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Abstract
We give safe screening rules to eliminate variables
from regression with `0 regularization or cardinal-
ity constraint. These rules are based on guarantees
that a feature may or may not be selected in an
optimal solution. The screening rules can be com-
puted from a convex relaxation solution in linear
time, without solving the `0 optimization prob-
lem. Thus, they can be used in a preprocessing
step to safely remove variables from considera-
tion apriori. Numerical experiments on real and
synthetic data indicate that a significant number
of the variables can be removed quickly, hence
reducing the computational burden for optimiza-
tion substantially. Therefore, the proposed fast
and effective screening rules extend the scope of
algorithms for `0-regression to larger data sets.

1. Introduction
In machine learning and optimization communities, there is
an increasing interest in regression models with `0 and `2
regularization:

min
x∈Rn

‖y −Ax‖22 +
1

γ
‖x‖22 + µ‖x‖0, and (REG)

min
x∈Rn

‖y −Ax‖22 +
1

γ
‖x‖22 s.t. ‖x‖0 ≤ k, (CARD)

where A ∈ Rm×n is the model matrix, y ∈ Rm is the
vector of response variables, and x ∈ Rn is the vector of
decision variables, i.e., regression coefficients to be esti-
mated. Problem (CARD) has an explicit cardinality con-
straint on the number of non-zeros of x, whereas (REG)
is the regularized version of it. In these models, the `0
terms impose sparsity (Miller, 2002), which is a necessity
for large-dimensional model inference (Hastie et al., 2001;

*Equal contribution 1IEOR, University of California, Berke-
ley, USA 94720 2ISE, University of Southern California, Los
Angeles, USA 90089. Correspondence to: Alper Atamtürk <atam-
turk@berkeley.edu>, Andrés Gómez <gomezand@usc.edu>.
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2015), and the `2 (ridge) regularization (Hoerl & Kennard,
1970) imposes bias/shrinkage in the regression coefficients.
The `2 regularization can be interpreted, from the robust
optimization perspective, as a correction term to account
for uncertainty in the model matrix A (El Ghaoui & Le-
bret, 1997; Xu et al., 2009), and has been shown to improve
the performance of sparse regression models in high-noise
regimes (Mazumder et al., 2017).

The popular `1 (lasso, Tibshirani, 1996) and `1–`2 (elastic
net, Zou & Hastie, 2005) regularizations perform shrinkage
and model selection simultaneously and, as convex proxies
for (REG), they are very fast. However, thanks to substantial
progress in the field of mixed-integer optimization (MIO),
there is an increasing interest in solving the non-convex
problems (REG)–(CARD) directly. Indeed, several stud-
ies (Bertsimas et al., 2016; Cozad et al., 2014; Gómez &
Prokopyev, 2018; Miyashiro & Takano, 2015; Park & Klab-
jan, 2017) have shown that problems (REG)–(CARD) with
hundreds of variables can be solved to optimality simply
by employing general purpose MIO solvers, and the result-
ing estimators outperform their `1 counterparts. Nonethe-
less, solving the `0 problems in this manner is orders-of-
magnitude slower than solving the `1 approximations and
does not scale to problems with n ≥ 1,000. Therefore, fast
heuristics such as `1 approximations, thresholding, local
(but combinatorial) search algorithms or greedy methods
(Hastie et al., 2017; Hazimeh & Mazumder, 2018; Xie &
Deng, 2020) may still be preferable in large-scale instances.

The gap in the performance between exact methods for
(REG)–(CARD) and algorithms for a convex approxima-
tion is to be expected, as the `0-regression is NP-hard (Chen
et al., 2019). Moreover, there exist specialized software
packages tailored to solving lasso and elastic net problems,
such as glmnet (Friedman et al., 2010), which include a va-
riety of techniques specific to `1 inference problems. In con-
trast, general purpose MIO solvers are not tailored to tackle
(REG)–(CARD). Researchers have recently experimented
with implementing branch-and-bound methods tailored for
(REG)–(CARD) (Bertsimas & Van Parys, 2017; Bertsimas
et al., 2019; Dedieu et al., 2020; Kimura & Waki, 2018),
and the promising results indicate that there is substantial
room for improvement for exact `0-regression algorithms.

The purpose of this paper is to define screening rules for non-
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convex `0-regression problems (REG)–(CARD). El Ghaoui
et al. (2010) propose safe rules for efficiently identifying
regression variables that are guaranteed to be zero (null)
in an optimal solution of the lasso problem, reducing the
dimension of the problem to be solved a priori. Tibshirani
et al. (2012) subsequently propose strong rules that may
discard predictors that are part of an optimal lasso solution,
but are quite effective in practice; these strong rules are in-
corporated into glmnet. Additional screening procedures
have been proposed for other convex and lasso-type infer-
ence problems (Fercoq et al., 2015; Ndiaye et al., 2017;
Ogawa et al., 2013; Xiang & Ramadge, 2012; Wang et al.,
2013; Xiang et al., 2016). To the best of our knowledge,
no such screening rule is given to-date for the nonconvex
`0-regression problems (REG)–(CARD).

In MIO community, screening rules are used as part of pre-
processing in branch-and-bound solvers (Atamtürk et al.,
2000; Savelsbergh, 1994). In contrast to convex optimiza-
tion, for MIO problems such as (REG)–(CARD), fixing a
single binary variable to zero reduces the number of feasible
solutions by half; thus, the expected speedup of enumerative
methods such as the branch-and-bound method is exponen-
tial in the number of variables fixed. Therefore, effect
of the screening rules on enumerative methods for non-
convex optimization problems is significantly more than on
polynomial-time algorithms for convex optimization prob-
lems. Unfortunately, the existing screening rules in MIO
solvers are tailored for linear mixed-integer problems and,
as such, they are ineffective for (REG)–(CARD).

Contributions and outline

In this paper we propose safe screening rules for noncon-
vex `0-regression problems (REG)–(CARD). These rules
can be applied to reduce the size of the problems, inde-
pendent of the method used to solve them. Similar to the
approach proposed by El Ghaoui et al. (2010) for lasso,
the safe rules proposed are particularly effective in prob-
lems with large `0–`2 regularization terms, thus suitable for
high noise regimes. The screening rules are obtained by ex-
ploiting convex perspective relaxations of the `0 regression
problems and using their Fenchel dual. The rules can be
computed from a convex relaxation solution in linear time,
without having to solve the `0 optimization problem. In
our computational experiments with benchmark instances,
the screening rules have been able to fix, on average, 76%
of the variables to their optimal values, and in some cases
they have been sufficient to provably solve the problems out-
right. When used as preprocessing with a general purpose
branch-and-bound solver, the screening procedure results in
orders-of-magnitude speedups: instances previously requir-
ing hours (or more) to prove optimality are solved in under
10 seconds with screening. Consequently, the speed and
effectiveness of the safe screening rules extend the scope of

algorithms for `0-regression problems to larger data sets.

The rest of the paper is organized as follows. In Section 2
we describe mixed-integer formulations and convex per-
spective relaxations of problems (REG)-(CARD). In Sec-
tion 3, we derive the safe screening rules for (REG) and
(CARD) based on Fenchel duality of the perspective relax-
ations. In Section 4, we present our computational exper-
iments with synthetic and real benchmark instances from
the literature. We conclude in Section 5 with a few final
remarks.

2. Mixed-integer & perspective formulations
Introducing indicator variables z ∈ {0, 1}n such that zi =
0 =⇒ xi = 0, problem (REG) can be naturally formulated
as the quadratic mixed-integer optimization problem

min
x,z
‖y −Ax‖22 +

1

γ

n∑
i=1

x2i + µ

n∑
i=1

zi (1a)

s.t. xi(1− zi) = 0, i = 1, . . . , n (1b)
x ∈ Rn, z ∈ {0, 1}n. (1c)

For each i, the complementarity constraint xi(1− zi) = 0,
ensures that xi = 0 whenever zi = 0. Such complemen-
tary constraints can be linearized via “big-M” constraints
|xi| ≤ Mzi (Bertsimas et al., 2016) for a suitably large
value of M . However, such formulations with large values
of M are weak and may lead to poor performance as a con-
sequence. A stronger formulation can be given by utilizing
the perspective of the univariate quadratic function x2i :

ζR = min
x,z
‖y −Ax‖22 +

1

γ

n∑
i=1

x2i
zi

+ µ

n∑
i=1

zi (2a)

(MIPR) s.t. xi(1− zi) = 0, i = 1, . . . , n (2b)
x ∈ Rn, z ∈ {0, 1}n, (2c)

where we adopt the convention that x2i /zi = 0 if zi = xi =
0, and x2i /zi = +∞ if zi = 0 and xi 6= 0. The perspective
function x2i /zi significantly strengthens the convex relax-
ation and can be formulated with conic quadratic constraints
(Aktürk et al., 2009; Dong et al., 2015; Frangioni & Gentile,
2006; Günlük & Linderoth, 2010; Xie & Deng, 2020). The
perspective formulation is also at the core of recent spe-
cialized branch-and-bound methods for sparse regression
(Bertsimas & Van Parys, 2017; Bertsimas et al., 2019). A



Safe Screening Rules for `0-Regression from Perspective Relaxations

similar strong mixed-integer formulation of (CARD) is

ζC = min
x,z
‖y −Ax‖22 +

1

γ

n∑
i=1

x2i
zi

(3a)

(MIPC) s.t.
n∑
i=1

zi ≤ k (3b)

xi(1− zi) = 0, i = 1, . . . , n (3c)
x ∈ Rn, z ∈ {0, 1}n. (3d)

Convex relaxation of the mixed-integer programs are ob-
tained by dropping complementary constraints (2b) and (3c),
and relaxing the integrality constraints in (2c) and (3d) to
z ∈ [0, 1]n. Thus, we obtain the convex relaxation

ζCR = min
x,z
‖y −Ax‖22 +

1

γ

n∑
i=1

x2i
zi

+ µ

n∑
i=1

zi (4a)

(CR) x ∈ Rn, z ∈ [0, 1]n, (4b)

of (MIPR) , and the convex relaxation

ζCC = min
x,z
‖y −Ax‖22 +

1

γ

n∑
i=1

x2i
zi

(5a)

(CC)
n∑
i=1

zi ≤ k, x ∈ Rn, z ∈ [0, 1]n (5b)

of (MIPC) . Note that the z-variables can be easily pro-
jected out in formulation (4), resulting in a formulation
involving the reverse Huber penalty (Pilanci et al., 2015).

The optimal solutions of (4) and (5) are good statistical
estimators on their own right. Indeed, Pilanci et al. (2015)
propose convex relaxations of (REG)–(CARD), which are
later shown to be equivalent to perspective relaxations (Xie
& Deng, 2020), and study their strength and conditions for
delivering optimal solutions.

3. Safe screening rules for (REG) & (CARD)
In this section, we give safe screening rules for problems
(MIPR) and (MIPC) , to fix the binary indicator variables
at their optimal values before solving them. The screen-
ing rules require an upper bound on the optimal objective
value of the mixed-integer optimization problems (MIPR) or
(MIPC) and an optimal solution of the perspective relax-
ation (CR) or (CC) , respectively. We denote by Ai the i-th
column of A.
Proposition 1 (Safe screening rules for REG). Let x∗ be
an optimal solution to (CR) with objective value ζCR, ε∗ =
y−Ax∗, δi = (A′iε

∗)
2, i = 1, . . . , n, and let ζ̄ be an upper

bound on ζR. Then any optimal solution to (MIPR) satisfies,

zi =

{
0, if ζCR + µ− γδi > ζ̄

1, if ζCR − µ+ γδi > ζ̄.

Proposition 2 (Safe screening rules for CARD). Let x∗

be an optimal solution to (CC) with objective value ζCC ,
ε∗ = y −Ax∗, δi = (A′iε

∗)
2, i = 1, . . . , n, δ[k] be the k-th

largest value of vector δ, and let ζ̄ be an upper bound on
ζC . Then any optimal solution to (MIPC) satisfies,

zi =

{
0, if δi ≤ δ[k+1] and ζCC − γ(δi − δ[k]) > ζ̄

1, if δi ≥ δ[k] and ζCC + γ(δi − δ[k+1]) > ζ̄.

Remark 1. Suppose that the optimal residual ε∗ are un-
known but approximated by ε̄ such that ‖ε∗ − ε̄‖22 ≤ τ .
Letting δ̄i = (A′iε̄)

2, we find that

δi − δ̄i =
(
A′i(ε

∗ − ε̄)
)2
≤ ‖Ai‖22τ.

Therefore, by adding γ‖Ai‖22τ to the right hand side of
the screening rules in Proposition 1, it is still possible to
ensure that z variables are fixed to their optimal values.
Similar arguments can be made concerning screening rules
in Proposition 2, as well as uncertainties concerning the
exact value of ζCR or ζCC .

We prove Propositions 1 and 2 using Fenchel duality in §3.2.
Before doing so, in §3.1, we discuss the computational cost
of implementing the screening rules.

3.1. Computational cost

Computing optimal solutions to the convex perspective re-
laxations can be done in polynomial time, while finding up-
per bounds for the non-convex mixed-integer optimization
can be accomplished via fast heuristics, thus the screening
rules require substantially less time than solving (REG)-
(CARD) to optimality. In this section we give pointers on
how to do so effectively, and argue that in the context of
branch-and-bound methods the overhead of the screening
rules is linear in n.

Solving perspective relaxations Formulations (CR) and
(CC) can be conveniently solved using off-the-shelf conic
quadratic solvers (Aktürk et al., 2009; Günlük & Lin-
deroth, 2010) — this is the approach we use here. Pilanci
et al. (2015) use a projected quasi-Newton method to solve
(CC) which, they argue, is comparable in complexity to the
lasso for low values of k. Bertsimas & Van Parys (2017);
Bertsimas et al. (2019) use a linear outer approximation
method which they report performs faster than the lasso.
Finally, Hazimeh & Mazumder (2019) and Hazimeh et al.
(2020) have reported promising results with solving the reg-
ularized problem (CR) using first-order coordinate descent
methods.

In fact, mixed-integer optimization methods based on for-
mulations (MIPR) or (MIPC) will solve problems (CR) or
(CC) at the root node of the branch-and-bound tree anyway.
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Thus, in this context, an optimal solution of the perspective
relaxation can be obtained without an additional cost.

Obtaining upper bounds There exist extensive work on
heuristics for sparse regression, including stepwise selection
methods (Efroymson, 1966) and other methods mentioned
in §1. Branch-and-bound methods, both based on off-the-
shelf solvers or recent specialized implementations, use
heuristics to warm-start the solvers and may even require
them to initialize big-M values (Bertsimas et al., 2016;
Dedieu et al., 2020). Thus, upper bounds in this context are
available without incurring in additional costs.

In addition, feasible solutions for sparse regression prob-
lems can be obtained directly from convex relaxations. For
example, Pilanci et al. (2015) use randomized rounding to
obtain high quality feasible solutions of perspective relax-
ations. In our computations with cardinality constrained
problems, we use a simpler rounding mechanism informed
by Proposition 2: given an optimal solution for (CC) , we set
zi = 1 for the k largest values of δ (breaking ties arbitrarily),
and set x equal to the least squares estimator corresponding
to the chosen variables.

Additional operations It is easy to see that for problem
(REG), given a convex relaxation solution and upper bound,
the screening rule of Proposition 1 can be computed inO(n)
time with a single pass along the variables. For (CARD),
given a convex relaxation solution and upper bound, δ[k]
and δ[k+1] can be selected in O(n) (without the need for
sorting) and then the screening rule of Proposition 2 can be
computed in O(n) time as well.

The screening rules presented in this paper can also be
used as dynamic safe rules (Bonnefoy et al., 2014; 2015).
Note that branch-and-bound methods also solve restricted
versions of (CR) or (CC) while exploring the search space.
Thus, thanks to their fast computational time, the screening
outlined in Propositions 1-2 can be used throughout the
branch-and-bound algorithm to fix variables corresponding
to a partial tree, resulting in more aggressive pruning of the
search space.

3.2. Derivation of the screening rules

We now derive the screening rules using Fenchel duality.
Note that, whereas Pilanci et al. (2015) and Bertsimas &
Van Parys (2017) derive their methods based on the Fenchel
dual of the error term ‖y − Ax‖22, we instead use the dual
of the perspective terms.

3.2.1. DERIVATION OF PROPOSITION 1

Let h∗(p, q) be the bivariate convex conjugate of the per-
spective function x2/z, i.e.,

h∗(p, q) = max
x,z

px+ qz − x2

z
· (6)

From Fenchel’s inequality, we have

px+ qz − h∗(p, q) ≤ h(x, z) (7)

for any p, q, x, z ∈ R. Employing (7) for each term to get a
lower bound on (CR) and maximizing the lower bound, we
obtain the Fenchel dual for (2):

max
p,q∈Rn

min
x,z
‖y −Ax‖22 + µ

n∑
i=1

zi (8a)

+
1

γ

n∑
i=1

(
pixi + qizi − h∗(pi, qi)

)
(8b)

s.t. x ∈ Rn, z ∈ [0, 1]n. (8c)

Indeed, the conjugate function h∗ can be computed in closed
form. Since (6) is concave in both x and z, by taking deriva-
tives with respect to x and z and setting to zero, we find the
optimality conditions:

p− 2x

z
= 0 (9)

q +
(x
z

)2
= 0, (10)

since, otherwise, (6) is unbounded. The optimality condi-
tions imply that

p2

4
= −q and px+ qz − x2

z
= 0,

where the second inequality is obtained by multiplying (9)
by x and (10) by y, and summing them up. Thus,

h∗(p, q) =

{
0, if q = −p2/4
+∞, otherwise.

Therefore, we find that (8) reduces to

ζFR = max
p∈Rn

min
x,z
‖y −Ax‖22 + µ

n∑
i=1

zi (11a)

(FDR) +
1

γ

n∑
i=1

(
pixi −

p2i
4
zi

)
(11b)

s.t. x ∈ Rn, z ∈ [0, 1]n. (11c)

In fact, max and min can be interchanged in (11), since
setting p∗i = 2xi

zi
(if xi and zi are both non-zero) we re-

cover precisely (CR) ; thus, there is no duality gap between
(CR) and (FDR) and we have ζCR = ζFR.
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In optimal solutions of the inner minimization problem we
have

zi =


0, if µ− p2i

4γ > 0

1, if µ− p2i
4γ < 0

∈ [0, 1] otherwise.

and A′Ax = A′y− 1
2γ p. Note that if µ− p2i

4γ 6= 0 for all i =
1, . . . , n, then the optimal solution of the inner minimization
problem in (FDR) is unique; in this case, by strong duality,
that solution is also optimal for (CR) and, since it is integral,
it is in fact optimal for (MIPR) as well. However, if µ −
p2i
4γ = 0 for some i, then the inner minimization problem in
(FDR) has an infinite number of optimal solutions and the
solution of (CR) may not be integral.

Now, let x∗ be an optimal solution of (CR) and ε∗ = y −
Ax∗ be the vector of residuals. Given x∗, a corresponding
optimal dual solution p∗ can be recovered as A′Ax∗ =
A′y − 1

2γ p
∗, or p∗ = 2γA′ε∗. Moreover, we find that

µ− (p∗i )
2

4γ
= µ− γ(A′iε

∗)2 = µ− γδi,

where Ai is the i-th column of A. Consequently, optimal
(p∗, z∗) for (FDR) can be recovered from ε∗. We can now
give the proof of Proposition 1.

Proof of Proposition 1. Suppose µ−γδi > 0 and thus zi =
0 in an optimal solution to (FDR) . Note that in this case
the inequality ζCR − µ + γδi > ζ̄ is never satisfied. Let
ζFR(zi = 1) be the optimal objective value of the Fenchel
dual with the additional constraint zi = 1. Note that

ζFR + µ− γδi = ζFR + µ− (p∗i )
2/4γ ≤ ζFR(zi = 1),

and the inequality is tight if the dual variables p∗ are still
optimal optimal after introducing the constraint zi = 1.
Thus, if ζFR + µ− γδi > ζ̄, we conclude that any feasible
solution for (CR) with zi = 1 has an objective worse than
the upper bound and, in particular, there exists no optimal
solution of (MIPR) with zi = 1.

Similarly, suppose µ − γδi < 0 and zi = 1 in an optimal
solution to (FDR) . Since ζFR − µ + γδi ≤ ζFR(zi = 0),
if the lower bound ζFR + µ− (p∗i )

2/4γ > ζ̄, we conclude
that there exists no optimal MIP solution with zi = 0.

Remark 2. If A′A is invertible, then an explicit formulation
of the dual problem (11) can be obtained as

max
p∈Rn

‖y‖22 −
(
A′y − 1

2γ
p

)′
(A′A)−1

(
A′y − 1

2γ
p

)
+

n∑
i=1

min

{
0, µ− p2i

4γ

}
.

3.2.2. DERIVATION OF PROPOSITION 2

Using identical arguments as in §3.2.1, we find the Fenchel
dual of (CC) as

ζFC = max
p∈Rn

min
x,z
‖y−Ax‖22 +

1

γ

n∑
i=1

(
pixi−

p2i
4
zi

)
(12a)

(FDC) s.t.
n∑
i=1

zi ≤ k, x ∈ Rn, z ∈ [0, 1]n. (12b)

As for (FDR) if max and min are interchanged, then p∗i =
2xi

zi
(if xi and zi are both non-zero) and we recover pre-

cisely (CC) ; thus, there is no duality gap between (CC) and
(FDC) and we have ζCC = ζFC .

Observe that for the inner minimization problem, an optimal
solution satisfies zi = 1 for indices with the largest k values
of p2i

4γ and zi = 0 otherwise. Moreover, if there is no tie
between the k-th and (k + 1)-st largest value in an optimal
solution of (FDC) , then this solution is unique and is also
optimal1 for (CC) and (MIPC) . Otherwise, if there is a tie,
then (CC) may not have optimal solutions integral in z.

Now, let x∗ be an optimal solution of the convex relaxation
of (MIPC) , and let ε∗ = y − Ax∗ be the vector of residu-
als. Then, the corresponding optimal dual solution p∗ can
be recovered as A′Ax∗ = A′y − 1

2γ p
∗, or p∗ = 2γA′ε∗.

Moreover, we find that

− (p∗i )
2

4γ
= −γ(A′iε

∗)2 = −γδi.

Proof of Proposition 2. Suppose δi ≤ δ[k+1]. Then, zi = 0
in an optimal solution of the inner minimization in (FDC) ;
let z[k] be the indicator variables corresponding to the term
δ[k]. Let ζFC(zi = 1) be the optimal objective value of
Fenchel dual with the additional constraint zi = 1. The
cardinality constraint implies that z[k] = 0 for an optimal
solution of this problem. Since ζCC−γδi+δ[k] ≤ ζFC(zi =
1), if the lower bound ζCC − γδi + δ[k] > ζ̄, we conclude
that there exists no optimal solution to (MIPC) with zi = 1.

Similarly, suppose δi ≥ δ[k]; then, we have zi = 1 in an
optimal solution of the inner minimization of (FDR) . Let
ζFC(zi = 0) be the objective value of the Fenchel dual
with the additional constraint zi = 0. Since ζCC + γδi −
δ[k+1] ≤ ζFC(zi = 0), if the lower bound ζCC + γδi −
δ[k+1] > ζ̄ , we conclude that there exists no optimal solution
to (MIPC) with zi = 0.

4. Computational experiments
In this section we report on our computational experiments
to test the effectiveness of the screening rules for the cardi-

1A similar result is given in (Pilanci et al., 2015, Prop. 1).
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nality constrained sparse regression problem (CARD) . As
the statistical merits of solving (CARD) are, by now, exten-
sively documented in the literature (Atamtürk & Gómez,
2019; Bertsimas et al., 2016; Bertsimas & Van Parys,
2017; Bertsimas et al., 2019; Hastie et al., 2017; Haz-
imeh & Mazumder, 2018; Mazumder et al., 2017), we fo-
cus on the impact of the safe screening rules on solving
(MIPC) efficiently. In our computations we use CPLEX
12.8 mixed-integer optimizer. All experiments are per-
formed on a laptop with eight Intel(R) Core(TM) i7-8550
CPUs and 16GB RAM. In §4.1 we test the screening rules
on “standard” synthetic data sets (Atamtürk & Gómez, 2019;
Bertsimas et al., 2016; 2019; Hastie et al., 2017; Xie & Deng,
2020), and in §4.2 we use the real data sets reported in Ta-
ble 1. The “Diabetes” data set is first used by Efron et al.
(2004), whereas the other data sets are obtained from the
UCI Machine Learning Repository (Dua & Graff, 2017).

Table 1: Real data sets used.

Name n m
Diabetes 64 442
Autos 74 193
Crime 100 1993
UJIndoorLoc 520 19,937
Micromass 1,300 360

4.1. Synthetic data

We follow the data generation methodology of Bertsimas
et al. (2019), where instances are generated according to a
number of features of n, number of rows m, true sparsity
k, regularization parameter γ, autocorrelation parameter
ρ, and signal noise ratio (SNR). In our experiments, we
let n = 1,000, m = 500, k ∈ {10, 30, 50}, γ = 2iγ0
with i ∈ {−1, 0, 2, 4} and γ0 = n

mkmaxi ‖ai‖22
(where

ai denotes the i-th row of A), ρ ∈ {0.2, 0.5, 0.7}, and
SNR ∈ {0.05, 1.00, 6.00}. The parameters m, γ, ρ and
SNR coincide with the values used in Bertsimas et al.
(2019). Our instances are smaller with n = 1, 000 and
k ∈ {10, 30, 50} as we use a general purpose mixed-integer
solver rather than a tailored solution method for (MIPC) as
in Bertsimas et al. (2019). Several other papers in the litera-
ture generate data similarly. Finally, we set the time limit to
ten minutes.

Figures 1 and 2 show aggregated results over all 540 syn-
thetic instances tested. Figure 1 depicts the performance
profiles of CPLEX with and without the safe screening rules
proposed in the paper. We see that default CPLEX struggles
with instances of this size, and is able to solve only 14% of
the instances within the time limit; similar performance for
general purpose MIP solvers has been observed in the litera-
ture for instances with n = 1, 000 (Hastie et al., 2017; Xie
& Deng, 2020). In contrast, when the screening rules are in-
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Figure 1: Number of synthetic instances solved as a function
of the time in seconds.
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Figure 2: Distribution of the number of variables fixed
across all synthetic instances.

corporated, the performance improves substantially: it only
takes 11 seconds to solve the same 14% of the instances,
and 75% of the instances are provably solved to optimality
within the ten-minuted time limit. Thus, for the synthetic
instances that are solved to optimality by both methods, the
screening procedure results in a 60× speedup. In fact, as
Figure 2 shows, the screening procedures alone are suffi-
cient to prove optimality for 23% of the instances, and are
able to fix 75% or more of the variables in an additional
52% of the instances. There is, however, a small portion of
the instances where few or no variables were fixed by the
screening procedure.

Table 2 presents detailed information on the number of
variables fixed as a function of the parameters k, γ, ρ, and
SNR. Each entry in the table corresponds to an average
over five identically generated instances. As the parameter
k decreases (imposing higher `0 regularization) and the
parameter γ increases (imposing higher `2 regularization),
the screening procedures become more effective at fixing
variables. We also observe that the screening rules are
more effective when the signal-noise ratio is large, while
the parameter ρ plays a relatively minor role.
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Table 2: Number of variables fixed in synthetic instances with n = 1, 000.

k 10 30 50 Average
γ SNR ρ .2 .5 .7 .2 .5 .7 .2 .5 .7

2−1γ0

0.05 995 996 993 997 791 983 996 792 934
930± 2191.00 1,000 998 999 997 912 473 906 982 950

6.00 1,000 1,000 997 993 988 987 1000 752 692

20γ0

0.05 983 986 991 980 972 988 988 989 800
967± 1471.00 998 997 996 958 977 988 973 789 994

6.00 1,000 999 995 997 993 997 785 997 992

22γ0

0.05 553 245 621 893 640 751 804 952 902
886± 2321.00 991 988 977 971 969 940 968 976 962

6.00 1,000 1,000 983 978 980 974 962 975 968

24γ0

0.05 0 0 0 0 0 0 1 111 0
276± 4101.00 577 194 174 302 455 457 40 166 144

6.00 1,000 999 597 939 379 109 40 297 471
Average 801± 385 770± 377 723± 409 765± 391

4.2. Real data

We test the safe screening procedure in the data sets given in
Table 1. For each data set, we solve problem (MIPC) with
k ∈ {10, 20, 30}. Bertsimas et al. (2019) indicate in the
documentation of their code2 that setting γ = 1/

√
m is

an appropriate scaling for regression problems. For this
value of γ, on average, 98.2% of the variables are fixed
by the screening procedure, and all instances are solved in
four seconds. To better understand the effectiveness of the
screening procedures for a broader set of parameters, we
let γ = 2iγ0 with i ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8} and γ0 as
described in §4.1.
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Figure 3: Number of real data instances solved as a function
of the time in seconds.

Figures 3 and 4 display the aggregated results over 150
instances tested with a time limit of one hour. The perfor-
mance profile in Figure 3 shows that default CPLEX is able
to solve 55% of the instances in one hour. When the screen-
ing rules are incorporated, the same 55% of the instances
are solved in under 10 seconds, and 87% of the instances

2https://github.com/jeanpauphilet/
SubsetSelectionCIO.jl.
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Figure 4: Distribution of the number of variables fixed
across all instances with real data.

are solved within the time limit of one hour. Therefore, for
the instances that are solved to optimality by both methods,
the screening procedure results in a 360× speedup. The
distribution of the percentage of variables fixed (Figure 4)
is similar to the one reported in §4.1, and 75% or more of
the variables are fixed in 70% of the instances.

Figure 5 depicts the number of variables fixed for each data
set and each value of γ; the points in the graph represent the
average of three instances with different cardinalities. We
observe that the screening procedure is able to fix most of the
variables for γ ≤ 25γ0. As γ increases further, the strength
of the perspective relaxation decreases and the screening
procedure is unable to fix as many variables.

Finally, Table 3 shows four instances with the Diabetes
data set where the screening procedure is able to fix only a
small percentage of the variables, yet it results in substantial
reduction in solution times3. The table shows the time in sec-

3Instances with k = 10 on this dataset are solved in five sec-
onds or less independently of the use of the screening procedure,
and are omitted. Similarly, instances with γ ≥ 27γ0 are solved in

https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
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Figure 5: Proportion of variables fixed in instances with real
data, where γ = 2iγ0. Each point is an average of three
instances with different cardinalities k.

onds and the number of branch-and-bound nodes required
to solve the problems to optimality, and the % of variables
fixed by the screening procedure. Observe that even by
fixing fewer than 20% of the variables, the screening rule
leads to a substantial reduction in running times. In some
cases, instances that are not solved to optimality within the
one-hour time limit are solved in under 15 seconds with
screening.

Table 3: Sample instances with the Diabetes dataset illus-
trating impact of fixing a small number of variables.

k γ
CPLEX CPLEX+screening

time nodes % fixed time nodes
20 γ0/2 968 48,050 10.9% 303 10,552
20 γ0 2,080 80,095 14.1% <1 0
30 γ0/2 2,791 119,638 20.3% 444 30,903
30 γ0 1hr limit 168,311 9.4% 12 272

5. Conclusion
We give a simple, yet very effective safe screening proce-
dure for non-convex `0 regression problems. Computational
on synthetic and real data sets show that when used as pre-
processing before solving the problems, the screening rules
eliminate, on average, 76% of the binary variables, and
consequently lead to substantial reduction in solution times.
Strong convex relaxations of `0 formulations are key to the
success of the safe screening rules. Screening rules based
on stronger relaxations (Atamtürk et al., 2018; Atamtürk &
Gómez, 2018; Atamtürk & Gómez, 2019; Han et al., 2020)
than the perspective formulations considered in this paper
should lead to even more effective safe screening rules.

under 6 seconds, independent of the use of the screening procedure.
Instances on datasets with n ≥ 100 are rarely solved to optimality
unless at least 50% of the variables are fixed.
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Atamtürk, A., Gómez, A., and Han, S. Sparse and smooth
signal estimation: Convexification of L0 formulations.
arXiv preprint arXiv:1811.02655, 2018.

Bertsimas, D. and Van Parys, B. Sparse high-dimensional re-
gression: Exact scalable algorithms and phase transitions.
arXiv preprint arXiv:1709.10029, 2017.

Bertsimas, D., King, A., Mazumder, R., et al. Best subset
selection via a modern optimization lens. The Annals of
Statistics, 44(2):813–852, 2016.

Bertsimas, D., Pauphilet, J., and Van Parys, B. Sparse re-
gression: Scalable algorithms and empirical performance.
arXiv preprint arXiv:1902.06547, 2019.

Bonnefoy, A., Emiya, V., Ralaivola, L., and Gribonval, R. A
dynamic screening principle for the lasso. In 2014 22nd
European Signal Processing Conference (EUSIPCO), pp.
6–10. IEEE, 2014.

Bonnefoy, A., Emiya, V., Ralaivola, L., and Gribonval, R.
Dynamic screening: Accelerating first-order algorithms
for the lasso and group-lasso. IEEE Transactions on
Signal Processing, 63(19):5121–5132, 2015.

Chen, Y., Ye, Y., and Wang, M. Approximation hardness
for a class of sparse optimization problems. Journal of
Machine Learning Research, 2019.



Safe Screening Rules for `0-Regression from Perspective Relaxations

Cozad, A., Sahinidis, N. V., and Miller, D. C. Learning sur-
rogate models for simulation-based optimization. AIChE
Journal, 60(6):2211–2227, 2014.

Dedieu, A., Hazimeh, H., and Mazumder, R. Learning
sparse classifiers: Continuous and mixed integer opti-
mization perspectives. arXiv preprint arXiv:2001.06471,
2020.

Dong, H., Chen, K., and Linderoth, J. Regularization vs.
relaxation: A conic optimization perspective of statisti-
cal variable selection. arXiv preprint arXiv:1510.06083,
2015.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.
Least angle regression. The Annals of Statistics, 32(2):
407–499, 2004.

Efroymson, M. Stepwise regression–a backward and for-
ward look. Florham Park, New Jersey, 1966.

El Ghaoui, L. and Lebret, H. Robust solutions to least-
squares problems with uncertain data. SIAM Journal
on matrix analysis and applications, 18(4):1035–1064,
1997.

El Ghaoui, L. E., Viallon, V., and Rabbani, T. Safe feature
elimination for the lasso and sparse supervised learning
problems. arXiv preprint arXiv:1009.4219, 2010.

Fercoq, O., Gramfort, A., and Salmon, J. Mind the du-
ality gap: Safer rules for the lasso. arXiv preprint
arXiv:1505.03410, 2015.

Frangioni, A. and Gentile, C. Perspective cuts for a class
of convex 0–1 mixed integer programs. Mathematical
Programming, 106(2):225–236, 2006.

Friedman, J., Hastie, T., and Tibshirani, R. Regularization
paths for generalized linear models via coordinate descent.
Journal of Statistical Software, 33(1):1–22, 2010. URL
http://www.jstatsoft.org/v33/i01/.
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Han, S., Gómez, A., and Atamtürk, A. 2x2 convexifications
for convex quadratic optimization with indicator variables.
arXiv preprint arXiv:2004.07448, 2020.

Hastie, T., Tibshirani, R., and Friedman, J. The elements
of statistical learning: Data mining, inference, and pre-
diction, volume 1. Springer series in statistics New York,
NY, USA, 2001.

Hastie, T., Tibshirani, R., and Wainwright, M. Statistical
learning with sparsity: The lasso and generalizations.
CRC press, 2015.

Hastie, T., Tibshirani, R., and Tibshirani, R. J. Extended
comparisons of best subset selection, forward stepwise
selection, and the lasso. arXiv preprint arXiv:1707.08692,
2017.

Hazimeh, H. and Mazumder, R. Fast best subset selection:
Coordinate descent and local combinatorial optimization
algorithms. arXiv preprint arXiv:1803.01454, 2018.

Hazimeh, H. and Mazumder, R. Learning hierarchical inter-
actions at scale: A convex optimization approach. arXiv
preprint arXiv:1902.01542, 2019.

Hazimeh, H., Mazumder, R., and Saab, A. Sparse regression
at scale: Branch-and-bound rooted in first-order optimiza-
tion. arXiv preprint arXiv:2004.06152, 2020.

Hoerl, A. E. and Kennard, R. W. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
12(1):55–67, 1970.

Kimura, K. and Waki, H. Minimization of akaike’s infor-
mation criterion in linear regression analysis via mixed
integer nonlinear program. Optimization Methods and
Software, 33(3):633–649, 2018.

Mazumder, R., Radchenko, P., and Dedieu, A. Subset selec-
tion with shrinkage: Sparse linear modeling when the snr
is low. arXiv preprint arXiv:1708.03288, 2017.

Miller, A. Subset selection in regression. CRC Press, 2002.

Miyashiro, R. and Takano, Y. Subset selection by Mallows’
Cp: A mixed integer programming approach. Expert
Systems with Applications, 42(1):325–331, 2015.

Ndiaye, E., Fercoq, O., Gramfort, A., and Salmon, J. Gap
safe screening rules for sparsity enforcing penalties. The
Journal of Machine Learning Research, 18(1):4671–4703,
2017.

Ogawa, K., Suzuki, Y., and Takeuchi, I. Safe screening
of non-support vectors in pathwise SVM computation.
In International Conference on Machine Learning, pp.
1382–1390, 2013.

Park, Y. W. and Klabjan, D. Subset selection for multi-
ple linear regression via optimization. arXiv preprint
arXiv:1701.07920, 2017.

http://archive.ics.uci.edu/ml
http://www.jstatsoft.org/v33/i01/


Safe Screening Rules for `0-Regression from Perspective Relaxations

Pilanci, M., Wainwright, M. J., and El Ghaoui, L. Sparse
learning via boolean relaxations. Mathematical Program-
ming, 151(1):63–87, 2015.

Savelsbergh, M. W. P. Preprocessing and probing techniques
for mixed integer programming problems. ORSA J. on
Computing, 6(4):445–454, 1994.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996.

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N.,
Taylor, J., and Tibshirani, R. J. Strong rules for discarding
predictors in lasso-type problems. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 74
(2):245–266, 2012.

Wang, J., Zhou, J., Wonka, P., and Ye, J. Lasso screening
rules via dual polytope projection. In Advances in Neural
Information Processing Systems, pp. 1070–1078, 2013.

Xiang, Z. J. and Ramadge, P. J. Fast lasso screening
tests based on correlations. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2137–2140. IEEE, 2012.

Xiang, Z. J., Wang, Y., and Ramadge, P. J. Screening tests
for lasso problems. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 39(5):1008–1027, 2016.

Xie, W. and Deng, X. Scalable algorithms for the sparse
ridge regression. 2020.

Xu, H., Caramanis, C., and Mannor, S. Robustness and
regularization of support vector machines. Journal of
machine learning research, 10(Jul):1485–1510, 2009.

Zou, H. and Hastie, T. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society:
Series B (Methodology), 67(2):301–320, 2005.


