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Abstract 

Trained generative models have shown remark-
able performance as priors for inverse problems 
in imaging – for example, Generative Adversar-
ial Network priors permit recovery of test images 
from 5-10x fewer measurements than sparsity pri-
ors. Unfortunately, these models may be unable 
to represent any particular image because of ar-
chitectural choices, mode collapse, and bias in the 
training dataset. In this paper, we demonstrate 
that invertible neural networks, which have zero 
representation error by design, can be effective 
natural signal priors at inverse problems such as 
denoising, compressive sensing, and inpainting. 
Given a trained generative model, we study the 
empirical risk formulation of the desired inverse 
problem under a regularization that promotes high 
likelihood images, either directly by penalization 
or algorithmically by initialization. For compres-
sive sensing, invertible priors can yield higher 
accuracy than sparsity priors across almost all 
undersampling ratios, and due to their lack of rep-
resentation error, invertible priors can yield better 
reconstructions than GAN priors for images that 
have rare features of variation within the biased 
training set, including out-of-distribution natural 
images. We additionally compare performance 
for compressive sensing to unlearned methods, 
such as the deep decoder, and we establish theo-
retical bounds on expected recovery error in the 
case of a linear invertible model. 
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1. Introduction 

Figure 1. We train an invertible generative model with CelebA 
images (including those shown). When used as a prior for com-
pressive sensing, it can yield higher quality image reconstructions 
than Lasso and a trained DCGAN, even on out-of-distribution im-
ages. Note that the DCGAN reflects biases of the training set by 
removing the man’s glasses and beard, whereas our invertible prior 
does not. 

Generative deep neural networks have shown remarkable 
performance as natural signal priors in imaging inverse prob-
lems, such as denoising, inpainting, compressive sensing, 
blind deconvolution, and phase retrieval. These generative 
models can be trained from datasets consisting of images of 
particular natural signal classes, such as faces, fingerprints, 
MRIs, and more (Karras et al., 2018; Minaee & Abdol-
rashidi, 2018; Shin et al., 2018; Chen et al., 2018). Some 
such models, including variational autoencoders (VAEs) 
and generative adversarial networks (GANs), learn an ex-
plicit low-dimensional manifold that approximates a natural 
signal class (Goodfellow et al., 2014; Kingma & Welling, 
2014; Rezende et al., 2014). We will refer to such mod-
els as GAN priors. These priors can be used for inverse 
problems by attempting to find the signal in the range of 
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the generative model that is most consistent with provided 
measurements. When the GAN has a low dimensional la-
tent space, this allows for a low dimensional optimization 
problem that operates directly on the natural signal class. 
Consequently, generative priors can obtain significant perfor-
mance improvements over classical methods. For example, 
GAN priors have been shown to outperform sparsity priors 
at compressive sensing with 5-10x fewer measurements in 
some cases. Additionally, GAN priors have led to novel 
theory for signal recovery in the linear compressive sensing 
and nonlinear phase retrieval problems (Bora et al., 2017; 
Hand & Voroninski, 2018; Hand et al., 2018), and they have 
also shown promising results for the nonlinear blind image 
deblurring problem (Asim et al., 2019). 

A significant drawback of GAN priors for solving inverse 
problems is that they can have large representation error or 
bias due to architecture and training. That is, a desired image 
may not be in or near the range of a particular trained GAN. 
Representation error can occur both for in-distribution and 
out-of-distribution images. For in-distribution, it can be 
caused by inappropriate latent dimensionality and mode 
collapse. For out-of-distribution images, representation er-
ror can be large in part because the GAN training process 
explicitly discourages such images due to the presence of 
the concurrently trained discriminator network. For many 
imaging inverse problems, it is important to be able to re-
cover signals that are out-of-distribution relative to training 
data. For example, in scientific and medical imaging, novel 
objects or pathologies may be expressly sought. Addition-
ally, desired signals may be out-of-distribution because a 
training dataset has bias and is unrepresentative of the true 
underlying distribution. As an example, the CelebA dataset 
(Liu et al., 2015) is biased toward people who are young, 
who do not have facial hair or glasses, and who have a 
light skin tone. As we will see, a GAN prior trained on 
this dataset learns these biases and exhibits image recovery 
failures because of them. 

Several recent priors have been developed that have lower 
representation error than GANs. One class of approaches 
are unlearned neural network priors, such as the Deep Image 
Prior and the Deep Decoder (Ulyanov et al., 2018; Heckel & 
Hand, 2019). These are neural networks that are randomly 
initialized, and whose weights are optimized at inversion 
time to best fit provided measurements. They have practi-
cally zero representation error for natural images. Because 
they are untrained, there is no training set or training distribu-
tion, and hence there is no notion of in- or out-of-distribution 
natural images. Another class of approaches include updat-
ing the weights of the trained GAN at inversion time in an 
image adaptive way, such as the IAGAN (Hussein et al., 
2020). Such an approach could be interpreted as using the 
GAN as a warm start for a Deep Image Prior. A further ap-
proach is Latent Convolutional Models (Athar et al., 2019), 

in which a generative prior is trained using high dimensional 
latent representations which are structured as the parameters 
of a randomly initialized convolutional neural network. 

In this paper, we study flow-based invertible neural networks 
as signal priors. These networks are mathematically invert-
ible (one-to-one and onto) by architectural design (Dinh 
et al., 2017; Gomez et al., 2017; Jacobsen et al., 2018; 
Kingma & Dhariwal, 2018). Consequently, they have zero 
representation error and are capable of recovering any image, 
including those significantly out-of-distribution relative to a 
training set; see Figure 1. We call the domain of an invert-
ible generator the latent space, and we call the range of the 
generator the signal space. These must have equal dimen-
sionality. The strengths of these invertible models include: 
their architecture allows exact and efficient latent-variable 
inference, direct log-likelihood evaluation, and efficient im-
age synthesis; they have the potential for significant memory 
savings in gradient computations; and they can be trained 
by directly optimizing the likelihood of training images. 
This paper emphasizes an additional strength: because they 
lack representation error, invertible models can mitigate 
dataset bias and improve recovery performance on inverse 
problems, including for signals that are out-of-distribution 
relative to training data. 

We present a method for using pretrained generative invert-
ible neural networks as priors for imaging inverse problems. 
An invertible generator, once trained, can be used for a wide 
variety of inverse problems, with no specific knowledge 
of those problems used during the training process. As an 
invertible net permits a likelihood estimate for all images, 
image recovery can be posed as seeking the highest likeli-
hood image that is consistent with provided measurements. 

As a proxy for the image log-likelihood, we pose an op-
timization of squared data-fit over the latent space under 
regularization by likelihood of latent representations. In the 
case of denoising, we explicitly penalize log-likelihood of 
latent codes, while in compressive sensing and inpainting, 
regularization is achieved algorithmically. This is due in 
part to initializion with latent code zero. 

The contributions of this paper are as follows. We train a 
generative invertible model using the CelebA dataset. With 
this fixed model as a signal prior, we study its performance 
at multiple inverse problems. 

• For image denoising, invertible neural network pri-
ors can yield sharper images with higher PSNRs than 
BM3D (Dabov et al., 2007). 

• For compressive sensing of in-distribution images, in-
vertible neural network priors can yield higher PSNRs 
than GANs with low-dimensional latent dimension-
ality (both DCGAN and PG-GAN), Image Adaptive 
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GANs, sparsity priors, and a Deep Decoder across a 
wide range of undersampling ratios. 

• Invertible neural networks exhibit graceful perfor-
mance decay for compressive sensing on out-of-
distribution images. They can yield significantly higher 
PSNRs than GANs with low latent dimensionality 
across a wide range of undersampling ratios. They can 
additionally yield higher or comparable PSNRs than 
the Deep Decoder when there are sufficiently many 
measurements. 

• We introduce a likelihood-based theoretical analysis of 
compressive sensing under invertible generative priors 
in the case that the generator is linear. Given m linear 
measurements of an n-dimensional signal, we prove 
a theorem establishing upper and lower bounds of ex-
pected squared recovery error in terms of the sum of 
the squares of the smallest n − m singular values of 
the model. 

2. Method 

We assume that we have access to a pretrained generative 
Invertible Neural Network (INN), G : Rn → Rn . We write 
x = G(z) and z = G−1(x), where x ∈ Rn is an image that 
corresponds to the latent representation z ∈ Rn . We will 
consider a G that has the Glow architecture introduced in 
(Kingma & Dhariwal, 2018). For a short introduction to the 
Glow model, see section 2.1. 

We consider recovering an image x from possibly-noisy 
linear measurements of the form, 

y = Ax + η, 

where A ∈ Rm×n is a measurement matrix and η ∈ Rm 

models noise. Given a pretrained invertible generator G, we 
have access to likelihood estimates for all images x ∈ Rn . 
Hence, it is natural to attempt to solve the above inverse 
problem by a maximum likelihood formulation given by 

min kAx − yk2 − γ log pG(x), 
x∈Rn 

where pG is the likelihood function over x induced by G, 
k · k is the Euclidean norm, and γ is a hyperparameter. We 
have found this formulation to be empirically challenging 
to optimize, and instead we solve an optimization prob-
lem over latent space that encourages high likelihood latent 
representations. In the case of denoising, we solve 

min kAG(z) − yk2 + γkzk2 (1) 
z∈Rn 

In the case of compressive sensing, we fix γ = 0 and solve 

min kAG(z) − yk2 (2) 
z∈Rn 

Unless otherwise stated, we initialize both formulations at 
z0 = 0. 

The motivation for formulations (1) and (2) is as follows. 
As a proxy for the likelihood of an image x ∈ Rn , we will 
use the likelihood of its latent representation z = G−1(x). 
Because the invertible network G was trained to map a 
standard normal in Rn to a distribution over images, the log-
likelihood of a latent representation z is proportional to kzk2 . 
The model induces a probability distribution over the affine 
space of images consistent with some given measurements, 
and so our proxy turns the likelihood maximization task over 
an affine space in x into the geometric task of finding the 
point on a manifold in z-space that is closest to the origin 
with respect to the Euclidean norm. In order to approximate 
that point, we run a gradient descent in z down the data 
misfit term starting at z0 = 0. 

In principle, this proxy is imperfect in that some high likeli-
hood latent codes may correspond to low likelihood images. 
We find that the set of such images has low total probability 
and they are inconsistent with enough provided measure-
ments. For further discussion of our choice of proxy and 
initialization at z0 = 0, see the Supplemental Materials. 

In all experiments that follow, we use an invertible Glow 
model, as in (Kingma & Dhariwal, 2018). Due to compu-
tational considerations, we run most of our experiments on 
64×64px color images with the pixel values scaled between 
[0, 1]. For some compressive sensing experiments, we ad-
ditionally trained a 128 × 128px Glow model in order to 
replicate results at this larger size. Once trained, the Glow 
prior is fixed for use in each of the inverse problems below. 

For comparison to GAN architectures, we train a 64 × 64 
DCGAN architecture (Radford et al., 2016) and a 128 × 128 
PGGAN architecture (Karras et al., 2018). To use these pri-
ors in inverse problems, we use the formulation from (Bora 
et al., 2017), which is the formulation above in the case 
where the optimization is performed over Rk , γ = 0, and 
initialization is selected randomly. For comparison to an 
unlearned neural image prior, we implement an overparam-
eterized variant of a Deep Decoder prior at both resolutions 
as in (Heckel & Hand, 2019). In all experiments, we solve 
(2) using L-BFGS for Glow, and Adam (Kingma & Ba, 
2015) for the Deep Decoder, DCGAN, and PGGAN archi-
tectures. DCGAN and PGGAN results are reported for an 
average of 3 runs because we observed some variance due to 
random initialization. To measure the quality of recovered 
images, we use Peak Signal-to-Noise Ratio (PSNR). For 
more information on the training algorithms, hyperparam-
eters, and parameter counts for each of the tested models, 
see the Supplemental Materials. 
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Figure 2. An Affine Coupling layer applies an affine transforma-
tion to half of the input data, here x1. The parameters of the affine 
transformations, s and t, can depend in a complex, learned way on 
the other half of the input data. The model can be inverted, even 
though s and t themselves are not invertible. 

2.1. Details of the Glow Architecture 

The Glow architecture (Kingma & Dhariwal, 2018) belongs 
to the class of normalizing flow models. A normalizing 
flow models output signals using a composition of many 
flow steps which are each individually invertible. In the 
Glow model, flow steps use an Affine Coupling layer, in 
which half of the input data is used to determine the scale 
and translation parameters of an affine transformation ap-
plied to the other half of the input data. This operation 
is shown schematically in Figure 2. Each affine transfor-
mation is invertible and has an upper-triangular Jacobian, 
making it computationally tractable to compute the Jaco-
bian determinant of the entire normalizing flow. In turn, 
given a simple prior over the latent space, the model can be 
efficiently trained to sample structured, high-dimensional 
data by directly maximizing likelihood of the training data. 

To ensure that each input component can affect each out-
put component, the Glow models incorporate a pixelwise 
reshuffling. In other normalizing flows, such as RealNVP 
(Dinh et al., 2017), this is achieved by a fixed permutation, 
whereas in Glow it is achieved by a learned 1x1 convolu-
tion. Both models consist of multiscale achitectures based 
on affine coupling and pixelwise reshuffling. We refer the 
reader to (Dinh et al., 2017) and (Kingma & Dhariwal, 2018) 
for more details. 

3. Applications 

3.1. Denoising 

We consider the denoising problem with A = In and 
η ∼ N (0, σ2In), as given by formulation equation 1. 
We evaluate the performance of a Glow prior, a DCGAN 
prior, and BM3D for two different noise levels on 64px 
in-distribution images (n = 64 × 64 × 3 = 12288). 

Figure 3. Recovered PSNR values as a function of γ for denoising 
by the Glow and DCGAN priors. Denoising results are averaged 
over N = 50 in-distribution test set images. For reference, we 
show the average PSNRs of the original noisy images, after ap-
plying BM3D, and under the Glow prior in the noiseless case 
(σ = 0). 

Figure 3 shows the recovered PSNR values as a function 
of γ for denoising by the Glow and DCGAN priors, along 
with the PSNR by BM3D. The figure shows that the per-
formance of the regularized Glow prior increases with γ, 
and then decreases. If γ is too low, then the network fits 
to the noise in the image. If γ is too high, then data fit is 
not enforced strongly enough. We study this effect for an 
extensive range of γ and noise levels, which may be found 
in the Supplemental Materials. We see in Figure 3 that an 
appropriately regularized Glow prior can outperform BM3D 
by almost 2 dB. The experiments also reveal that appropri-
ately regularized Glow priors outperform the DCGAN prior, 
which suffers from representation error and is not aided by 
the regularization. A visual comparison of the recoveries 
at the noise level σ = 0.1 using Glow, DCGAN priors, and 
BM3D can be seen in Figure 4. Note that the recoveries 
with Glow are sharper than BM3D. See the Supplemental 
Materials for more quantitative and qualitative results. 

3.2. Compressive Sensing 

In compressive sensing, one is given undersampled linear 
measurements of an image, and the goal is to recover the im-
age from those measurements. In our notation, A ∈ Rm×n 

with m < n. As the image x is undersampled, there is an 
affine space of images consistent with the measurements, 
and an algorithm must select which is most ‘natural.’ A 
common proxy for naturalness in the literature has been 
sparsity with respect to the DCT or wavelet bases. With a 
GAN prior, an image is considered natural if it lies in or 
near the range of the GAN. For an invertible prior, image 
likelihood is a proxy for naturalness, and under our proxy 
for likelihood, we consider an image to be natural if it has a 
latent representation of small norm. 

We study compressive sensing in the case that A is an m×n 
matrix of i.i.d. N (0, 1/m) entries and where η is standard 
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Figure 4. Denoising results using the Glow prior, the DCGAN 
prior, and BM3D at noise level σ = 0.1. Note that the Glow prior 
gives a sharper image than BM3D in these cases. p
i.i.d. Gaussian noise normalized such that Ekηk2 = 0.1. 
We present our results under formulation (2), the γ = 0 
simplification of (1). 

We compare the Glow prior to various other learned and 
unlearned image priors. This includes GANs, as used in 
(Bora et al., 2017), and IAGAN, as used in (Hussein et al., 
2020). In the 64px case (n = 64 × 64 × 3 = 12288), 
we compare to a DCGAN, and in the 128px case (n = 
128 × 128 × 3 = 49152) we compare to a PGGAN, both 
trained on the CelebA-HQ dataset. We also compare to 
unlearned image priors, including an overparameterized 
Deep Decoder and a sparsity prior in the DCT basis1. To 
assess the performance of each image prior, we report the 
mean PSNR of recovered test set images from both the 
training distribution of the learned models ("in-distribution" 
images) and other datasets ("out-of-distribution" images). 
Our in-distribution images are sampled from a test set of 
CelebA-HQ images which were withheld from all learned 
models during their training procedures. Out-of-distribution 
images are sampled randomly from the Flickr Faces High 
Quality dataset, which provides images with features of 
variation that are rare among CelebA images (eg. skin tone, 
age, beards, and glasses) (Karras et al., 2019). The 64px and 
128px recovery experiments have test sets with N = 1000 
and N = 100 images respectively. 

1The inverse problems with Lasso were solved by 
minz kAΦz − yk22 + 0.01kzk1 using coordinate descent. We 
observe similar performance between the DCT basis and a Wavelet 
basis. 

Surprisingly, the Glow prior exhibits superior performance 
on compressive sensing tasks with no likelihood penaliza-
tion in the objective (2). We find that z0 = 0 is a particularly 
good choice of initialization, for which one does not bene-
fit from likelihood penalization, while for other choices of 
initialization direct penalization of likelihood may improve 
performance. We provide additional experiments exploring 
this phenomena in the Supplemental Materials. 

As shown in Figure 5, we find that on its training distri-
bution, the Glow prior outperforms both the learned and 
unlearned alternatives for a wide range of undersampling 
ratios. Surprisingly, in the case of extreme undersampling, 
Glow substantially outperforms these methods even though 
it does not maintain a direct low-dimensional parameteri-
zation of the signal manifold. In both the 64px and 128px 
cases, the GAN architectures quickly saturate due to their 
representation error. For out-of-distribution images, the 
Glow prior exhibits graceful performance decay, and is still 
highly performant in a large measurement regime. See fig-
ures 6 and 7 for a visual comparison of recovered images 
from the CelebA and FFHQ test sets for the 128px case. 
The PGGAN’s performance reveals biases of the underlying 
dataset and limitations of low-dimensional modeling, as the 
PGGAN fails completely to represent features like darker 
skin tones or accessories, which are uncommon in CelebA. 
In contrast, the Glow prior mitigates this bias, demonstrating 
image recovery for natural images that are not representative 
of the CelebA training set. 

3.3. Inpainting 

In inpainting, one is given a masked image of the form 
y = M x, where M is a masking matrix with binary 
entries and x ∈ Rn is an n-pixel image. As in compressive 
sensing, we solve (2) to try to recover x, among the affine 
space of images consistent with the measurements. As 
before, using the minimizer ẑ, the estimated image is given 
by G(ẑ). We show qualitative inpainting results in Fig. 8. 
Our experiments reveal the same story as forcompressive 
sensing. If initialized at z0 = 0, then Glow model under 
the empirical risk formulation with γ = 0 exhibits high 
PSNRs on test images while the DCGAN is limited by its 
representation error. 

4. Theory 

We now introduce a likelihood-based theory for compressive 
sensing under invertible priors in the case of a linear invert-
ible model. We will provide an estimate on the expected 
error of the recovered signal in terms of the singular values 
of the model. Specifically, we consider a fixed invertible 
linear G : Rn → Rn . Assume signals are generated by a 
distribution pG(x), given by x = Gz, where z ∼ N (0, In). 
Equivalently, pG = N (0, GGT). 
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Figure 5. Performance of Glow, GAN, and IAGAN priors (learned) and the Deep Decoder and Lasso-DCT priors (unlearned) across 
various undersampling ratios in the 64px and 128px case. The 64px and 128px experiments use N = 1000 and N = 100 test set images 
respectively. 

For an unknown sample x0 ∼ pG, suppose we are pro-
vided noiseless measurements Ax0, where A ∈ Rm×n has 
i.i.d. N (0, 1) entries. We consider the maximum likelihood 
estimate of x0: 

x̂ := arg max pG(x) s.t. Ax = Ax0. (3) 
x∈Rn 

The following theorem provides both upper and lower 
bounds on the absolute expected squared error in terms 
of the singular values of G. 
Theorem 1. Suppose x0 ∼ pG where pG = N (0, GGT) 
and G ∈ Rn×n has singular values σ1 > σ2 > · · · > 
σn > 0. Let A ∈ Rm×n have i.i.d. N (0, 1) entries where 
4 6 m < n. Then the maximum likelihood estimator x̂ 
obeys X X 

σ2 6 EAEx0∼pG kx̂ − x0k2 6 m σi 
2 . (4)i 

i>m i>m−2 

The relative expected squared error could be computed by 
EAEx0∼pG kx̂−x0 k2 P 

, noting that Ex0∼pG kx0k2 = σk 
2 .Ex0∼pG kx0k2 k≥1 

The lower bound of this theorem establishes that under a 
linear invertible generative model, m Gaussian measure-
ments give rise to at least as much error as would be given 
by the best m-dimensional signal model, i.e. the model 
corresponding to the only the top m directions of highest 
variance. The upper bound on this theorem establishes that 
up to a factor of m, expected square error is bounded above 
by the error given by the best m − 2 dimensional model. 

Note that if the singular values decay quickly enough, then 
the expected recovery error under the linear invertible model 
decreases to a small value as m → n. Specifically, this is 
achieved if σi = o(i−1/2). This conclusion is in contrast 
with the theory for GANs with low latent dimensionality. 
In that literature, recovery error does not decrease to 0 as 
m → n; instead it saturates at the representation error of the 
GAN model. In the present case of a linear model, the best 
k-dimensional model would have expected square recovery P 
error at least σ2 regardless of m. Similar work in (Yu i>k i 
& Sapiro, 2011) also showed that m Gaussian measurements 
of a Gaussian signal give rise to an error proportional to 
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Figure 6. Compressive sensing on CelebA images with m = 
7, 500 (≈ 20%) of measurements. Visual comparisons: CS under 
the Glow prior, PGGAN prior, and the overparameterized Deep 
Decoder prior. For images in-distribution, we observe qualita-
tively sharper recoveries from the Glow Prior than from the Deep 
Decoder. 

the best m-term approximation. The difference between 
that work and our results is that we have an explicit upfront 
constant in the upper bound whereas in (Yu & Sapiro, 2011) 
it is estimated via Monte Carlo simulations. 

The theorem is proved in the Supplemental Materials. 

5. Discussion 

We have demonstrated that pretrained generative invertible 
models can be used as natural signal priors in imaging in-
verse problems. Their strength is that every desired image 
is in the range of an invertible model, and the challenge 
that they overcome is that every undesired image is also 
in the range of the model and no explicit low-dimensional 
representation is kept. We demonstrate that this formulation 
can quantitatively and qualitatively outperform BM3D at 
denoising. For compressive sensing on in-distribution im-
ages, invertible priors can have lower recovery errors than 
Deep Decoder, GANs with low dimensional latent represen-
tations, and Lasso, across a wide range of undersampling 
ratios. We show that the performance of our invertible prior 
behaves gracefully with slight performance drops for out-
of-distribution images. We additionally prove a theoretical 
upper and lower bound for expected squared recover error 
in the case of a linear invertible generative model. 

The idea of analyzing inverse problems with invertible neu-
ral networks has appeared in Ardizzone et al. (2019). The 

Figure 7. Compressive sensing on FFHQ images with m = 7, 500 
(≈ 20%) of measurements. Visual comparisons: CS under the 
Glow prior, PGGAN prior, and the overparameterized Deep De-
coder prior. For images out-of-distribution, the images recovered 
by the Deep Decoder and the Glow priors are both qualitatively 
and quantitatively (by PSNR) comparable. 

authors study estimation of the complete posterior param-
eter distribution under a forward process, conditioned on 
observed measurements. Specifically, the authors approxi-
mate a particular forward process by training an invertible 
neural network. The inverse map is then directly available. 
In order to cope with information loss, the authors augment 
the measurements with additional variables. This work dif-
fers from ours because it involves training a separate model 
for every particular inverse problem. 

In contrast, our work studies how to use a pretrained invert-
ible generator for a variety of inverse problems not known 
at training time. Training invertible networks is challeng-
ing and computationally expensive; hence, it is desirable to 
separate the training of off-the-shelf invertible models from 
potential applications in a variety of scientific domains. In 
additional work by Putzky & Welling (2019), the authors 
also exploit the efficient gradient calculations of invertible 
nets for improved MR reconstruction. 

Why do invertible neural networks perform well for both 
in-distribution and out-of-distribution images? 
One reason that the invertible prior performs so well is be-
cause it has no representation error. Any image is potentially 
recoverable, even if the image is significantly outside of the 
training distribution. In contrast, methods based on pro-
jecting onto an explicit low-dimensional representation of 
a natural signal manifold (such as GAN priors) will have 
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Figure 8. Inpainting on random images with the Glow and DC-
GAN priors. In the left columns, images are taken from the training 
distribution of the learned priors, and the right column includes 
two images from the wild. 

representation error, perhaps due to modeling assumptions, 
mode collapse, or bias in a training set. Such methods will 
see performance prematurely saturate as the number of mea-
surements increases. In contrast, an invertible prior would 
not see performance saturate. In the extreme case of having 
a full set of exact measurements, an invertible prior could in 
principle recover any image exactly. 

How do invertible priors respect the low dimensionality of 
natural signals? And how does our theory inform this? 
A surprising feature of invertible priors is that they per-
form well even though they do not maintain explicit low-
dimensional representations of natural signals. Instead they 
have a fully dimensional representation of the natural signal 
class. Naturally, any signal class will truly be fully dimen-
sional, for example due to sensor noise, but with different 
importances to different directions. Those directions in la-
tent space corresponding to noise perturbations will have 
much smaller of an effect than corresponding perturbations 
in semantically meaningful directions. As an illustration, we 
observe with trained Glow models that the singular values 
of the Jacobian of G at a natural image exhibit significant 
decay, as we show in the Supplemental Materials. In prin-
ciple, signal models of any given dimensionality could be 
extracted from G, though it is not obvious how to compute 
these. The power of invertible priors is that each additional 
measurement acts to roughly increment the dimensional-
ity of the modeled natural signal manifold. That is, more 
measurements permit exploiting a higher dimensional and, 
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Figure 9. An invertible net was trained on the data points in x-
space (top), resulting in the given plots of latent z-likelihood versus 
x (bottom left), and x-likelihood versus latent representation z 
(bottom right). 

hence, lower-error signal model. In contrast, GAN-based 
recovery theory exploits a model of fixed dimensionality 
regardless of the number of measurements. Our theoretical 
analysis provides justification for this explanation based on 
linear invertible generators G. Each singular value σi of 
G quantifies the signal variation due to a particular direc-
tion in latent space, and the expected squared error given mP 
random measurements is upper bounded by m σi 

2 .i>m−2 
Note that the best m-dimensional manifold (given by the 
top m singular values and vectors) would yield at best anP 
expected squared error of σi 

2 . The multiplicative mi>m 
term and the sum’s starting index may not be optimal, and 
improvement of this bound is left for future research. 

Why is the likelihood of an image’s latent representation a 
reasonable proxy for the image’s likelihood? 
The training process for an invertible generative model at-
tempts to learn a target distribution in image space by di-
rectly maximizing the likelihood of provided samples from 
that distribution, given a standard Gaussian prior in latent 
space. High probability regions in latent space map to re-
gions in image space of equal probability. Hence, broadly 
speaking, regions of small values of kzk are expected to map 
to regions of large likelihoods in image space. There will 
be exceptions to this property. For example, natural image 
distributions have a multimodal character. The preimage of 
high probability modes in image space will correspond to 
high likelihood regions in latent space. Because the gener-
ator G is invertible and continuous, interpolation in latent 
space of these modes will provide images of high likeli-
hood in z but low likelihood in the target distribution. To 
demonstrate this, we trained a Real-NVP (Dinh et al., 2017) 
invertible neural network on the two dimensional set of 
points depicted in Figure 9 (top panel). The lower left and 
right panels show that high likelihood regions in latent space 
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generally correspond to higher likelihood regions in image 
space, but that there are some regions of high likelihood in 
latent space that map to points of low likelihood in image 
space and in the target distribution. We see that the spurious 
regions are of low total probability and would be unlikely to 
be the desired outcomes of an inverse problem arising from 
the target distribution. 

How can solving compressive inverse problems be success-
ful without direct penalization of the image likelihood or its 
proxy? 
If there are fewer linear measurements than the dimension-
ality of the desired signal, an affine space of images is 
consistent with the measurements. In our formulation, regu-
larization does not occur by direct penalization by our proxy 
for image likelihood; instead, it occurs implicitly by per-
forming the optimization in z-space with an initialization of 
z0 = 0. The set of latent representations z that are consistent 
with the compressive measurements define a m-dimensional 
nonlinear manifold. As per the likelihood proxy mentioned 
above, the spirit of our formulation is to find the point on 
this manifold that is closest to the origin with respect to 
the Euclidean norm. Our specific way of estimating this 
point is to perform a gradient descent down a data misfit 
term in z-space, starting at the origin. While a gradient flow 
typically will not find the closest point on the manifold, it 
empirically finds a reasonable approximation of that point. 
This type of algorithmic regularization is akin to the linear 
invertible model setting where it is well known that run-
ning gradient descent to optimize an underdetermined least 
squares problem with initialization z0 = 0 will converge to 
the minimum norm solution. 

The results of this paper provide further evidence that re-
ducing representational error of generators can significantly 
enhance the performance of generative models for inverse 
problems in imaging. This idea was also recently explored 
in (Athar et al., 2019), where the authors trained a GAN-like 
prior with a high-dimensional latent space. The high dimen-
sionality of this space lowers representational error, though 
it is not zero. In their work, the high-dimensional latent 
space had a structure that was difficult to directly optimize, 
so the authors successfully modeled latent representations 
as the output of an untrained convolutional neural network 
whose parameters are estimated at test time. 

Their paper and ours raises an important question: which 
generator architectures provide a good balance between low 
representation error, ease of training, and ease of inversion? 
This question is important, as solving (2) in our 128×128px 
color images experiments took on the order of 11 minutes 
using an NVIDIA 2080 Ti GPU. 

New developments are needed on architectures and frame-
works in between low-dimensional generative priors and 
fully invertible generative priors. Such methods could lever-

age the strengths of invertible models while being much 
cheaper to train and use. 
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