we know that the number of new copies of element

i added by f is distributed as Poisson (rp;). Here, p; = “* where u; denotes the number of occurrences of element i
k . ’ .

in X ;. Since the total number of samples in X, is N7, we get Zle pi = # = % Note that R’ is equal to

the sum of number of new copies of each element, and as the sum of Poisson random variables is Poisson, we get R’
is distributed as Poisson (7‘ J\bel )

, T , T ;. 3n ;. 3n 3n 3n
i >
Pr<R<8) Pr<R<8|N1 4)Pr N; 4>+P1r(R< | Ny < >P <N1 T

)T s 3T , _3n
Pr(R<8|N1_4)+Pr<N1<4>

Using Poisson tail bound (12), we get

2
Pr (R’ < r | N/ > 3”) < exp( (5r/8) ) o 257/88

%
|

\%

3r/4+ 5r/8

3n (n/4) _
Prl N/ 2 <« _ ,—n/20
r( 1< _exp( n+n/4> e

This gives us Dry(f(Xn),t1(f(Xn))) < e=27/35 4 ¢=n/20 By triangle inequality, we get
DTV(XM’tl(f<XN’))> < 36 +e "+ e—257/88 + e~ /20

e Step 3: For this step, we need to show Dy (t2(¢1(f(Xn+))), t2(Xar)) is small. Since applying the same transfor-
mation to two random variables doesn’t increase their TV distance, we get

Dry (t2(t(f(Xn1))), t2(Xr)) < Doy (82(f(Xn1)), Xor)

S%+e—n_~_+e—25r/88+e—n/20

As Dry (Xantz,t2(Xar)) = 0, using triangle inequality, we get
D (ta(t1 (f(Xn1))s Xans ) < 35 e eI g /20
For ¢ > 2¢7/20 + ¢=257/55 this gives us Dy (f'(Xun), Xinsz) = Do (ba(t (F(Xn))), Xanpz) < 5. 0
From lemma 4, we get that for € > 2¢~"/20 4 ¢=25"/88 ‘and for r < ne'® /(4vVk), Drv (f'(Xan), Xantz) < 5. We can

assume 7 is at least \/E and 7 is at least 8, as otherwise the theorem is trivially true. So for k large enough (1mply1ng large
n), we can put € = 7%, to get Dpy (ta(t1 (f(Xn7))), Xant z) < 5. which finishes the proof! O
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B.2. Lower Bound

In this section we show that the above procedure is optimal, up to constant factors for amplifying samples from discrete
distributions. We first describe the intuition for showing our lower bound that the class of discrete distributions with support
at most k does not admit an (n, m) amplification scheme for m > n+ %, where cis a fixed constant. For n < %, we show
this lower bound for the class of uniform distributions D = Unif[k] on some unknown k elements. In this case, a verifier
can distinguish between true samples from D and a set of amplified samples by counting the number of unique samples in
the set. Note that as the support of D is unknown, the number of unique samples in the amplified set is at most the number
of unique samples in the original set X, unless the amplifier includes samples that are outside the support of D, in which
case the verifier will trivially reject this set. The expected number of unique samples in n and m draws from D differs by
Cl—z, for some fixed constant c¢;. We use a Doob martingale and martingale concentration bounds to show that the number
of unique samples in n samples from D concentrates within a % margin of its expectation with high probability, for some
fixed constant c; < ¢;. This implies that there will be a large gap between the number of unique samples in n and m
draws from D. The verifier uses this to distinguish between true samples from D and an amplified set, which cannot have
sufficiently many unique samples.

Finally, we show that for n > %, a (n, n+ 6/71%) amplification procedure for discrete distributions on k elements implies

a (%, % + ¢/v/k) amplification procedure for the uniform distribution on (k — 1) elements, and for sufficiently large ¢’ this

is a contradiction to the previous part. This reduction follows by considering the distribution which has 1 — ﬁ mass on

one element and ﬁ mass uniformly distributed on the remaining (k — 1) elements. With sufficiently large probability, the
k

number of samples in the uniform section will be ~ 7, and hence we can apply the previous result.

Proposition 6. There is a constant c, such that for every sufficiently large k, C does not admit an (n, n+ (—\/”E) amplification

procedure.

The proposition follows by constructing a verifier and class of discrete distributions over k elements, C with the following
property: for a universal constant ¢ and p < Uniform|C], the verifier can detect any (n,n + %) amplifier from with
sufficiently high probability.

Before we prove Proposition 6, we introduce some additional notation and a basic martingale inequality. Let C* be the set
of discrete uniform distributions over k integers in 0, . . . , 8k. Let Clk be the set of discrete distributions with mass 1 — [ on
one element and uniform mass over £ — 1 remaining integers in 0, ..., 8k. We also rely on some martingale inequalities
which can be found in (?).

Fact 1. Let X be the martingale associated with a filter F satisfying:

1. Var[X; | Fioi] < o2for1<i<n

2. 0 < X; <1 almost surely.

Then, we have
2

Pr(X —E[z] > \) <e 2703,
Similarly the following holds (though not simultaneously):

A2

Pr(X —Elz] < —\) < e 2T,

Finally we rely on slight generalization of the birthday paradox which can be found in (?).

Fact 2. Let n samples be drawn from a uniform distribution over k elements. Then the probability of the samples containing
n”

a duplicate is less than 4.

The proof proceeds in two parts. First we prove a lemma that shows the desired result for n < % We then show show a
class of distributions that allows us to reduce the general case to the result shown in the lemma.

Lemma 5. For sufficiently large k, fixed c and m = n + 30-= < % the following holds:

%
There exists a verifier that for p ~ Uni form[C¥] the following holds true:
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1. For all p, it accepts X,,, with probability at least % over the randomness in X,,.

2. It rejects f(X,,) with probability at least % Sfor any amplifier f over the randomness in X,,, p and the amplifier.

Proof. First we consider the case when n < 4 Consider the verifier that takes % +1< \/g samples from the given
samples uniformly at random and accepts if there are no repeats by Fact 2 and the support is correct. The probability of a
duplicate with the real distribution is less than i by fact 2 so the verifier will accept samples from the true distribution with
at least probability %.

An amplified set, on the other hand, must have repeats outside of the original elements it saw. This is because if the
amplifier expanded the support of the set, the verifier would catch it with probability %. To show this, consider a sample
added by the amplifier outside of the seen support. Conditioned on the at most § unique samples seen so far (which
implies that % of the support is still unseen), the probability, over the choice of p, of said sample being in the set is at

most (g’ k/f): < (?;/ é ,)Ck < %. Hence if the amplified set has any element outside the original support then it is rejected with

probability g. Note that if the amplified set has at most @ unique elements, then it can be immediately distinguished for
having too many repeats.

‘We now examine the case when n > @ Since the verifier can identify when the amplifier introduces unseen elements with
probabiltiy at least Z, we condition on the event that the verifier identifies such elements for the remainder of this proof.
The proof proceeds by showing that a set the size of the amplified set must have significantly more unique elements than
the original set. Before we proceed with the details of the proof we define the martingale that is central to the argument.
Consider the scenario where the n samples are drawn in sequence, and let F; denote the filtration corresponding to the
i-th draw (i.e., information in the first ¢ draws). Let U; be the indicator that is the ¢th sample was previously unseen. Let

U™ = > U,;. Note that B; = E | >~ U; | F;| is a Doob martingale with respect to the filtration ; and B,, = U. Also,
i=1 j=1
B; has differences bounded by 1 as Uj is an indicator random variable. If j is the count of previously seen elements then

Var [B; | F;] < Var[U; | F;] < (k;izjm Since n < g the variance is upper bounded by % <z

The verifier will accept only if all elements are within the support of the distribution and the number unique elements is

greater than E[U™] + 7 under X,,.

The remainder of the proof will show the following:

1. U™ concentrates around its expectation within a O (ﬁ) margin for X,, (this shows the amplifier gets too few unique

samples to be accepted by the verifier).

2. The expectation E[U™ — U™] increases by at least €2 (%) from X,, to X,,, (which shows the number of unique items
is sufficiently different in expectation between X,, and X,,).

3. U™ concentrates around its expectation within a O (ﬁ) margin for X,,, (this combined with the previous statement

shows the verifier accepts real samples with sufficiently high probability).
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The upper tail bound follows via Fact 1. Recall that % < 4%2 since n > 4

Pr (U” —E[U"] > 7\7%) e | - (

Note that this suffices to show that the verifier can distinguish any amplifier with sufficiently many unique samples.

Let £ be sufficiently large that the following conditions hold for both k and k — 1:

n k

2. The samples increased by at most a factor of 2

Now we note that the E[U™] and E[U™] must differ by at least 15—2, since . < £ implying that every new sample has at

least a % probability of being unique. Now all the remains to show that the verifier will accept X, is to show concentration
of U within 8—\/% of its mean.

Since the number of samples increased by at most a factor of two, the bound on the o increased by at most a factor of two.
This suffices for the lower tail bound on U for X,,,—

2n?
8%

2 (2ot + %)

2n?
< exp ,82—k
2 (42 + 22)

Thus X,,, will have sufficiently many unique elements to be accepted by the verifier with probability at least %. A success
probability of % follows from subtracting the probabiltiy that the verifier did not properly identify unseen samples.

O

We are now ready to prove Proposition 6.
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Proof. If n < %, then Lemma 5 applies directly. If not, we use the set of distributions C¥ with the intention of applying
4
Lemma 5 on samples that land in the uniform region.

The verifier will check that the samples are within the support of the distribution, more than n + 7 % samples are in the
uniform region and the verifier from Lemma 5 accepts on the uniform region.

First note that after n samples, at most % + % samples will be in the uniform region with at least probability % by a

Chebyshev bound. Conditioned on this event, Lemma 5 shows that the amplifier cannot output more than § + O(\/E)
samples in the uniform region and will be rejected by our verifier.

Now we show that the verifier will accept real samples with good probability. Note that the expected number of samples to
receive in the uniform region for X, is % + ¢vk. The variance on this quantity is % + ¢v/k. An application of Chebyshev’s
inequality shows that with probability at least }—g sufficiently many samples will land in the uniform region.

§+cﬁ_4,/§+c¢zz §+c¢%-m_4\/m
Z§+cx/%72\/%74\/§.

Since the expression above is increasing with ¢, we can choose a c sufficiently large so that the verifier will accept with
sufficiently high probability. O



