
        
    

  

  

 

    
       

         

 

    
     

  

      

      

 
 

     
          

 

   

                

 

 
        

 
 

                        
 

  

 

 
   

    
 

  

     
 
 

    

       
 
  

  
 

Invertible generative models for inverse problems: mitigating representation 
error and dataset bias 

1. Appendix 

1.1. Proofs 
dWe now proceed with the proof of Theorem 1. Throughout the proof, we use = to denote equality in distribution. 

Proof of Theorem 1. We first quantify the expected error over the distribution pG. Observe that since x0 ∼ pG = 
N (0, GGT), it can be written as x0 = Gz0 where z0 ∼ N (0, In). Then 

Ex0∼pG kx̂ − x0k2 = Ez0∼N (0,In)kGẑ − Gz0k2 

where ẑ is the maximum likelihood estimator in latent space: 

ẑ := arg min 
1 kzk2 s.t. AGz = AGz0. 

z∈Rn 2 

Since A has i.i.d. N (0, 1) entries, AG has full rank with probability 1 so ẑ is given explicitly by 

ẑ = GTAT(AGGTAT)−1AGz0 =: PGT AT z0 

where PGTAT is the orthogonal projection onto the range of GTAT . Thus 

2Ez0∼N (0,In)kGẑ − Gz0k2 = Ez0 ∼N (0,In)kG PGTAT z0 − Gz0k2 = kG(PGTAT −In)kF 

where the last equality follows from Lemma 1. 

Without loss of generality, it suffices to consider the case when G is diagonal. To see this, let UΣV T be the SVD of G. 
Observe that 

dPGTAT = PV ΣU T AT = V PΣUTAT V T = V PΣAT V T 

where we used Lemma 2 in the second equality and used the rotational invariance of A in the last equality. Thus we have 

d 2kG(PGTAT −In)k2 = kG(V PΣAT V T − In)kF .F 

Moreover, note that 

kG(V PΣAT V T − In)k2 = kΣV T(V PΣAT V T − In)k2 = kΣ PΣAT V T − ΣV Tk2 = kΣ(PΣAT −In)k2 F F F F 

where we used the unitary invariance of the Frobenius norm in the first and last equality and the orthogonality of V in the 
second equality. Hence 

EAkG(PGTAT −In)k2 = EAkΣ(PΣAT −In)k2 = EAk(In − PΣAT )Σk2 F F F 

so we assume without loss of generality that G = diag(σ1, . . . , σn) and consider EAk(In − PGAT )GkF 
2 . 

We now compute the lower bound of the expected error. Note that rank(PGAT ) = m since A is full rank with probability 1. 
Also for any random draw of Gaussian A, 

min kG − Sk2 6 k(In − PGAT )Gk2 F . (1) 
S∈Rn×n , rank(S)6m

F 



      

 
      

  
  

 
 

 

       
                   

     

 

  
    

        
 

   

        
     

  

     
 

   
 

      
    

     

           

   

 
  

       
   

  
  

    
 

     

Invertible Generative Models for Inverse Problems 

By the Eckart-Young Theorem (Eckart & Young, 1936), X 
2min kG − Sk2 = .F σi 

S∈Rn×n , rank(S)6m 
i>m 

Taking the expectation with respect to A to the right hand-side of (1) establishes the lower bound in the theorem. 

The upper bound comes from the following result in (Halko et al., 2011). 

Theorem 1 (Minor variant of Theorem 10.5 in (Halko et al., 2011)). Suppose G is a real ` × n matrix with singular values 
σ1 > σ2 > · · · > σmin{`,n} > 0. Choose a target rank k > 2 and oversampling factor m − k > 2 where m 6 min{`, n}. 
Draw an n × m Gaussian matrix AT and construct the sample matrix GAT . Then the expected approximation error � �X 

2EAk(In − PGAT )Gk2 F 6 1 + 
k

σj . (2) 
m − k − 1 

j>k 

Theorem 10.5 in (Halko et al., 2011) literally states a bound on EAk(In − PGAT )GkF but in the proof, the authors show 
the stronger result (2). The upper bound in Theorem 1 follows by setting ` = n and k = m − 2 in Theorem 1 whereby the 
condition on k requires 4 6 m 6 n. 

The following are two supplementary lemmas used in the proof of Theorem 1. The first shows that the expected value of the 
` 2 norm of a matrix acting on an isotropic gaussian vector is its frobenius norm. 

2Lemma 1. Let M ∈ Rm×n . Then Ez∼N (0,In)kMzk2 = kMkF . 

Proof. Let UΣV T be the SVD of M where Σ ∈ Rm×n contains the singular values σi of M on the diagonal for i = 1, . . . , r 
and r = rank(M) 6 min{m, n}. Then 

dkMzk2 = kUΣV T zk2 = kΣV T zk2 = kΣzk2 

where we used the unitary invariance of the ` 2 norm in the second equality and the rotational invariance of z in the last 
equality. The result follows by noting that 

r rX X 
2 2 2Ez∼N (0,In )kΣzk

2 = σi 
2Ezi∼N (0,1)zi = σi = kMkF . 

i=1 i=1 

The second lemma asserts that unitary matrices exhibit a commutativity property when acting on the range of an orthogonal 
projector. 

Lemma 2 (Proposition 8.4 in (Halko et al., 2011)). Given a matrix M , let PM denote the orthogonal projection onto the 
range of M . Then for any unitary U , UT PM U = PUTM . 
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1.2. Models 

1.2.1. ARCHITECTURE AND TRAINING DETAILS 

We train 128px and 64px variants of the Glow architecture (Kingma & Dhariwal, 2018). This model uses a sequence of 
invertible flow steps, each comprising of an activation normalization layer, a 1 × 1 invertible convolutional layer, and an 
affine couping layer. Let K be the number of steps of flow before each splitting layer, and let L be the number of times the 
splitting is performed. For denoising, we use K = 48, L = 4 for 64px recovery. For compressive sensing, we use K = 18 
and L = 4 for 64px recovery and K = 32, L = 6 for 128px recovery. All models are trained over 5-bit images using a 
learning rate of 0.0001 and 10, 000 warmup iterations, as in (Kingma & Dhariwal, 2018). When solving inverse problems 
using Glow, original 8-bit images were used. 

We observed numerical instability when solving inverse problems in the 128px case, in that activations of the Glow network 
could become too large to compute during inversion. To mitigate this problem, we train a modified version of the Glow 
reference implementation in which we add a small constant � = 0.0005 to computed scale parameters in each Actnorm 
layer, thus preventing a “division by zero error” during inversion. Additionally, in forward passes of the Glow model we clip 
activations to the range [−40, 40]. 

We train a 64px DCGAN (Radford et al., 2016) and a 128px PGGAN (Karras et al., 2018) in order to compare the Glow 
model to traditional GAN architectures. The DCGAN model has d = 5 upsampling layers implemented through transpose 
convolutions. The PGGAN model has d = 5 upsampling layers implemented through nearest neighbor upsampling followed 
by a convolutional layer. In both cases, the first layer of each GAN includes k0 = 512 activation channels and after each 
upsampling operation the number of activation channels is reduced by half. These architectures are used as-is for both the 
CSGM (Bora et al., 2017) and the Image Adaptive (Hussein et al., 2020) compressive sensing procedures. 

Lastly, we also use an overparametrized variant of the Deep Decoder (Heckel & Hand, 2019) in order to compare to an 
unlearned neural network for compressive sensing. We use d = 5 and d = 6 upsampling layers for the 64px and 128px 
cases respectively, implemented in both cases with convolutional layers followed by bilinear upsampling. The number of 
activation channels in each layer is held fixed at k = 250 and k = 700 for the 64px and 128px cases respectively. 

64px Models Hyperparameters Repr. Size Model Size Overparam. Ratio 

Glow (Denoising) K = 48, L = 4, affine coupling 12,288 67,172,224 1.000 

Glow (CS) K = 18, L = 4, affine coupling 12,288 25,783,744 1.000 

DCGAN k0 = 512, d = 5 100 3,576,804 0.0081 

IA-DCGAN k0 = 512, d = 5 3,576,804 3,576,804 291.1 

Deep Decoder k = 250, d = 5 253,753 254,753 20.65 

128px Models Hyperparameters Repr. Size Model Size Overparam. Ratio 

Glow K = 32, L = 6, affine coupling 49152 129,451,520 1.000 

PGGAN k0 = 512, d = 5 512 13,625,904 0.0104 

IA-PGGAN k0 = 512, d = 5 13,625,904 13,625,904 277.2 

Deep Decoder k = 700, d = 6 2,462,603 2,473,803 50.10 

Figure 1. Summary of the model parameters for all models used in our experiments. Hyperparameters refer to model-specific configura-
tions as described in the text. Representation Size (Repr. Size) is the dimensionality of each model’s image representation, i.e. the total 
number of optimizable parameters available during inversion in each inverse problem. The model size is the total sum of all parameters of 
each model, including those of the image representation. The Overparametrization Ratio (Overparam. Ratio) describes the representation 
size as a fraction of the output image dimensionality. 
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1.2.2. UNCONDITIONAL OUTPUT SAMPLES 

To demonstrate the successful training of our generative models, we provide output samples from each of the learned models 
used in our experiments. 

(a) 128px Glow Model (b) 64px Glow Model 

(c) PGGAN Model (d) DCGAN Model 

Figure 2. Samples from each of our trained generative models. 

1.2.3. TEST SET IMAGES 

Throughout our paper, we present experiments across two test sets, one from the same distribution of the trained generative 
models and another which is out-of-distribution. In particular, our in-distribution test set is sampled randomly from a 
validation split of the CelebA-HQ dataset (Karras et al., 2018) and our out-of-distribution test set is sampled randomly from 
the Flickr Faces High Quality (FFHQ) Dataset (Karras et al., 2019). None of the test set images are seen by the generative 
models during their training phases. A few samples from both test sets are shown below. 

(a) CelebA-HQ Test Set (b) FFHQ Test Set 

Figure 3. A few samples from each of the test sets used in our experiments. 
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1.3. Denoising: Additional Experiments 

We additionally provide qualitative and quantitative denoising results over the test set of in-distribution CelebA images in 
Figures 4 and 5. Recall that we formulate denoising as the following empirical risk minimization problem: 

min kG(z) − yk2 + γkzk2 y = x0 + η 
z∈Rn 

Where η ∼ N (0, σ2In) is additive Gaussian noise. PSNRs for varying choices of the penalization parameter γ under noise 
levels σ = 0.01, 0.05, 0.1, and 0.2 are presented in Figure 4 below. 

The central message is that the Glow prior outperforms the DCGAN prior uniformly across all γ due to the representation 
error of the DCGAN prior. In addition, when γ is chosen appropriately, regularization improves the performance of Glow, 
which can outperform the state-of-the-art BM3D algorithm at high noise levels such as σ = 0.2, and can offer comparable 
performance at lower noise levels. This is in contrast to the DCGAN prior, whose performance is harmed by increased 
regularization. 

Figure 4. Image Denoising — Recovered PSNR values as a function of γ on N = 50 in-distribution test set CelebA images. We report 
the average PSNR after applying BM3D, under the DCGAN prior, and under the Glow prior, at noise levels σ = 0.01, 0.05, 0.10, 0.20. 
For reference, we also show the average PSNR of the original noisy images and the average PSNR of images recovered by the Glow prior 
in the noiseless case (σ = 0). 
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Figure 5. Image Denoising — Visual comparisons under the Glow prior, the DCGAN prior, and BM3D at noise level σ = 0.2 on a 
sample of CelebA in-distribution test set images. Under the DCGAN prior, we only show the case of γ = 0 as this consistently gives the 
best performance. Under the Glow prior, the best performance is achieved with γ = 0.05, overfitting of the image occurs with γ = 0.001 
and underfitting occurs with γ = 1. Note that the Glow prior with γ = 0.05 also gives a sharper image than BM3D. 
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1.4. Compressive Sensing: Additional Experiments 

We first analyze our formulation of compressive sensing as an empirical risk minimization problem. Recall that we solve the 
following optimization problem: 

min kAG(z) − yk2 y = Ax0 + η 
z∈Rn 

Where A is a Gaussian random measurement matrix with i.i.d. N (0, 1/m) entries, and η is noise normalized so thatp
Ekηk2 = 0.1. This formulation includes no explicit penalization on the likelihood of the latent code z, and instead 

relies on implicit regularization through the use of a gradient based optimization method initialized at z0 = 0. To justify 
this formulation, we study various alternative methods of initialization: z0 = 0, z0 ∼ N (0, 0.12In), z0 ∼ N (0, 0.72In), 
z0 = G

−1(x0) with x0 given by the solution to Lasso with respect to the wavelet basis, and z0 = G−1(x0) where x0 is 
perturbed by a random point in the null space of A. For each initialization, we plot recovery performance on a compressive 
sensing task as a function of γ for the regularized objective: 

min kAG(z) − yk2 + γkzk2 
z∈Rn 

As shown in Fig. 6, the Glow model shows best performance with γ = 0 with initialization at the zero vector, despite there 
being no explicit penalization on the likelihood of recovered latent codes. 

0.0 1e-06 1e-05 0.0001 0.001 0.01 0.1 1.0
γ

28

30

32

34

36

P
S
N
R

z0 = 0

std = 0.1

std = 0.7

LASSO-WVT

Null Space

Figure 6. Performance of the Glow model in Compressive Sensing under various initialization strategies (as described in the text). The 
Glow model shows strongest performance when initialized with the zero vector and with no explicit penalization on the latent code 
likelihood. The task is 64px CelebA image recovery using m = 5000 (≈ 50%) Gaussian measurements. 
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We show in Fig. 7 the results of our compressive sensing recovery experiments using the Structural Similarity index (SSIM) 
as a recovery quality metric (Wang et al., 2004). SSIM is designed to indicate perceptual quality by extracting structural 
information from images. 

Figure 7. 64px and 128px Compressive Sensing results using N = 1000 and N = 100 test set images respectively. Each plot shows 
SSIM (higher is better, ranging in [0, 1]) across a variety of measurement ratios. 
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1.4.1. COMPRESSIVE SENSING 64PX SAMPLE SHEETS 

We provide here additional sample sheets for our 64px experiments in compressive sensing. For in-distribution images, 
we show in Figures 8 and 9 qualitative examples of the image reconstructions for the Glow prior, the DCGAN prior, the 
IA-DCGAN prior, and the Deep Decoder. We replicate the same experiments for out-of-distribution FFHQ images in 
Figures 10 and 11. 

Figure 8. Compressive sensing visual comparisons — Recoveries on a sample of in-distribution test set images with a number m = 2500 
(≈ 20%) of measurements under the Glow prior, the DCGAN prior, the IA-DCGAN prior, and the Deep Decoder. 

Figure 9. Compressive sensing visual comparisons — Recoveries on a sample of in-distribution test set images with a number m = 10000 
(≈ 80%) of measurements under the Glow prior, the DCGAN prior, the IA-DCGAN prior, and the Deep Decoder. 
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Figure 10. Compressive sensing visual comparisons — Recoveries on a sample of out-of-distribution (FFHQ) test set images with a 
number m = 2500 (≈ 20%) of measurements under the Glow prior, the DCGAN prior, the IA-DCGAN prior, and the Deep Decoder. 

Figure 11. Compressive sensing visual comparisons — Recoveries on a sample of out-of-distribution (FFHQ) test set images with a 
number m = 10000 (≈ 80%) of measurements under the Glow prior, the DCGAN prior, the IA-DCGAN prior, and the Deep Decoder. 
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To further investigate whether the Glow prior continues to be an effective proxy for arbitrarily out-of-distribution images, we 
tested arbitrary natural images such as a car, house door, and butterfly wings, which are all semantically unrelated to CelebA 
images. In general, we found that Glow is an effective prior at compressive sensing of out-of-distribution natural images, 
which are assigned a relatively high likelihood score (small normed latent representations) as compared to noisy, unnatural 
images. On these images, Glow also outperforms LASSO. This means that invertible networks have at least partially learned 
something more general about natural images from the CelebA dataset – there may be some high level features that face 
images share with other natural images, such as smooth regions followed by discontinuities, etc. This allows the Glow 
model to extend its effectiveness as a prior to other natural images beyond just the training set. 

As compared to in-distribution training images, however, semantically unrelated images are assigned very low-likelihood 
scores by the Glow model, causing instability issues. In particular, an L-BFGS search for the solution of an inverse problem 
to recover a low-likelihood image leads the iterates into neighborhoods of low-likelihood representations that may induce 
instability. All the network parameters such as scaling in the coupling layers of Glow network are learned to behave stably 
with high likelihood representations. However, on very low-likelihood representations, unseen during the training process, 
the networks becomes unstable and outputs of network begin to diverge to very large values; this may be due to several 
reasons, such as normalization (scaling) layers not being tuned to the unseen representations. See Section 1.2.1 for details 
on our approach to handing these instabilities. 

We show in Figure 12 a comparison of the performance of the LASSO-DCT, LASSO-WVT, DCGAN, and Glow priors on 
the compressive sensing of 64px out-of-distribution images for m = 2500 (≈ 20%) measurements. 
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Figure 12. Compressive sensing of 64px out-of-distribution images given m = 2500 (≈ 20%) measurements at a noise level Ekηk2 = 
0.1. We provide a visual comparison of recoveries of the LASSO-DCT, LASSO-WVT, DCGAN, and Glow priors, where the DCGAN and 
Glow priors are trained on CelebA images. In each case, we choose values of the penalization parameter γ to yield the best performance. 
We use γ = 0 for both the DCGAN and Glow priors, and optimize γ for each recovery using the LASSO-WVT and LASSO-DCT priors. 
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1.4.2. COMPRESSIVE SENSING 128PX SAMPLE SHEETS 

We provide here additional sample sheets for our 128px experiments in compressive sensing. For in-distribution images, 
we show in Figures 13 and 14 qualitative examples of the image reconstructions for the Glow prior, the PGGAN prior, the 
IA-PGGAN prior, and the Deep Decoder. We replicate the same experiments for out-of-distribution (FFHQ) images in 
Figures 15 and 16. 

Figure 13. Compressive sensing visual comparisons — Recoveries on a sample of in-distribution test set images with a number 
m = 10000 (≈ 20%) of measurements under the Glow prior, the PGGAN prior, the IA-PGGAN prior, and the Deep Decoder. 

Figure 14. Compressive sensing visual comparisons — Recoveries on a sample of in-distribution test set images with a number m = 2500 
(≈ 5%) of measurements under the Glow prior, the PGGAN prior, the IA-PGGAN prior, and the Deep Decoder. 
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Figure 15. Compressive sensing visual comparisons — Recoveries on a sample of out-of-distribution (FFHQ) test set images with a 
number m = 10000 (≈ 20%) of measurements under the Glow prior, the PGGAN prior, the IA-PGGAN prior, and the Deep Decoder. 

Figure 16. Compressive sensing visual comparisons — Recoveries on a sample of out-of-distribution (FFHQ) test set images with a 
number m = 2500 (≈ 5%) of measurements under the Glow prior, the PGGAN prior, the IA-PGGAN prior, and the Deep Decoder. 
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1.5. Inpainting 

We present here qualitative results on image inpainting under the DCGAN prior and the Glow prior on the CelebA test set. 
Compared to DCGAN, the reconstructions from Glow are of noticeably higher visual quality. 

Figure 17. Image inpainiting results on a sample of the CelebA test set. Masked images are recovered using the DCGAN prior and the 
Glow prior. Recoveries under the DCGAN prior are skewed and blurred whereas the Glow prior leads to sharper and coherent inpainted 
images. For both Glow and DCGAN, we set γ = 0. 
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1.5.1. IMAGE INPAINTING ON OUT OF DISTRIBUTION IMAGES 

We now perform image inpainiting under the Glow prior and the DCGAN prior, each trained on CelebA. Figure 18 shows 
the visuals of out-of-distribution inpainting. As before, the DCGAN prior continues to suffer due to representation error and 
data bias while Glow achieves reasonable reconstructions on out-of-distribution images which are semantically similar to 
CelebA faces. As one deviates to other natural images such as houses, doors, and butterfly wings, the inpainting performance 
deteriorates. In compressive sensing, Glow performs much better on such arbitrarily out-of-distribution images as in this 
case, good recoveries only require the network only to assign a higher likelihood score to the true image compared to the all 
the candidate static images given by the null space of the measurement operator. 
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Figure 18. Image inpainiting results on out-of-distribution images. Masked images are recovered under the DCGAN prior and the Glow 
prior. Recoveries under the DCGAN prior are skewed and blurred whereas Glow prior leads to sharper and coherent inpainted images. 
For both Glow and DCGAN, we set γ = 0. 
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1.6. Discussion 

We provide evidence that random perturbations in image space induce larger changes in z than comparable natural 
perturbations in image space. Figure 19 shows a plot of the norm of the change in image space, averaged over 100 test 
images, as a function of the size of a perturbation in latent space. Natural directions are given by the interpolation between 
the latent representation of two test images. For the denoising problem, this difference in sensitivity indicates that the 
optimization algorithm might obtain a larger decrease in kzk by an image modification that reduces unnatural image 
components than by a correspondingly large modification in a natural direction. 

Figure 19. The magnitude of the change in image space as a function of the size of a perturbation in latent space. Solid lines are the mean 
behavior and shaded region depicts 95% confidence interval. 

To further illustrate this point, we investigate in Figure 20 the decay of the singular values of the Glow model’s Jacobian for 
random points. 
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Figure 20. Log-log plots of the decay of the singular values of the trained Glow model’s Jacobian for three random CelebA images. 
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