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A. The Rademacher Complexity of Linear Classes [Proof of Theorem 3]
In this section, we provide a proof of Theorem 3 and present improved bounds for the Rademacher complexity of linear
hypotheses. We will analyze each of the three sub-cases namely, p ∈ (1,2], p > 1, and p = 1 separately in the subsections
that follow. Recall that the group norm ∥ ⋅ ∥p1,p2 of matrix X is defined by

∥X∥p1,p2 = ∥(∥x1∥p1 ,⋯, ∥xm∥p1)∥p2 ,

where x1, . . . ,xm are the columns of X. For p1, p2 ≤ ∞, this group-norm can be rewritten as follows:

∥X∥p1,p2 =
⎡⎢⎢⎢⎢⎢⎣

m

∑
i=1

⎛
⎝
d

∑
j=1

∣Xj,i∣p1
⎞
⎠

p2
p1

⎤⎥⎥⎥⎥⎥⎦

1
p2

.

A.1. Case p ∈ (1,2]

For convenience, we will use the shorthand uσ = ∑mi=1 σixi. By definition of the dual norm, we can write:

RS(Fp) =
1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup

∥w∥p≤W

w ⋅
m

∑
i=1

σixi

⎤⎥⎥⎥⎥⎦
= W
m

E
σ
[∥uσ∥p∗] (dual norm property)

≤ W
m

√
E
σ
[∥uσ∥2

p∗]. (Jensen’s inequality)

Now, for p∗ ≥ 2, Ψ∶u ↦ 1
2
∥u∥2

p∗ is (p∗ − 1)-smooth with respect to ∥ ⋅ ∥p∗ , that is, the following inequality holds for all
x,y ∈ Rd:

Ψ(y) ≤ Ψ(x) + ∇Ψ(x)⊺(y − x) + p
∗ − 1

2
∥y − x∥2

p∗

In view of that, by successively applying the (p∗ − 1)-smoothness inequality, we can write:

2Ψ(uσ) ≤ 2
m

∑
k=1

⟨∇Ψ(
k−1

∑
i=1

σixi), σkxk⟩ + (p∗ − 1)
m

∑
i=1

∥σixi∥2
p∗ .

Conditioning on σ1, . . . , σk−1 and taking expectation gives:

2E
σ
[Ψ(uσ)] ≤ (p∗ − 1)

m

∑
i=1

∥xi∥2
p∗ .

Thus, the following upper bound holds for the empirical Rademacher complexity:

RS(Fp) ≤
W

m

¿
ÁÁÀ(p∗ − 1)

m

∑
i=1

∥xi∥2
p∗ .

A.2. General case p > 1

Here again, we use the shorthand uσ = ∑mi=1 σixi. By definition of the dual norm, we can write:

RS(Fp) =
1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup

∥w∥p≤W

w ⋅
m

∑
i=1

σixi

⎤⎥⎥⎥⎥⎦
= W
m

E
σ
[∥uσ∥p∗] (dual norm property)

≤ W
m

[E
σ
[∥uσ∥p

∗

p∗]]
1
p∗
. (Jensen’s inequality, p∗ ∈ [1,+∞))

= W
m

[
d

∑
j=1

E
σ
[∣uσ,j ∣p

∗
]]

1
p∗
.
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Next, by Khintchine’s inequality (Haagerup, 1981), the following holds:

E
σ
[∣uσ,j ∣p

∗
] ≤ Bp∗[

m

∑
i=1

x2
i,j]

p∗
2

,

where Bp∗ = 1 for p∗ ∈ [1,2] and

Bp∗ = 2
p∗
2

Γ(p
∗
+1
2

)
√
π

,

for p ∈ [2,+∞). This yields the following bound on the Rademacher complexity:

RS(Fp) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W
m

∥X⊺∥2,p∗ if p∗ ∈ [1,2],

√
2W
m

[Γ(p
∗
+1
2

)
√
π

]
1
p∗

∥X⊺∥2,p∗ if p∗ ∈ [2,+∞).

A.3. Case p = 1

The bound on the Rademacher complexity for p = 1 was previously known but we reproduce the proof of this theorem for
completeness. We closely follow the proof given in (Mohri et al., 2018).

Proof. For any i ∈ [m], xij denotes the jth component of xi.

RS(F1) =
1

m
E
σ

⎡⎢⎢⎢⎣
sup

∥w∥1≤W

w ⋅
m

∑
i=1

σixi
⎤⎥⎥⎥⎦

= W
m

E
σ
[∥

m

∑
i=1

σixi∥
∞
] (by definition of the dual norm)

= W
m

E
σ
[max
j∈[d]

∣
m

∑
i=1

σixij∣] (by definition of ∥ ⋅ ∥∞)

= W
m

E
σ
[max
j∈[d]

max
s∈{−1,+1}

s
m

∑
i=1

σixij] (by definition of ∣ ⋅ ∣)

= W
m

E
σ
[sup
z∈A

m

∑
i=1

σizi] ,

where A denotes the set of d vectors {s(x1j , . . . , xmj)⊺∶ j ∈ [d], s ∈ {−1,+1}}. For any z ∈ A, we have ∥z∥2 ≤
supz∈A ∥z∥2 = ∥X⊺∥2,∞. Further, A contains at most 2d elements. Thus, by Massart’s lemma (Mohri et al., 2018),

RS(F1) ≤W ∥X⊺∥2,∞

√
2 log(2d)
m

,

which concludes the proof.

A.4. Comparing ∥M⊺∥p,q and ∥M∥q,p [Proof of Proposition 1]

In this section, we prove Proposition 1. This proposition implies that for p ∈ (1,2), the group norm ∥X⊺∥2,p∗ , is always a
lower bound on the term ∥X∥p∗,2. These two norms are a major component of the Rademacher complexity of linear classes.

Proof. First, (11) follows from (10) by substituting M =A⊺ for a matrix A: For q ≤ p,

min(m,d) 1
p−

1
q ∥A∥p,q ≤ ∥A⊺∥q,p ≤ ∥A∥p,q

which implies that
∥A⊺∥q,p ≤ ∥A∥p,q ≤ min(m,d) 1

q −
1
p ∥A⊺∥q,p
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However, now p and q are swapped in comparison to (11). Now after swapping them again, for p ≤ q,

∥A⊺∥p,q ≤ ∥A∥q,p ≤ min(m,d) 1
p−

1
q ∥A⊺∥p,q

The rest of this proof will be devoted to showing (10).

Next, if p = q, then ∥M∥q,p = ∥M⊺∥p,q. For the rest of the proof, we will assume that q < p. Specifically, q < +∞ which
allows us to consider fractions like p

q
.

We will show that for q < p, the following inequality holds: ∥M∥q,p ≤ ∥M⊺∥p,q , or equivalently, ∥M∥qq,p ≤ ∥M⊺∥qp,q .
We will use the shorthand α = p

q
> 1. By definition of the group norm and using the notation Uij = ∣Mij ∣q , we can write

∥M∥qq,p = [
m

∑
i=1

[
d

∑
j=1

∣Mij ∣q]
p
q ]

q
p

= [
m

∑
i=1

[
d

∑
j=1

Uij]
α

]
1
α

= ∥[
∑
d
j=1 U1j

⋮

∑
d
j=1 Umj

]∥
α

≤
d

∑
j=1

∥[
U1j

⋮
Umj

]∥
α

=
d

∑
j=1

[
m

∑
i=1

∣Mij ∣p]
q
p = ∥M⊺∥qp,q.

To show that this inequality is tight, note that equality holds for an all-ones matrix. Next, we prove the inequality

min(m,d) 1
q −

1
p ∥M⊺∥p,q ≤ ∥M∥q,p,

for q ≤ p. Applying Lemma 1 twice gives

∥M⊺∥p,q ≤ ∥M⊺∥q,q = ∥M∥q,q ≤ d
1
q −

1
p ∥M∥p,q. (18)

Again applying Lemma 1 twice gives

∥M⊺∥p,q ≤m
1
q −

1
p ∥M⊺∥p,p =m

1
q −

1
p ∥M∥p,p ≤m

1
q −

1
p ∥M∥p,q. (19)

(Lemma 1 was presented in Section 3.3 and is proved in Appendix B.) Next, we show that (18) is tight if d ≤m and that (19)
is tight if d ≥m. If d ≤m, the bound is tight for the block matrix M = [ Id×d ∣ 0 ], and, if d ≥m, then the bound is tight for
the block matrix M = [ Id×d

0
] .

A.5. Constant Analysis

In this section, we study the constants in the two known bounds on the Rademacher complexity of linear classes for 1 < p ≤ 2.
Specifically,

RS(Fp) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

W

m

√
p∗ − 1∥X∥p∗,2 (20)

√
2W

m
[

Γ(p
∗
+1
2

)
√
π

]
1
p∗

∥X⊺∥2,p∗ (21)

We will compare the constants in equations (20) and (21), namely
√

2W
m

(Γ(
p∗+1

2 )
√
π

)
1
p∗ and W

m

√
p∗ − 1. Since W

m
divides both

of these constants, we drop this factor and work with the expressions c1(p)∶ =
√
p∗ − 1 and c2(p)∶ =

√
2(Γ(

p∗+1
2 )

√
π

)
1
p∗ . To

start, we first establish upper and lower bound on c2(p).

Lemma 3. Let c2(p) =
√

2(Γ(
p∗+1

2 )
√
π

)
1
p∗ . Then the following inequalities hold:

e−
1
2

√
p∗ ≤ c2(p) ≤ e−

1
2

√
p∗ + 1.
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Proof. For convenience, we set q = p∗, f1(q) = c1(p), f2(q) = c2(p). Next, we recall a useful inequality (Olver et al., 2010)
bounding the gamma function:

1 < (2π)− 1
2x

1
2−xexΓ(x) < e 1

12x . (22)

We start with the upper bound. If we apply the right-hand side inequality of (22) to Γ( q+1
2

) we get the following bound on
f2(q):

f2(q) ≤ 2
1
2q e−

1
2

√
q + 1e−

1
2q +

1
6(q+1)q (23)

It is easy to verify that,
2

1
2q e−

1
2q +

1
6q(q+1) = e

1
q (

ln2−1
2 + 1

6q(q+1) ). (24)

Furthermore, the expression ( ln 2−1
2

+ 1
6q(q+1)

) decreases with increasing q. At q = 2, it is negative, which implies that (24)
is less than 1 for q ≥ 2. Hence

f2(q) ≤ e−
1
2

√
q + 1

Next, we prove the lower bound. Applying the lower bound of (22) to Γ( q+1
2

) results in

f2(q) ≥ e−
1
2
√
q (e− 1

2q (log 2−1)

√
1 + 1

q
) .

We will establish that (e− 1
2q (log 2−1)

√
1 + 1

q
) ≥ 1, which will complete the proof of the lower bound. We prove this statement

by showing that

(e− 1
2q (log 2−1)

√
1 + 1

q
)

2

= e− 1
q (log 2−1) (1 + 1

q
) ≥ 1.

By applying some elementary inequalities

e−
1
q (log 2−1) (1 + 1

q
) ≥ (1

q
(log 2 − 1) + 1)(1 + 1

q
) (using ex ≥ 1 + x)

= 1 + 1

q
(log(2) − 1 − log(2)

q
)

≥ 1

The last inequality follows since ( log(2) − 1−log(2)
q

) increases with q, and is positive at q = 2.

Lastly, we establish our main claim that c2(p) ≤ c1(p).

Lemma 4. Let c1(p) =
√
p∗ − 1 and c2(p) =

√
2(Γ(

p∗+1
2 )

√
π

)
1
p∗ . Then

c2(p) ≤ c1(p),

for all 1 ≤ p ≤ 2.

Proof. For convenience, set q = p∗, f1(q) = c1(p), and f2(q) = c2(p). First note that f1(2) = f2(2). Next, we claim
d
dq
f1(q) ≥ d

dq
f2(q) for q ≥ 2, and this implies that c2(p) ≤ c1(p) for 1 ≤ p ≤ 2.

The rest of this proof is devoted to showing that d
dq
f1(q) ≥ d

dq
f2(q). Upon differentiating we get that f ′1(q) = 1

2
√
q−1

. Next,
we will differentiate f2. To start, we recall that the digamma function ψ is defined as the logarithmic derivative of the
gamma function, ψ(x) = d

dx
(log Γ(x)) = Γ′(x)

Γ(x)
.

Now we state a useful inequality (see Equation 2.2 in Alzer (1997)) bounding the digamma function, ψ(x).

ψ(x) ≤ log(x) − 1

2x
(25)



Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks

Now we differentiate ln f2:

d

dq
(ln f2(q)) =

q
2
ψ( q+1

2
) − (ln(Γ( q+1

2
)) − ln(√π))

q2

≤
q
2
(log( q+1

2
− 1
q+1

) − (ln(Γ( q+1
2

)) − ln
√
π)

q2
(by (25))

≤
q
2
(log q+1

2
− 1
q+1

) − ( 1
2

ln 2 + q
2

log q+1
2
− q+1

2
)

q2
(by the left-hand equality in (22))

= 1

2q
+ 1

q2
( 1

2(q + 1) −
1

2
log 2)

≤ 1

2q
.

The last line follows since we only consider q ≥ 2 and 1
2(q+1)

− 1
2

ln 2 ≤ 0 in this range. Finally, the fact that d
dq

(ln f2(q)) =
f ′2(q)/f2(q) implies

f ′2(q) = f2(q)
d

dq
(ln f2(q))

≤ 1

2q
f2(q) (by

d

dq
(ln f2(q)) ≤

1

2q
)

≤ e
− 1

2
√
q + 1

2q
(by applying the upper bound in Lemma 3)

= 1

2
√
q − 1

e−
1
2

√
(q + 1)(q − 1)

q

≤ e− 1
2

1

2
√
q − 1

(using q2 − 1 ≤ q2)

≤ 1

2
√
q − 1

= f ′1(q) (using e−
1
2 < 1).

B. Proof of Theorem 4
In this section, we give a detailed proof of Theorem 4. We start with the following lemma that characterizes the nature of
adversarial perturbations.

Lemma 5. Let g be a nondecreasing function, x,w ∈ Rd, and y ∈ {±1}. Then

inf
∥x−x′∥r≤ε

yg(w ⋅ x) = yg(w ⋅ x − εy∥w∥r∗)

Proof. First note that

inf
∥x−x′∥r≤ε

yg(w ⋅ x) = inf
∥s∥r≤1

yg(w ⋅ x + εw ⋅ s)

If y = 1,

inf
∥s∥r≤1

g(w ⋅ x + εw ⋅ s) = g(w ⋅ x + inf
∥s∥r≤1

εw ⋅ s) (g is nondecreasing)

= g(w ⋅ x − ε∥w∥r∗) (definition of dual norm)
= yg(w ⋅ x − εy∥w∥r∗) (y = 1)



Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks

Similarly, if y = −1,

inf
∥s∥r≤1

−g(w ⋅ x + εw ⋅ s) = −g(w ⋅ x + sup
∥s∥r≤1

εw ⋅ s) (−g is non-increasing)

= −g(w ⋅ x + ε∥w∥r∗) (definition of dual norm)
= yg(w ⋅ x − εy∥w∥r∗) (y = −1)

Before proceeding to the proof of Theorem 4, we formally establish Lemma 1 and Lemma 2 from Section 3.

Proof of Lemma 1. We prove that if p ≥ r∗, then

sup
∥w∥p≤1

∥w∥r∗ = d1− 1
r−

1
p

and otherwise,
sup

∥w∥p≤1

∥w∥r∗ = 1.

If p ≥ r∗, by Hölder’s generalized inequality with 1
r∗

= 1
p
+ 1
s

,

sup
∥w∥p≤1

∥w∥r∗ ≤ sup
∥w∥p≤1

∥1∥s∥w∥p = ∥1∥s = d
1
s = d 1

r∗ −
1
p = d1− 1

r−
1
p .

Equality holds at the vector 1

d
1
p
1, and this implies that the inequality in the line above is an equality. Now for p ≤ r∗,

∥w∥p ≥ ∥w∥r∗ , implying that sup∥w∥p≤1 ∥w∥r∗ ≤ 1. Here, equality is achieved at a unit vector e1.

Proof of Lemma 2. Recall that vσ = 1
m ∑

m
i=1 σi. Then, in view of the symmetry v−σ = −vσ , we can write

E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

εvσ∥w∥r∗
⎤⎥⎥⎥⎦
= εW E

σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤1

vσ∥w∥r∗
⎤⎥⎥⎥⎦
= εW

2
E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤1

∣vσ ∣∥w∥r∗
⎤⎥⎥⎥⎦
.

By Lemma 1, we have
1

2
E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤1

∣vσ ∣∥w∥r∗
⎤⎥⎥⎥⎦
= 1

2
max(d1− 1

p−
1
r ,1)E

σ
[∣vσ ∣] . (26)

Now, by Jensen’s inequality and E[σiσj] = E[σi]E[σj] = 0 for i ≠ j, we have

E
σ
[∣vσ ∣] = E

σ
[∣
m

∑
i=1

σi∣] ≤
¿
ÁÁÀE

σ
[(

m

∑
i=1

σi)
2

] =
¿
ÁÁÀE

σ

⎡⎢⎢⎢⎣
m +∑

i≠j

σiσj
⎤⎥⎥⎥⎦
=
√
m.

Furthermore, by Khintchine’s inequality (Haagerup, 1981), the following lower bound holds:

E
σ
[∣
m

∑
i=1

σi∣] ≥
√
m

2
.

Substituting these upper and the lower bounds into (26) completes the proof.

We now proceed to prove Theorem 4. Recall from Section 3.3 that we seek to analyze

RS(F̃p) = E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

1

m

m

∑
i=1

σi inf
∥xi−x′i∥r≤ε

yi ⟨w,x′i⟩
⎤⎥⎥⎥⎦

= E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

1

m

m

∑
i=1

σi(yi ⟨w,xi⟩ − ε∥w∥r∗)
⎤⎥⎥⎥⎦

[by Lemma 5]

= E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,uσ⟩ − εvσ∥w∥r∗
⎤⎥⎥⎥⎦
, (27)
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where we used the shorthand uσ = 1
m ∑

m
i=1 yiσixi and vσ = 1

m ∑
m
i=1 σi. The next two theorems give upper and lower bounds

on RS(F̃p), thereby proving Theorem 4.

Theorem 11. Let Fp = {x↦ ⟨x,w⟩ ∶ ∥w∥p ≤W} and F̃p = {inf∥x′−x∥r≤ε f(x′)∶ f ∈ Fp}. Then, the following upper bound
holds:

RS(F̃p) ≤RS(Fp) + ε
W

2
√
m
d1− 1

r−
1
p

Proof. Using (27) and the sub-additivity of supremum we can write:

RS(F̃p) = E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,uσ⟩ − εvσ∥w∥r∗
⎤⎥⎥⎥⎦

≤ E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,uσ⟩
⎤⎥⎥⎥⎦
+E

σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

−εvσ∥w∥r∗
⎤⎥⎥⎥⎦

=RS(Fp) +E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

εvσ∥w∥r∗
⎤⎥⎥⎥⎦

=RS(Fp) +
1

2
ε
W√
m
d1− 1

r−
1
p [by Lemma 2],

which completes the proof.

Theorem 12. Let Fp = {x↦ ⟨x,w⟩ ∶ ∥w∥p ≤W} and F̃p = {inf∥x′−x∥r≤ε f(x′)∶ f ∈ Fp}. Then, the following lower bound
holds:

RS(F̃p) ≥ max
⎛
⎝
RS(Fp),W

εd1− 1
r−

1
p

2
√

2m

⎞
⎠

Proof. The proof involves two symmetrization arguments. Since −σ follows the same distribution as σ, we have the equality

RS(F̃p) = E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,u−σ⟩ − εv−σ∥w∥r∗
⎤⎥⎥⎥⎦
= E

σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

−⟨w,uσ⟩ + εvσ∥w∥r∗
⎤⎥⎥⎥⎦
. (28)

Similarly, w can be replaced with −w, thus we have

RS(F̃p) = E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,uσ⟩ + εvσ∥w∥r∗
⎤⎥⎥⎥⎦
. (29)

Averaging (27) and (29) and using the sub-additivity of the supremum gives

RS(F̃p) =
1

2
E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,uσ⟩ − εvσ∥w∥r∗
⎤⎥⎥⎥⎦
+ 1

2
E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,uσ⟩ + εvσ∥w∥r∗
⎤⎥⎥⎥⎦
≥ E

σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,uσ⟩
⎤⎥⎥⎥⎦
=WRS(Fp).

Now, averaging (28) and (29), and using the sub-additivity of supremum give:

RS(F̃p) =
1

2
E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

−⟨w,uσ⟩ + εvσ∥w∥r∗
⎤⎥⎥⎥⎦
+ 1

2
E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

⟨w,uσ⟩ + εvσ∥w∥r∗
⎤⎥⎥⎥⎦

≥ E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

vσ∥w∥r∗
⎤⎥⎥⎥⎦
≥ 1

2
√

2m
εd1− 1

p−
1
r , [from Lemma 2].

which completes the proof.
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C. Adversarial Rademacher Complexity of ReLU
In this section, we prove upper and lower bounds on the Rademacher complexity of the ReLU unit. We will use the notation
z+ = max(z,0), for any z ∈ R. We use the family of functions Gp defined in (15) with the corresponding adversarial class
G̃p:

G̃p = {(x, y) ↦ inf
∥s∥r≤ε

y(w ⋅ (x + s))+∶ ∥w∥p ≤W,y ∈ {−1,+1}}.

Since z ↦ z+ is non-decreasing, by Lemma 5, G̃p can be equivalently expressed as follows:

G̃p = {(x, y) ↦ y(w ⋅ x − εy∥w∥r∗)+∶ ∥w∥p ≤W,y ∈ {−1,1}}.

In view of that, the adversarial Rademacher complexity of the ReLU unit can be written as follows:

R̃S(Gp) =RS(G̃p) = E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

1

m

m

∑
i=1

σiyi(w ⋅ xi − yiε∥w∥r∗)+
⎤⎥⎥⎥⎦
= E

σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

1

m

m

∑
i=1

σi(w ⋅ xi − yiε∥w∥r∗)+
⎤⎥⎥⎥⎦
. (30)

C.1. Upper Bounds

Theorem 5. Let Gp the class defined in (15) and let Fp be the linear class as defined in (8). Then, given a sample
S = {(x1, y1), . . . , (xm, ym)}, the adversarial Rademacher complexity of Gp can be bounded as follows:

R̃S(Gp) ≤RTε(Fp) + ε
W

2
√
m

max(1, d1− 1
r−

1
p ),

where Tε = {i∶ yi = −1 or (yi = 1 and ∥xi∥r > ε)}.

Proof. Consider an index i ∈ [m] such that i /∈ Tε, so that ∥xi∥r ≤ ε and yi = 1. Then, by Hölder’s inequality, we have

yiw ⋅ xi − yiε∥w∥r∗ = ∥w∥r∗ (
w

∥w∥r∗
⋅ xi − ε) ≤ ∥w∥r∗(∥xi∥r − ε) ≤ 0,

and therefore (w ⋅ xi − ε∥w∥r∗)+ = 0 for all w with ∥w∥p ≤W . Thus, using the expression (30), we can write:

RS(G̃p) = E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

1

m
∑
i∈Tε

σi(yiw ⋅ xi − ε∥w∥r∗)+
⎤⎥⎥⎥⎦

≤ E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

1

m
∑
i∈Tε

σi(yiw ⋅ xi − ε∥w∥r∗)
⎤⎥⎥⎥⎦

(1-Lipschitzness of z ↦ z+)

= ∣Tε∣
m

RTε(F̃p)

≤RTε(Fp) + ε
W

2
√
m

max(1, d1− 1
r−

1
p ), (Theorem 4)

which completes the proof.

C.2. Lower Bounds

Theorem 6. Let Gp be the class as defined in (15). Then it holds that

R̃S(Gp) ≥
W

2
√

2m
sup

∥s∥p=1

( ∑
i∈Tε,s

(⟨s,xi⟩ − εyi∥s∥r∗)2)
1
2

where Tε,s = {i∶ ⟨s,xi⟩ − yiε∥s∥r∗ > 0}.
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Proof. By definition of the supremum, we can write:

RS(Gp) = E
σ

⎡⎢⎢⎢⎣
sup

∥w∥p≤W

1

m

m

∑
i=1

σiyi(⟨w,xi⟩ − yiε∥w∥r∗)+
⎤⎥⎥⎥⎦
= E

σ

⎡⎢⎢⎢⎢⎢⎢⎣

sup
B≤W
∥s∥p=1

B

m

m

∑
i=1

σi(⟨s,xi⟩ − εyi∥s∥r∗)+

⎤⎥⎥⎥⎥⎥⎥⎦

.

Now, for a fixed s, it is straightforward to take the supremum over B: if the quantity ∑mi=1 σi(⟨s,zi⟩ − ε∥s∥r∗)+ is positive,
the expression is maximized by taking B =W ; otherwise it is maximized by B = 0. Thus, we have

E
σ

⎡⎢⎢⎢⎢⎢⎣
sup
B<W
∥s∥p=1

B

m

m

∑
i=1

σi(⟨s,xi⟩ − yiε∥s∥r∗)+
⎤⎥⎥⎥⎥⎥⎦
= W
m

E
σ

⎡⎢⎢⎢⎣
sup

∥s∥p=1

max(0,
m

∑
i=1

σi(⟨s,xi⟩ − ε∥s∥r∗)+)
⎤⎥⎥⎥⎦

≥ W
m

sup
∥s∥p=1

E
σ
[max(0,

m

∑
i=1

σi(⟨s,xi⟩ − εyi∥s∥r∗)+)]

= W

2m
sup

∥s∥p=1

E
σ
[∣
m

∑
i=1

σi(⟨s,xi⟩ − εyi∥s∥r∗)+∣]

= W

2m
sup

∥s∥p=1

E
σ

⎡⎢⎢⎢⎢⎣

RRRRRRRRRRRR
∑
i∈Tε,s

σi(⟨s,xi⟩ − yiε∥s∥r∗)
RRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
.

Next, by the Khintchine-Kahane inequality (Haagerup, 1981), the following lower bound holds:

W

2m
sup

∥s∥p=1

E
σ

⎡⎢⎢⎢⎢⎣

RRRRRRRRRRRR
∑
i∈Tε,s

σi(⟨s,xi⟩ − εyi∥s∥r∗)
RRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
≥ W

2
√

2m
sup

∥s∥p=1

⎛
⎜
⎝
E
σ

⎡⎢⎢⎢⎢⎣

⎛
⎝ ∑i∈Tε,s

σi(⟨s,xi⟩ − yiε∥s∥r∗)
⎞
⎠

2⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

1
2

= W

2
√

2m
sup

∥s∥p=1

⎛
⎝
E
σ

⎡⎢⎢⎢⎢⎣
∑

i,j∈Tε,s

σiσj(⟨s,xi⟩ − εyi∥s∥r∗)(⟨s,xj⟩ − εyi∥s∥r∗)
⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2

= W

2
√

2m
sup

∥s∥p=1

⎛
⎝ ∑i∈Tε,s

(⟨s,xi⟩ − yiε∥s∥r∗)2⎞
⎠

1
2

,

which completes the proof.

D. Adversarial Rademacher for Neural Nets with One Hidden Layer with a Lipschitz
Activation Function

In this section, we present an upper bound on the adversarial Rademacher complexity of one-layer neural networks with an
activation function satisfying some reasonable requirements. Our analysis uses the notion of coverings.
Definition 2 (ε-covering). Let ε > 0 and let(V, ∥ ⋅ ∥) be a normed space. C ⊆ V is an ε-covering of V if for any v ∈ V , there
exists v′ ∈ C such that ∥v − v′∥ ≤ ε.

In particular, we will use the following lemma regarding the size of coverings of balls of a certain radius in a normed space.
Lemma 6. (Mohri et al., 2018) Fix an arbitrary norm ∥ ⋅ ∥ and let B be the ball radius R in this norm. Let C be a smallest
possible ε-covering of B. Then

∣C∣ ≤ (3R

ε
)
d

Next, we give the proof of the main theorem of this section.
Theorem 7. Let ρ be a function with Lipschitz constant Lρ satisfying ρ(0) = 0 and consider perturbations in r-norm. Then,
the following upper bound holds for the adversarial Rademacher complexity of Gnp :

R̃S(Gnp ) ≤ Lρ[
WΛ max(1, d1− 1

p−
1
r )(∥X∥r,∞ + ε)√

m
] (1 +

√
d(n + 1) log(9m)) .
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Proof. Let C1 be a covering of the `1 ball of radius Λ with `1 balls of radius δ1 and C2 a covering of the `p ball of radius W
with `p balls of radius δ2. We will later choose δ1 and δ2 as functions of m, W , and Λ. For any x, define f̃(x) and f̃ c(x) as
follows:

f̃(x) = inf
∣∣x′−x∣∣r≤ε

y
n

∑
j=1

ujρ(wj ⋅ x′) and f̃ c(x) = inf
∣∣x′−x∣∣r≤ε

y
n

∑
j=1

ucjρ(wc
j ⋅ x′),

where uc is the closest element to u in C1 and wc is the closest element to w in C2. Define ε′ as follows:

ε′ = sup
i∈[m]

sup
∥u∥1≤Λ
∥w∥p≤W

∣f̃(xi) − f̃ c(xi)∣.

One can bound the Rademacher complexity of the whole class Gnp in terms of the Rademacher complexity of this same class
restricted to u ∈ C1 and wj ∈ C2.

R̃S(Gnp ) = E
σ
[ sup

∥u∥1≤Λ
∥w∥j≤W

1

m

m

∑
i=1

σi inf
∥xi−x′i∥r≤ε

yi
n

∑
j=1

ujρ(wj ⋅ x′i)]

≤ E
σ
[ sup
∣∣u∣∣

c
∈C1

wcj∈C2

1

m

m

∑
i=1

σi inf
∥xi−x′i∥r≤ε

yi
n

∑
j=1

ucjρ(wc
j ⋅ x′i)] + ε′ (31)

Then, by Massart’s lemma, the first term in (31) can be bounded as follows:

E
σ
[ sup
∣∣u∣∣

c
∈C1

wcj∈C2

1

m

m

∑
i=1

σi inf
∥xi−x′i∥r≤ε

yi
n

∑
j=1

ucjρ(wc
j ⋅ x′i)] ≤

K
√

2 log(∣C1∣∣C2∣n)
m

(32)

with

K2 = sup
wcj∈C2
uc∈C1

m

∑
i=1

⎛
⎝

inf
∥xi−x′i∥r≤ε

yi
n

∑
j=1

ucjρ(wc
j ⋅ x′i)

⎞
⎠

2

.

We will show the following upper bound for K:

K ≤
√
mΛW max (1, d1− 1

r−
1
p (∥X∥r,∞ + ε)). (33)

Let xc∗ be the minimizer of f c(x) within an ε-ball around x. Since f̃ c is continuous and the closed unit r-ball is compact,
the extreme value theorem implies that xc∗ exists. Then

f̃ c(x) = y
n

∑
j=1

ucjρ(wc
j ⋅ xc∗) (34)

We then apply the following inequalities:
RRRRRRRRRRR
yi

n

∑
j=1

ucjρ(wc
j ⋅ xci∗)

RRRRRRRRRRR
≤

n

∑
j=1

∣ucj ∣∣ρ(wc
j ⋅ xci∗)∣ (triangle inequality)

=
n

∑
j=1

∣ucj ∣∣ρ(wc
j ⋅ xci∗) − ρ(0)∣ (ρ(0) = 0 assumption)

≤ Lρ
n

∑
j=1

∣ucj ∣∣wc
j ⋅ xci∗∣ (Lipschitz property)

≤ Lρ
n

∑
j=1

∣ucj ∣∣wc
j∥p∥xci∗∥p∗ (Hölder’s inequality)

≤ Lρ
n

∑
j=1

∣ucj ∣W ∥xci∗∥p∗ (∥wj∥ ≤W )

≤ LρΛW ∥xci∗∥p∗ (∥u∥ ≤ Λ)
≤ LρΛW (∥X∥r,∞ + ε)max(1, d1− 1

r−
1
p ). (35)
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The last inequality is justified by the following, where we use the triangle inequality and Lemma 1:

∥xci∗∥p ≤ max(1, d1− 1
p−

1
r )∥xci∗∥r

≤ max(1, d1− 1
p−

1
r )(∥xi∥r + ∥xci∗ − xi∥r)

≤ max(1, d1− 1
r−

1
p )(max

i∈[m]
∥xi∥r + ε)

≤ max(1, d1− 1
r−

1
p )(∥X∥r,∞ + ε). (36)

Equation (35) implies the desired bound (33) on K. Next, plugging in the bound from Lemma 6 in (32), we obtain

R̃S(Gnp ) ≤
LρΛW max(1, d1− 1

p−
1
r )(∥X∥r,∞ + ε)√

m

√
2d log (3Λ

δ1
) + 2nd log (3W

δ2
) + ε′. (37)

We now turn our attention to estimating ε′. Similar to (34), we define x∗ as the minimizer of f̃(x) within an ε-ball around x
where

f̃(x) = y
n

∑
j=1

ujρ(wj ⋅ x∗).

We decompose the difference between f̃(xi) and f̃ c(xi) and bound each piece separately:

f̃(xi) − f̃ c(xi) =
⎛
⎝
y
n

∑
j=1

ujρ(wj ⋅ xi∗) − y
n

∑
j=1

ujρ(wc
j ⋅ xci∗)

⎞
⎠
+
⎛
⎝
y
n

∑
j=1

ujρ(wc
j ⋅ xci∗) − y

n

∑
j=1

ucjρ(wc
j ⋅ xci∗)

⎞
⎠
. (38)

The first term above can be bounded as follows:

y
n

∑
j=1

ujρ(wj ⋅ xi∗) − y
n

∑
j=1

ujρ(wc
j ⋅ xci∗) (39)

≤ y
n

∑
i=1

ujρ(wj ⋅ xci∗) − y
n

∑
j=1

ujρ(wc
j ⋅ xci∗) (infimum of first sum at x∗)

≤
n

∑
j=1

∣uj ∣∣ρ(wj ⋅ xci∗) − ρ(wc
j ⋅ xci∗)∣ (triangle inequality)

≤ Lρ
n

∑
j=1

∣uj ∣∣(wj −wc
j) ⋅ xci∗∣ (Lipschitz property)

≤ Lρ
n

∑
j=1

∣uj ∣∥wj −wc
j∥p∥xci∗∥p∗ (Hölder’s inequality)

≤ Lρ
n

∑
j=1

∣uj ∣δ2∥xci∗∥p∗ (∥wj −wc
j∥ ≤ δ2)

≤ Lρ
n

∑
j=1

∣uj ∣δ2 max(1, d1− 1
p−

1
r )(∥X∥r,∞ + ε) (equation (36))

≤ LρΛδ2(∥X∥r,∞ + ε)max(1, d1− 1
p−

1
r ). (∥u∥1 ≤ Λ) (40)
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Similarly we can bound the second term in (38) as follows:

y
n

∑
j=1

ujρ(wc
j ⋅ xci∗) − y

n

∑
j=1

ucjρ(wc
j ⋅ xci∗) (41)

≤
n

∑
j=1

∣uj − ucj ∣∣ρ(wj ⋅ xci∗)∣ (triangle inequality)

=
n

∑
j=1

∣uj − ucj ∣∣ρ(wj ⋅ xci∗) − ρ(0)∣ (ρ(0) = 0 assumption)

≤ Lρ
n

∑
j=1

∣uj − ucj ∣∣wj ⋅ xci∗∣ (Lipschitz property)

≤ Lρ
n

∑
j=1

∣uj − ucj ∣∥wj∥p∥xci∗∥p∗ (Hölder’s inequality)

≤ Lρ
n

∑
j=1

∣uj − ucj ∣W ∥xci∗∥p∗ (∥wj∥ ≤W )

≤ Lρ
n

∑
j=1

∣uj − ucj ∣W (∥X∥r,∞ + ε)max(1, d1− 1
p−

1
r ) (equation (36))

≤ Lρδ1W (∥X∥r,∞ + ε)max(1, d1− 1
p−

1
r ) (∥u − uc∥1 ≤ δ1) (42)

Combining equations (40) and (42) results in

f̃(xi) − f̃ c(xi) ≤ Lρ(∥X∥r,∞ + ε)max(1, d1− 1
p−

1
r )(Wδ1 +Λδ2).

By a similar analysis, one can also show that f̃ c(xi) − f̃(xi) ≤ Lρ(∥X∥r,∞ + ε)max(1, d1− 1
p−

1
r )(Wδ1 +Λδ2). Therefore

ε′ ≤ Lρ(∥X∥r,∞ + ε)max(1, d1− 1
p−

1
r )(Wδ1 +Λδ2) (43)

Combining equations (43) and (37) and choosing δ1 = Λ
2
√
m

and δ2 = W
2
√
m

yield

R̃S(Gnp ) ≤
⎛
⎝
LρWΛ max(1, d1− 1

p−
1
r )(∥X∥r,+∞ + ε)√

m

⎞
⎠
(1 +

√
2d(n + 1) log(6

√
m)) ,

which completes the proof.

E. Characterizing adversarial perturbations for ReLU neural networks
E.1. Condition for adversarial perturbations to be on the r-sphere (proof of Theorem 8)

In this section we provide the proof of Theorem 8 which characterizes adversarial perturbations to a one-layer neural net.
First, by the extreme value theorem, (17) achieves its minimum on ∥s∥r ≤ 1. Thus we can restate (17) as

min
∥s∥r≤1

f(s) =
n

∑
j=1

uj(wj ⋅ (x + εs))+. (44)

Theorem 8. Let d be the dimension and n the number of neurons. Consider (44) as defined above. If either ∥x∥r ≥ ε or
n < d, an optimum is attained on the sphere {s∶ ∥s∥r = 1}. Otherwise, an optimum is attained either at s = − 1

ε
x or on

∥s∥r = 1.

The proof of this theorem relies on two important lemmas stated below. We defer the proofs of these lemmas to the end of
the section.

Lemma 7. Consider (44). Then an optimum is obtained in either
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1. S1 ∶= {s∶ ∥s∥r = 1}

2. S2 = {s∶wjk ⋅ (x + εs) = 0 for linearly independent wj1 . . .wjd}
Lemma 8. Consider the intersection of d linearly independent hyperplanes defined by

vk ⋅ (x + εs) = 0∶k = 1 . . . d (45)

for a fixed x. They intersect at a single point given by s = − 1
ε
x.

Next we use lemmas 7 and 8 to prove Theorem 8.

Proof of Theorem 8. By Lemma 7, there exists a point s∗ with

f(s∗) = min
∥s∥r≤1

f(s)

for which either ∥s∗∥r = 1 or

{s∗∶wjk ⋅ (x + εs∗) = 0 for some linearly independent wj1 . . .wjd}

If n < d, then there aren’t d linearly independent wis, and thus s∗ satisfies ∥s∗∥r = 1.

Now assume that n ≥ d and ∥s∗∥r ≠ 1. Lemma 8 implies that s∗ = − 1
ε
x and hence ∥x∥r < ε. Taking the contrapositive of

this statement results in
n ≥ d and ∥x∥r ≥ ε⇒ ∥s∗∥r = 1

We end the subsection with the proofs of lemmas 7 and 8. Before we prove Lemma 7 we state and prove a simpler statement
that will be used in its proof.
Lemma 9. Consider (44). Then an optimum is obtained at either

1. S1 ∶= {s∶ ∥s∥r = 1}

2. S2 = {s∶wj ⋅ (x + εs) = 0 for some wj}

Proof. We know from calculus that every extreme point of f is obtained either on the boundary of the optimization region,
at a point where the function isn’t differentiable, or where the derivative is zero. First, observe that at any non-differentiable
point with ∥s∥r < 1, some wj must satisfy wj ⋅ (x + εs) = 0. Now we’ll consider the third case, points where ∇f(s) = 0.
Assume that s∗ is an extreme point for which f is differentiable (and with derivative zero). Then we claim that there is
another point in either S1 or S2 that achieves the same objective value. Let P = {j ∶wj ⋅ (x + εs∗) > 0} Then

f(s∗) = ∑
j∈P

uj(wj ⋅ (x + εs∗))

Fix this set P . Note that the region where

f(s) = ∑
j∈P

uj(wj ⋅ (x + εs))

is defined by

R = {s∶ ∥s∥r ≤ 1,wj ⋅ (x + εs) ≥ 0 for j ∈ P,wj ⋅ (x + εs) ≤ 0 for j ∈ PC} (46)

By assumption,
∇f(s∗) = ε∑

j∈P

ujwj = 0

However, for any other s in the region defined by (46)

∇f(s) = ε∑
j∈P

ujwj = f(s∗) = 0

Hence, f is constant on the interior of the region defined by (46). By continuity, it is constant on the closure of this region as
well. Hence an optimum of the same value is obtained in either S1 or S2.
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Proof of Lemma 7. This will be a proof by induction. Let s∗ be an optimum. Define Zs
0 = {wj ∶wj ⋅ (x + εs) = 0} and let

k be the dimension of span(Zs∗

0 ). The induction will be on k.

Base Case: By the previous lemma, when looking for the optimum, we only need to consider s for which ∥s∥r = 1 or
wj ⋅ (x + εs) = 0 for some j. Assume that we have an extreme point s∗ for which ∥s∗∥ < 1. Then k ≥ 1.

Inductive Step: Let s∗ be our extreme point and assume that ∥s∗∥r < 1. Our induction hypothesis is that
dim(span(Zs∗

0 )) = k < d. We will show that there is another point t that achieves the same objective value satisfy-
ing either ∥t∥r = 1 or dim(span(Zt

0)) = k + 1.

Let Z be any linearly independent subset of Zs∗

0 . We can parameterize s to be in the intersection of the hyperplanes that
define Z. Formally, let v ∈ span(Z) with wj ⋅ (x + εv) = 0 for all wj ∈ Z, and let A∶Rd−k → Rd be a matrix whose
columns span Z⊥. Take s = v +As′, P = {j∶wj ⋅ (x + εs∗) > 0}, and N = {j∶wj ⋅ (x + εs∗) < 0}. Then by continuity,

f(s) = ∑
j∈P

ujwj ⋅ (x + ε(v +As′))

holds on the region defined by

R = {s′∶ ∥v +As′∥r ≤ 1,wj ⋅ (x + ε(v +As′)) ≥ 0 for j ∈ P,wj ⋅ (x + ε(v +As′)) ≤ 0 for j ∈ N} (47)

For convenience, set
g(s′)∶ = f(v +As′)

We assumed that our optimum s∗ satisfied ∥s∗∥r < 1 and wj ⋅ (x + εs) ≠ 0 for j ∈ P ∪N , which entails that our critical
point is in the interior of R. On the interior of this region, to find all critical points, we can differentiate g in s′:

∇g(s′) =A⊺ ∑
j∈P

ujwj

and set ∇g(s′) equal to zero. This expression is independent of s′ ∈ R. Let z be a critical point of g in int(R). Then
∇g(z) = 0 implies that ∇g(s′) = 0 for all s′ ∈ int(R). Hence, g is constant on R. This implies that there is another point s′

with the same objective value on ∂R. For this point, either ∥v+As′∥r = 1, or ∥v+As′∥r < 1 and wj ⋅ (x+ ε(v+As′)) = 0

for some j ∈ P ∪N . If the second option holds, j ∈ P ∪N means that wj /∈ spanZs∗

0 . It follows that span(Zs∗

0 ∪ {wj}) is
dimension k + 1 and this completes the induction step.

Finally we prove Lemma 8.

Proof of Lemma 8. By substitution s = − 1
ε
x is a solution to the system of equations (45). Since d linearly independent

equations intersect at a point, it is the only solution to these equations.

E.2. A Necessary Condition

In this subsection we present a necessary condition at the optimum when perturbations are measured in any general r-norm.
Throughout this subsection, u⊙ v will be the elementwise product of u an v, ur will be elementwise exponentiation, ∥v∥
will be elementwise absolute value, and sgn(v) will be the vector of signs of the components of v. We adopt the convention
sgn(0) = 0. Recall the definition of dual norm:

∥u∥r∗ = sup
∥v∥r≤1

u ⋅ v = ∥u∥r∗

Equality holds at the vector v = 1
∥u∥r−1r

∣u∣r−1 ⊙ sgn(u), which has unit r∗-norm. For convenience we, define

dualr(u) = (sgnu) ⊙ ∣u∣r−1

∥u∥r−1
r

which gives
u ⋅ dualr(u) = ∥u∥rr = 1.

Below we state and prove the main theorem of this section.



Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks

Theorem 13. Let 1 < r < ∞. Take

f(s) =
n

∑
j=1

uj(wj ⋅ (x + εs))+ (48)

Assume that either ∥x∥r ≥ ε or n < d. Let s∗ is a minimizer of f on the unit r-sphere. Define the following sets:

P = {j∶wj ⋅ (x + εs∗) > 0}

Z = {j∶wj ⋅ (x + εs∗) = 0}

N = {j∶wj ⋅ (x + εs∗) < 0}

Let PZ be the orthogonal projection onto the subspace spanned by the vectors in Z, and PZC be the projection onto the
complement of this subspace. Then the following holds: If P ≠ ∅

s∗ = − ε
λ

RRRRRRRRRRR

⎛
⎝∑j∈P

ujwj + ∑
j∈Z

tjujwj

⎞
⎠

RRRRRRRRRRR

r−1

⊙ sgn
⎛
⎝∑j∈P

ujwj + ∑
j∈Z

tjujwj

⎞
⎠

(49)

where the constants tj , λ are given by the equations

∥s∗∥r = 1 (50)

PZs
∗ = −1

ε
PZx (51)

Further, if P = ∅,

s∗ = − PZx

∥PZx∥
(52)

Using the dualr notation, s∗ can be expressed as

s∗ = dualr
⎛
⎝

RRRRRRRRRRR
∑
j∈P

ujwj + ∑
j∈Z

tjujwj

RRRRRRRRRRR

⎞
⎠
⊙ sgn(∑

j∈P

ujwj + ∑
j∈Z

tjujwj) (53)

Notice that for r = 2, dualr(s∗) = s∗ and then we can write s∗ explicitly:

s∗ = −
⎛
⎝

√
1 − ∥PZx∥2

2

ε2
PZC ∑j∈P ujwj

∥PZC ∑j∈P ujwj∥2

+ ∥PZx∥2

ε

PZx

∥PZx∥
⎞
⎠

Before proceeding with the proof of this theorem, we state a useful definition and lemma. Recall the definition of the
subgradient of a convex function:

Definition 3. The subdifferential of a convex function f1 is the set

∂f1(x) = {v∶ f1(y) − f1(x) ≥ v ⋅ (y − x)}

while the subdifferential of a concave function f2 is the set

−∂(−f2(x)) = {v ∶ f2(y) − f2(x) ≤ v ⋅ (y − x)}

For a function f = f1 + f2 that is the sum of a convex function f1 and a concave function f2, the following observation from
(Polyakova, 1986) shows why these definitions are useful for us.

Lemma 10. Let f = f1 + f2 with f1 convex and f2 concave. Assume that f has a local minimum at x∗. Then

0 ∈ ∂f1(x∗) + ∂f2(x∗)
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Note that the same statement holds for local maxima of f . We defer the proof of this lemma to the end of this subsection.

To prove Theorem 13, we form a Lagrangian for computing the optimum of (48). Lemma 10 gives a necessary condition
in terms of the subgradient of this Lagrangian. Subsequently, we use information about the dual variables obtained via
Theorem 8 and convexity to show (49), (50), and (52). (Note that either ∥x∥r ≥ ε or n < d are precisely the conditions for
Theorem 8). After that, standard linear algebra shows (51).

Proof of Theorem 13. Establishing Equations (49) and (50): First note that the objective f is the sum of a convex and a
concave function: take

f1(s) = ∑
j∶uj>0

uj (wj ⋅ (x + εs))+ f2(s) = ∑
j∶uj<0

uj (wj ⋅ (x + εs))+

f1 is convex because it is the sum of convex functions and f2 is concave because it is the sum of concave functions. This
observation will allow us the apply Lemma 10. We form the corresponding Lagrangian:

L(s) =
n

∑
j=1

uj(wj ⋅ (x + εs))+ +
λ

r
(∥s∥rr − 1)

L is convex in an open set around every local minimum. On this set, since we are optimizing over ∥s∥r ≤ 1, we know that
λ ≥ 0. Further, Theorem 8 shows that there must be an optimum on the unit r-sphere for ∥x∥r ≥ ε.
By Lemma 10, we want to find a condition when 0 is in the subdifferential. We use the following two facts:

1.

∂(x)+ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{0} if x < 0

[0,1] if x = 0

{1} if x > 0

2. For 1 < r < ∞, the r norm is differentiable. Hence we can write:

∇∥s∥rr = ∣s∣r−1 ⊙ sgn s = ∥s∥r−1
r dualr∗(s)

Hence, if ∥s∥ = 1, ∂∥s∥rr = dualr∗(s) = sgn s⊙ ∣s∣r−1.

Then applying Lemma 10, we need

0 ∈ ε∂ ∑
j∈P

uj(wj ⋅ (x + εs)+ + ε∂ ∑
j∈Z

uj(wj ⋅ (x + εs))+ + ε∂ ∑
j∈N

uj(wj ⋅ (x + εs)+) + ∂
λ

r
(∥s∥rr − 1).

Hence for some tj ∈ [0,1],

0 = ε∑
j∈P

ujwj + ε∑
j∈Z

tjujwj +
λ

r
∂∥s∥rr (54)

Using Theorem 8, we choose an optimum on the boundary ∥s∥r = 1. First we consider s∗ with λ ≠ 0. This allows for solving
for ∂∥s∥rr:

dualr(s∗) = s∗ ⊙ ∣s∗∣r−1 = − ε
λ

⎛
⎝∑u∈P

ujwj + ∑
j∈Z

tjujwj

⎞
⎠

Now since dualr(s∗) has r∗-norm 1, this allows us to solve for ∣λ∣. Further recall that at a local minimum, λ ≥ 0 which
tells us sgnλ. Using this information, we can solve for λ which establishes (50). Since 1 < r < ∞, this equation further
establishes (49).
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Establishing Equation (52): Now we consider the case where λ = 0 or P = ∅. For λ = 0, we will show by contradiction
that P must be empty. Assume that P ≠ ∅. Equation (54) then simplifies to

0 = ε∑
j∈P

ujwj + ε∑
u∈Z

tjujwj

which implies that
∑
j∈P

ujwj = − ∑
j∈Z

tjujwj

However, if we take the dot product with x + εs∗,

∑
j∈P

ujwj ⋅ (x + εs∗) = − ∑
j∈Z

wj ⋅ (x + εs∗) = 0

and therefore, wj ⋅ (x + εs∗) ≤ 0 for some j ∈ P which contradicts the definition of P . Therefore, P must be empty.

Now we assume that s∗ has P = ∅ and we show that there is a point z∗ that achieves the same objective value as s∗ but has
N = ∅. This will be proved by induction on the size of Nz. This will then imply that we can take s∗ = − PZx

∥PZx∥
.

Denote by Zs,Ns

Ps = {j ∶wj ⋅ (x + εs) > 0}
Zs = {j ∶wj ⋅ (x + εs) = 0}
Ns = {j ∶wj ⋅ (x + εs) < 0}

For the base case, we use a point s that achieves the optimal value and has Ps = ∅. If Ns = ∅, we are done. Otherwise, for
the induction step, we assume Ns ≠ ∅. We will find a vector z that achieves these same objective value as s, but Ns ⊋ Nz.
Pick a vector v perpendicular to span{wj}j∈Zs but not perpendicular to span{wj}j∈Ns . Such a vector must exist because
if wk ∈ span{wj}j∈Zs , then wk ∈ Zs. We now consider

z(δ) = s + δv
∥s + δv∥

Note that
z(δ) ⋅wj = 0

for each j ∈ Zs for all δ. Because the strict inequality

wj ⋅ (x + εz(δ)) < 0 j ∈ Ns

is satisfied for δ = 0, it is also satisfied for some small δ ≠ 0. We can now increase or decrease δ until

wj ⋅ (x + εz(δ)) = 0 for some j ∈ Ns

and wj ⋅ (x + εz(δ)) < 0 for the remaining js in N . We then have Ns ⊋ Nz(δ). Furthermore, f(s) = f(z(δ)) because the
set P is still empty.

Establishing Equation (51): Let {fk}dZk=1 be an orthonormal basis of span{wj}j∈Z . We will show that x ⋅ fk = −εs∗ ⋅ fk.
Since PZx and −εPZs∗ are contained in the subspace spanned by the vectors in Z, this would imply that PZs∗ = − 1

ε
PZx.

Let
fk = ∑

j∈Z

akjwj (55)

for some constants akj . Recall that for all j ∈ Z,

wj ⋅ (x + εs∗) = 0.

We then use the above equation and (55) to take the dot product of x and fk:

x ⋅ fk = x ⋅ ∑
j∈Z

akjwj = ∑
j∈Z

akjx ⋅wj = −ε∑
j∈Z

akjs
∗ ⋅wj = −εfk ⋅ s∗.

The above establishes equation (51) and completes the proof of the theorem.
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We end the section by proving Lemma 10.

Proof of Lemma 10. We will show that

−∂f2(x∗) ⊂ ∂f1(x∗) (56)

This implies

0 ∈ ∂f1(x∗) + ∂f2(x∗).

We prove (56) by contrapositive. We pick a point x∗ and assume that (56) does not hold. Then we show that x∗ cannot be
a minimum. Assume (56) does not hold. This assumption implies that for some vector c, c ∈ ∂f2(x∗) but −c /∈ ∂f1(x∗).
Then there exists an x for which

f2(x) − f2(x∗) ≤ c⊺(x − x∗)

f1(x) − f1(x∗) < −c⊺(x − x∗)

Summing the above inequalities, we get:

f1(x) + f2(x) < f1(x∗) + f2(x∗)

so x∗ cannot be a local minimum.

F. Towards Dimension-Independent Bounds for Neural Networks
F.1. Proof of Theorem 10

Recall from Section 6.2 that given a sample S , CS denotes the set of all possible partitions of points in S that can be obtained
based on the sign pattern they induced over the set of weight vectors u,w1,w2, . . . ,wn. For a given partition C ∈ CS , we
denote by nC the number of parts in C. Furthermore, we define C∗

S to be the size of the set CS and Π∗
S = maxC nC . We now

proceed to prove Theorem 10 that establishes a data dependent bound on the Rademacher complexity of neural networks
with one hidden layer.

Theorem 10. Consider the family of functions Gnp with p ∈ [1,∞], activation function ρ(z) = (z)+, and perturbations
in r-norm for 1 < r < ∞. Assume that for our sample ∥xi∥r ≥ ε. Then, the following upper bound on the Rademacher
complexity holds:

R̃S(Gnp )≤[
WΛ max(1, d1− 1

p−
1
r )(K(p, d)∥X⊺∥∞,p∗ + ε)√

m
]C∗
S

√
Π∗
S
,

where K(p, d) is defined as

K(p, d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2 log(2d) if p = 1

√
2 [Γ(

p∗+1
2 )

√
π

]
1
p∗

if 1 < p ≤ 2

1 if p ≥ 2

(57)

Proof of Theorem 10. Let Ct denote a partition in partitions C. Furthermore, define st = argmin∥s∥r≤1∑nj=1 ujwj ⋅ (x+ εs)+
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for x ∈ Ct and Pt = {j ∶wj ⋅ (x + εst) > 0}. The Rademacher complexity of the network can be bounded as

R̃S(Gnp ) = E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

m

∑
i=1

σi inf
∥s∥r≤1

yi
n

∑
j=1

uj(wj ⋅ (xi + εs))+
⎤⎥⎥⎥⎥⎦

= E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

m

∑
i=1

σiyi
n

∑
j=1

uj(wj ⋅ (xi + εsi))+
⎤⎥⎥⎥⎥⎦

(definition of si)

= E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi
n

∑
j=1

uj(wj ⋅ (xi + εst))+
⎤⎥⎥⎥⎥⎦

(definition of Ct)

= E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

uj(wj ⋅ (xi + εst))
⎤⎥⎥⎥⎥⎦

(definition of Pt)

≤
⎛
⎜⎜⎜
⎝
E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

ujwj ⋅ xi
⎤⎥⎥⎥⎥⎦
+E

σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

εujwj ⋅ st))
⎤⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

(58)

Next we bound each term in equation (58) separately. For the first term we can write:

E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

ujwj ⋅ xi
⎤⎥⎥⎥⎥⎦
= 1

2
E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

RRRRRRRRRRR

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

ujwj ⋅ xi
RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
(sign symmetry)

= 1

2
E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

RRRRRRRRRRR

1

m

nC

∑
t=1
∑
j∈Pt

ujwj ⋅ ∑
i∈Ct

σiyixi

RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
(reordering summations)

≤ W
2

E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
j∈Pt

∣uj ∣
XXXXXXXXXXX
∑
i∈Ct

σiyixi

XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
(dual norm definition)

Using the bound on the `1 norm of u we get:

E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

ujwj ⋅ xi
⎤⎥⎥⎥⎥⎦
≤ W

2
E
σ

⎡⎢⎢⎢⎢⎣
sup
W,u

1

m

nC

∑
t=1

Λ
XXXXXXXXXXX
∑
i∈Ct

σiyixi

XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
(dual norm definition)

≤ 1

m

ΛW

2
E
σ

⎡⎢⎢⎢⎢⎣
sup
W,u

nC

∑
t=1

XXXXXXXXXXX
∑
i∈Ct

σixi

XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
(σi distributed like yiσi)

≤ 1

m

ΛW

2
E
σ

⎡⎢⎢⎢⎢⎣
∑
C

nC

∑
t=1

XXXXXXXXXXX
∑
i∈Ct

σixi

XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
(summing over all partitions)

= 1

m

ΛW

2
∑
C

nC

∑
t=1

E
σ

⎡⎢⎢⎢⎢⎣

XXXXXXXXXXX
∑
i∈Ct

σixi

XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
.

Next, note that

E
σ

⎡⎢⎢⎢⎢⎣

XXXXXXXXXXX
∑
i∈Ct

σixi

XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
= E

σ

⎡⎢⎢⎢⎢⎣
sup

∥w∥p≤1
∑
i∈Ct

σiw ⋅ xi
⎤⎥⎥⎥⎥⎦
= ∣Ct∣RCt(Fp)

where Fp is the linear function class defined in (8) with W = 1. Hence, applying Theorem 3,

E
σ

⎡⎢⎢⎢⎢⎣

XXXXXXXXXXX
∑
i∈Ct

σixi

XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
≤K(p, d)∥X⊺

t ∥2,p∗ (59)
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with K(p, d) as defined in (57). Xt is the matrix with data points in Ct as columns. Furthermore, we can write:

∥X⊺
t ∥2,p∗ = (

d

∑
j=1

∥Xt(j)∥p
∗

2 )
1
p∗

[Xt(j) denotes jth row of X]

≤
√

∣Ct∣(
d

∑
j=1

∥X(j)∥p
∗

∞)
1
p∗

=
√

∣Ct∣∥X⊺∥∞,p∗ .

Using the above bound we can write:

E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

ujwj ⋅ xi
⎤⎥⎥⎥⎥⎦
≤ K(p, d)ΛW

m
∑
C

nC

∑
t=1

√
∣Ct∣∥X⊺∥∞,p∗

≤ K(p, d)ΛW√
m

∣C∗S ∣
√

Π∗
S
∥X⊺∥∞,p∗ . (60)

Here the last inequality follows from the fact that ∑nCt=1 ∣Ct∣ =m and ∑nCt=1

√
∣Ct∣ is maximized when ∣Ct∣ =m/nC for all t.

Now for the second term in (58) we can write:

E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

εujwj ⋅ st
⎤⎥⎥⎥⎥⎦
= E

σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σi ∑
j∈Pt

εujwj ⋅ st
⎤⎥⎥⎥⎥⎦

(yiσi distributed like σi)

= E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
j∈Pt

εujwj ∑
i∈Ct

σi ⋅ st
⎤⎥⎥⎥⎥⎦

(reorder summations)

≤ E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
j∈Pt

ε∣uj ∣W
XXXXXXXXXXX
∑
i∈Ct

σi ⋅ st
XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
(dual norm)

≤ εWΛ

m
E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

nC

∑
t=1

XXXXXXXXXXX
∑
i∈Ct

σi ⋅ st
XXXXXXXXXXXp∗

⎤⎥⎥⎥⎥⎦
(dual norm)

≤ εWΛ

m
sup

∥st∥r∗≤1

∥st∥p∗ E
σ
[ sup
∥wj∥p≤W
∥u∥1≤Λ

nC

∑
t=1

RRRRRRRRRRR
∑
i∈Ct

σi

RRRRRRRRRRR
] (si constraint)

= εWΛ

m
max(1, d1− 1

p−
1
r )E

σ
[ sup
∥wj∥p≤W
∥u∥1≤Λ

nC

∑
t=1

RRRRRRRRRRR
∑
i∈Ct

σi

RRRRRRRRRRR
] (Lemma 1)

≤ εWΛ

m
max(1, d1− 1

p−
1
r )E

σ
[∑
C

nC

∑
t=1

RRRRRRRRRRR
∑
i∈Ct

σi

RRRRRRRRRRR
] (sum over all classes)

= εWΛ

m
max(1, d1− 1

p−
1
r )∑

C

nC

∑
t=1

E
σ
[
RRRRRRRRRRR
∑
i∈Ct

σi

RRRRRRRRRRR
].

By Jensen’s inequality, we have

E
σ
[∣ ∑
i∈Ct

σi∣] ≤
√

∣Ct∣.
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Substituting this bound above we get that

E
σ

⎡⎢⎢⎢⎢⎣
sup

∥wj∥p≤W
∥u∥1≤Λ

1

m

nC

∑
t=1
∑
i∈Ct

σiyi ∑
j∈Pt

εujwj ⋅ st
⎤⎥⎥⎥⎥⎦
≤ εWΛ

m
max(1, d1− 1

p−
1
r )∑

C

nC

∑
t=1

√
∣Ct∣

≤ εΛW√
m

max(1, d1− 1
p−

1
r )∣C∗S ∣

√
Π∗
S
. (61)

Combining (60) and (61) completes the proof.

We would like to point out that in the above analysis one can replace the dependence on ∥X∥∞,p∗ with a dependence on
∥X∥2,p∗ at the expense of a slower rate of convergence (in terms of m). In order to do this we use Proposition 1 to bound
the right hand side of (59) as:

∥X⊺
t ∥2,p∗ ≤ max(1,m

1
p∗ −

1
2 )∥X∥p∗,2.

Substituting the above bound into the analysis we get the following corollary.

Corollary 1. Consider the family of functions Gnp with p ∈ [1,∞), activation function ρ(z) = (z)+, and perturbations
in r-norm for 1 < r < ∞. Assume that for our sample ∥xi∥r ≥ ε. Then, the following upper bound on the Rademacher
complexity holds:

R̃S(Gnp )≤[
WΛ max(1, d1− 1

p−
1
r )(K(p, d)max(1,m

1
p∗ −

1
2 )∥X∥p∗,2 + ε)

√
m

]C∗
SΠ∗
S ,

F.2. Bounding Π∗
S .

Notice that a key data dependent quantity that controls the Rademacher complexity bound in the previous analysis is Π∗
S ,

i.e., the maximum number of partitions that S can induce on the weights w1, . . . ,wk. As mentioned in Section 6.2 our
notion of ε-adversarial shattering provides a general way to bound Π∗

S . We restate the definition of ε-adversarial shattering
here and then discuss its implications.

Definition 4. Fix the sample S = ((x1, y1) . . . (xm, ym)) and (w1, . . . ,wn). Let si = argmin∥s∥r≤1 yi∑nj=1 uj(wj ⋅ (xi +
εs))+, and define the following three sets:

Pi = {j∶wj ⋅ (x + εsi) > 0}
Zi = {j∶wj ⋅ (x + εsi) = 0}
Ni = {j∶wj ⋅ (x + εsi) < 0}.

Let ΠS(W) be the number of distinct (Pi, Zi,Ni)s that are induced by S, where W is a matrix that admits the wjs as
columns. We call ΠS(W) the ε-adversarial growth function. We say that W is ε-adversarially shattered if every P ⊂ [n] is
possible.

We will further study the above notion of ε-adversarial shattering to bound Π∗
S under assumptions on the weight matrix W.

In particular, we will be interested in vectors w1, . . . ,wn such that for all i ∈ [n], the set Zi is empty. In this case we say
that W is ε-adversarially shattered if every partition of the weights into sets Pi,Ni is possible. For this setting, we state
below a lemma that is analogous to Sauer’s lemma in statistical learning theory (Sauer, 1972; Shelah, 1972) and helps us
bound the ε-adversarial growth function ΠS(W).

Lemma 11. Fix an integer t ≥ 1. Fix a sample S = ((x1, y1) . . . (xm, ym)) and weights w1, . . . ,wn such that for all
i ∈ [n], Zi = ∅, and no subset of the weights of size more than t can be ε-adversarially shattered by S . Then it holds that

ΠS(W) ≤
t

∑
i=0

(n
i
). (62)

Proof. The proof is similar to the proof of Sauer’s lemma (Sauer, 1972; Shelah, 1972) and use an induction on n + t.
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Base Case. We first show that for n = 0 and any t,

ΠS(W) ≤
t

∑
i=0

(0

i
) = 1.

This easily follows since if n = 0, there is no set to shatter. Next, we show that for t = 0 and any n,

ΠS(W) ≤
0

∑
i=0

(n
i
) = 1.

The above holds since if no set of size one can be shattered, then all the points in S fall in a single part of the partition.

Inductive Step. Let n + t = k and assume that (62) holds for all n, t with n + t < k. Notice that ΠS(W) is simply the
maximum number of labelings of W that can be induced by S. Let A be the set of all such labelings and let A′ be the
smallest subset of A that induces the maximal number of different labelings on w2, . . . ,wn. Notice that A′ cannot shatter
more than t of the weights in w2, . . . ,wn. Furthermore, A ∖A′ cannot shatter more than t − 1 of the weights, since any
labeling in A ∖A′ has a corresponding labeling in A with opposite label on w1. Hence, if A ∖A′ shatters more than t − 1
of the weights in w2, . . . ,wn then we get that A shatters more than t of the weights in w1, . . . ,wn. Finally, using the
induction hypothesis we get that

ΠS(W) = ∣A∣
= ∣A′∣ + ∣A ∖A′∣

≤
t

∑
i=0

(n − 1

i
) +

t−1

∑
i=0

(n − 1

i
)

=
t

∑
i=0

(n
i
).

Finally, we end the section by demonstrating that the notion of ε-adversarial shattering can lead to dimension independent
bounds on Π∗

S under certain assumptions. We believe that this notion warrants further investigation and is key in deriving
dimension independent bounds for more general setting. Below we analyze a special case of orthogonal vectors.

Lemma 12. Fix p > 1. Let S = ((x1, y1) . . . (xm, ym)) be a sample and w1, . . .wt be a set of weight vectors. Let W be
the matrix with wis as columns. Furthermore, we make the following assumptions

1. ∥wj∥2 ≥ w2
min for all j ∈ [t].

2. wj ⋅wk = 0 for all j ≠ k.

3. ∥W⊺∥2,p∗ ≤ τ .

4. uj = 1.

If S ε-adversarially shatters w1, . . .wt with perturbations measured in r = 2 norm then it holds that

t ≤
4τ2c22(p∗)∥X∥2

p,∞

ε2w2
min

,

where the constant c2(p∗) (as in Lemma 3) is defined as,

c2(p∗)∶ =
√

2(
Γ(p

∗
+1
2

)
√
π

)
1
p∗ .
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Proof. For orthogonal wj’s, Theorem 9 implies that Zi = ∅. Thus, the optimal perturbation is characterized by

s∗i = −
∑j∈Pi wj

∥∑j∈P wi∥2

In the following, it will be more convenient to work with the negative of this quantity, so we define

si = −s∗i =
∑j∈Pi wj

∥∑j∈Pi wj∥2
.

For a given shattering Pi,Ni by an example xi the following holds:

∀j ∈ Pi, (wj ⋅ xi − εwj ⋅ si) > 0 (63)
∀j ∈ Ni, (wj ⋅ xi − εwj ⋅ si) < 0. (64)

Next, we define W+ and W− as follows:

W+ = ∑
j∈Pi

wj

W− = ∑
j∈Ni

wj .

Furthermore, let ∆W =W+ −W−. Then summing over the inequalities in (63) and (64) we can write:

∆W ⋅ xi > ε∆W ⋅ si

= ε∆W ⋅W+

∥W+∥2

Using the fact that ∣∆W ⋅ xi∣ ≤ ∥∆W∥p∗∥X∥p,∞ we can write:

∥W+∥2∥W∥p∗∥X∥p,∞ > ε∆W ⋅W+. (65)

Since S ε-adversarially shatters W, (65) must hold for every partition Pi,Ni, and hence must hold in expectation over the
random partition as well. Hence, introducing Rademacher random variables σ1, . . . , σt we can write:

E
σ
[∥W+∥2∥∆W∥p∗∥X∥p,∞] > εE

σ
[∆W ⋅W+], (66)

where W+ = ∑tj=1 1σj>0wj and ∆W = ∑tj=1 σjwj . We bound the right-hand side in (66) above as

εE
σ
[∆W ⋅W+] = εE

σ
[(

t

∑
j=1

σjwj)(
t

∑
j=1

σj1σj>0wj)] (67)

= ε
t

∑
j,k=1

E[1σj>0σk]wj ⋅wk

= ε( ∑
j≠k

E[1σj>0]E[σk]wj ⋅wk +
t

∑
j=1

E[1σj>0]wj ⋅wj)

= ε

2

t

∑
j=1

∥wj∥2. (68)

Next, using Cauchy-Schwarz inequality we upper bound the left hand side of (66) as

E
σ
[∥W+∥2∥∆W∥p∗∥X∥p,∞] ≤

√
E
σ
[∥W+∥2

2]
√

E
σ
[∥∆W∥2

p∗]∥X∥p,∞

≤
¿
ÁÁÀ

t

∑
j=1

E[1σj>0]∥wj∥2
√

E
σ
[∥∆W∥2

p∗]∥X∥p,∞ [Using orthogonality of the wj vectors.]

=
¿
ÁÁÀ1

2

t

∑
j=1

∥wj∥2
√

E
σ
[∥∆W∥2

p∗]∥X∥p,∞. (69)
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Furthermore, since p∗ > 1, using the analysis in Section A and the Khintchine-Kahane inequality (Haagerup, 1981):

E
σ
[∥∆W∥2

p∗] ≤ 2E
σ
[∥∆W∥p∗]2

= 2E
σ
[∥

t

∑
j=1

σjwj∥p∗]2

≤ 2c22(p∗)∥W⊺∥2
2,p∗

≤ 2c22(p∗)τ2. (70)

Combining (68), (69) and (70) we can write:

ε

¿
ÁÁÀ1

2

t

∑
j=1

∥wj∥2 <
√

2c2(p∗)τ∥X∥p,∞.

From our assumption we also have that ∥wj∥2 ≥ w2
min for all j ∈ [t]. Substituting above we get

ε ⋅wmin

√
t

2
<
√

2c2(p∗)τ∥X∥p,∞.

Rearranging, we get that

t ≤
4c22(p∗)τ2∥X∥2

p,∞

ε2w2
min

.


