
Black-box Certification and Learning under Adversarial Perturbations

A. Note on our notation for sets and functions
We use the following notation for sets and functions:

2X the power-set (set of all subsets) of X
Y

X the set of all functions from X to Y

f : X ! Y f is a function from X to Y

Functions from some set X to some set Y are a special type
of relations between X and Y . Thus a function f : X ! Y

is a subset of X ⇥ Y , namely

f = {(x, y) 2 X ⇥ Y | y = f(x)}

If h : X ! Y is a (not necessarily binary) classifier, and
P is a probability distribution over X ⇥ Y , then the prob-
ability of misclassification is P (errh), where errh is the
complement of h in X ⇥ Y , that is

errh = {(x, z) 2 X ⇥ Y | z 6= f(x)} = (X ⇥ Y ) \ h

If Y = {0, 1} is a binary label space, then it is also common
to identify classifiers h : X ! {0, 1} with a subset of the
domain, namely the set h�1(1), that is the set of points that
is mapped to label 1 under h:

h
�1(1) = {x 2 X | h(x) = 1}

We switch between identifying h with h
�1(1) and viewing

h as a subset of X ⇥ Y , depending on which view aids the
simplicity of argument in a given context.

We defined the margin areas of a classifier (with respect to
a perturbation type) again as subsets of X ⇥ Y .

marUh = {(x, y) 2 X ⇥ Y | 9z 2 U(x) : h(x) 6= h(z)}

Note, that here, if for a given domain point x, we have
(x, y) 2 marUh for some y 2 Y , then (x, y0) 2 marUh for all
y
0 2 Y . Thus, the sets marUh ✓ X ⇥ Y are not functions.

Rather, they can naturally be identified with their projection
on X , and we again do so if convenient in the context.

The given definitions of errh and marUh , naturally let us
express the robust loss as the probably measure of a subset
of X ⇥ Y :

LU

P (h) = P (errh [marUh ).

B. Note on measurability
Here, we note that allowing the perturbation type U to be an
arbitrary mapping from the domain X to 2X can easily lead
to the adversarial loss being not measurable, even if U(x)
is a measurable set for every x. Consider the case X = R,
and a distribution P with PX uniform on the interval [0, 2].
Consider a subset M ✓ (0, 1) that is not Borel-measurable.
Consider a simple threshold function

f : R ! {0, 1}, f(x) = 1 [x < 1]

and a the following perturbation type:

U(x) =

⇢
; if x /2 M

{x+ 1} if x 2 M

Clearly, f is a measurable function, and every set U(x)
is measurable. However, we get marUf = M , that is, the
margin area of f under these perturbations is not measurable,
and therefore the adversarial loss with respect to U is not
measurable. Note that the same phenomenon can occur for
sets U that are always open intervals containing the point x.
With the same function f , for perturbation sets

U(x) =

8
<

:

Br(x) \ (0, 1) if x < 1, x /2 M

Br(x) \ (1, 2) if x > 1
(0, 2) if x 2 M or x = 1

we get marUf = M [ {1}, which again is not measurable.

We may thus make the following implicit assumptions on
the sets U(x):

• x 2 U(x) for all x 2 X

• if X is an uncountable domain, we assume X is
equipped with a separable metric and U(x) = Br(x)
is an open ball around x

Note that the latter assumption implies that marUh is mea-
surable for a measurable predictor h. This can be seen as
follows: It h is a (Borel-)measurable function, then both
h
�1(1) = {x 2 X | h(x) = 1} and h

�1(0) = {x 2
X | h(x) = 0} are measurable sets by definition. Now, if
we consider “blowing up” these sets by adding open balls
around each of their members, we obtain open (as a union
of open sets), and thus measurable sets:

M1
r :=

[

x2h�1(1)

Br(x)

and
M0

r :=
[

x2h�1(0)

Br(x).

Now the margin area can be expressed as a simple union of
intersections, and is therefore also measurable:

marUh = (M1
r \ h

�1(0)) [ (M0
r \ h

�1(1))

Note that this equality depends on the balls as perturba-
tion sets inducing a symmetric relation, that is x 2 U(z)
if and only if z 2 U(x). This condition does not hold in
the above counterexample construction. However, this ar-
gument shows it is sufficient (together with openness) for
measurability of the sets marUh .
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C. Proofs and additional results to Section 3
C.1. Some background

We first briefly recall the notions of ✏-nets and ✏-
approximations and their role in learning binary hypothesis
classes of finite VC-dimension. We will frequently use these
concepts in our proofs in this section.

✏-nets and ✏-approximations (Haussler & Welzl, 1987)
Let Z be some domain set and let G ✓ 2Z be a collection
of (measurable) subsets of Z and let D be a probability
distribution over Z. Let ✏ 2 (0, 1). A finite set S ✓ Z is an
✏-net for G with respect to D if

S \G 6= ;

for all G 2 G with P (G) � ✏. That is, an ✏-net “hits” every
set in the collection G that has probability weight at least ✏.
A finite set S ✓ Z is an ✏-approximation for G with respect
to D if ����P (G)� |G \ S|

|S|

����  ✏

for all G 2 G. It is well known that, given also � 2 (0, 1),
if G has finite VC-dimension, then an iid sample S of size
at least ⇥̃

⇣
VC(G)+log(1/�)

✏

⌘
from distribution D is an ✏-net

for G with probability at least (1��) (see, eg, Theorem 28.3
in (Shalev-Shwartz & Ben-David, 2014)); and an iid sample
S of size at least ⇥̃

⇣
VC(G)+log(1/�)

✏2

⌘
from distribution D

is an ✏-approximation for G with probability at least (1� �)
(we are omitting logarithmic factors here).

Learning VC-classes ((Vapnik & Chervonenkis, 1971;
Valiant, 1984; Blumer et al., 1989) If X is a domain,
Y = {0, 1} is a binary label space, and H ✓ Y

X ✓ 2(X⇥Y )

is a hypothesis class of finite VC-dimension, then the
class of error sets errH = {errh | h 2 H}, that is
the class of complements of H, has finite VC-dimension
VC(errH) = VC(H). For distributions P over X ⇥ Y , we
get that sufficiently large samples (as indicated above) are
✏-nets of errH. Now, if a sample S is an ✏-net of the class
errH with respect to P , then every function in the version
space VS(H) of S with respect to H has error less than ✏.
Recall the version space is defined as those functions in H
that have zero error on the points in S, that is

VS(H) = {h 2 H | L0/1
S (h) = 0}.

If P is realizable by H, an empirical risk minimizing (ERM)
learner, will output a hypothesis from the version space (the
version space is non-empty under the realizability assump-
tion) and therefore output a predictor of binary loss at most
✏ (with high probability).

For general (not necessarily realizable) learning, note that
large enough samples S are ✏-approximation of errH (with

high probability at least 1�� as above). This is also referred
to as uniform convergence for the hypothesis class H. Thus,
every function h 2 H has true loss that is ✏-close to its
empirical loss on h, and any empirical risk minimizer is a
successful learner for H even in the agnostic case.

With these preparations, we proceed to the proofs of Theo-
rem 7, Theorem 10 and Theorem 30.

C.2. Proofs

Proof of Theorem 7. We recall that the robust loss of a clas-
sifier h with respect to distribution P over X ⇥ Y is given
by

LU

P (h) = P (errh [marUh )

Thus, to show that empirical risk minimization with respect
to the robust loss is a successful learner, we need to guar-
antee that large enough samples are ✏-approximations for
the class G = {(errh [ marUh ) ✓ X ⇥ Y | h 2 H} of
point-wise unions error and margin regions.

A simple counting argument involving Sauer’s Lemma
(see Chapter 6 in (Shalev-Shwartz & Ben-David, 2014),
and exercises therein) shows that VC(G)  2D log(D),
where D = VC(H) + VC(HU

mar). Thus, a sample of size

⇥̃
⇣

D logD+log(1/�)
✏2

⌘
will be an ✏-approximation of G with

respect to P with probability at least 1� � over the sample.
Thus any empirical risk minimizer with respect to `

U is a
successful proper and agnostic robust learner for H.

Proof of Theorem 10. Note that robust realizability means
there exists a h

⇤ 2 H with LU

P (h
⇤) = 0 and this implies

L0/1
P (h⇤) = 0. That is, the distribution is (standard) realiz-

able by H. The above outlined VC-theory tells us that for an
iid sample S of size ⇥̃

⇣
VC(H)+log( 1

� )
✏

⌘
guarantees that all

functions in the version space of S (that is all h 2 H with
LS(h) = 0) have true binary loss at most ✏ (with probability
at least 1��). Now, with access to PX a learner can remove
all hypotheses with P (marUh ) > 0 from the version space
and return any remaining hypothesis. Note that, since h

⇤ is
assumed to satisfy LU

P (h
⇤) = 0, we have P (errh⇤) = 0 and

P (marUh ) = 0, therefore, the pruned version will contain
at least one function. Now, for any function hp in the the
pruned version space, we obtain

LU

P (hp) = P (errhp [ marUhp
)

 P (errhp) + P (marUhp
)

 ✏+ 0 = ✏.

Thus, access to the marginal allows for a successful learner
in the robust-realizable case.

Proof of Theorem 12. We will modify the lower bound con-
struction of Theorem 9 as follows: we add an additional
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point x8 to the domain set, which has zero probability mass
under both P

1 and P
2. We set U(x8) = U(x7) = {x7, x8}.

We modify the probability weights of points x1, . . . , x6 un-
der P 1 and P

2 by dividing them by 2 (i.e., all respective
denominators in the proof of Theorem 9 become 12, and we
add weight accordingly to x7, so that P i(x7) = 1/2+1/12
under both distributions. Functions h1 and h2 are extended
to the new point by setting h1(x8) = h2(x8) = 0. Thus,
the indistinguishability phenomenon of the construction re-
mains the same.

Now we add a function hr = 1 [x = x8] to the class H.
This yields P i(errhr ) = P

i(x8) = 0, for i 2 {1, 2}, thus
both distributions are realizable with respect to the 0/1-loss
now. However P i(marUhr

) = 1/2 + 1/12, for i 2 {1, 2},
thus hr has adversarial loss 1/2+1/12 on both distribution
and the construction thus remains otherwise analogous. We
now have LU

P i(hi) = 2/12, thus hr is does not affect the
optimal robust classifier in H.

Additionally, we add the constant 1 function hc to the class
H. For this function (as for any constant classifier) the
margin area is empty, thus the distributions are “margin
realizable” by H. However, we have P

i(errhc) = 1, for
i 2 {1, 2}, thus hc also has adversarial loss 1 on both
distribution and the construction still remains otherwise
unchanged.

C.3. Additional results

C.3.1. 0/1-REALIZABILITY
9h⇤ 2 H WITH L0/1

P (h⇤) = 0

Theorem 12 shows that 0/1-realizability does not suffice
for semi-supervised learning with a margin oracle for H.
However, here we show that the following extended margin
oracle does suffice: we assume that the learner has oracle
access to the weights of the sets marUh , h�h

0, and marUh \
(h�h

0), for all h, h0 2 H, where the sets h�h
0 ✓ X are

defined as follows:

h�h
0 = {x 2 X | h(x) 6= h

0(x)}.

Theorem 29. Let X be some domain, H a hypothesis
class with finite VC-dimension and U : X ! 2X any
perturbation type. If a learner is given additional access
to an extended margin oracle for H, then H is properly
learnable with respect to the robust loss `U and the class
of distributions P that are 0/1-realizable by H, that is
we have L0/1

P (H) = 0, with labeled sample complexity
Õ(VC(H)+log(1/�)

✏ ).

Proof. As in the proof of Theorem 10, since we assume the
distribution to be 0/1-realizable by H, the version space of a
labeled sample of the given size will include only functions
with (true) binary loss at most ✏. The learner can choose

a function he from this version space. Now, given the ex-
tended margin oracle, the learner can choose a function
hr that minimizes the robust loss with respect to labeling
function he. That is, the extended margin oracle allows to
find the minimizer in H of the robust loss on a distribution
(PX , he), that shares the marginal with the data generating
distribution P , but labels domain points according to he.

Let h⇤ 2 H be a function with L0/1
P (h⇤) = 0. Thus, we

can identify the distribution P with (PX , h
⇤). Now we first

show that for any classifier h, the difference between its
robust loss with respect to P = (PX , h

⇤) and with respect
to (PX , he) is bounded by ✏.

Let h 2 H be given. Then we have

LU

P (h) = LU

(PX ,h⇤)(h)

= PX(marUh [ (h⇤�h))

= PX(marUh ) + PX((h⇤�h) \marUh )

and

LU

PX ,he
(h) = PX(marUh [ (he�h))

= PX(marUh ) + PX((he�h) \marUh ).

Thus, we get

|LU

P (h)� LU

P,he
(h)|

 |P ((h⇤�h) \marUh )� PX((he�h) \marUh )|
 |P ((h⇤�h) \marUh )� (PX((he�h

⇤) \marUh )

+ PX((h⇤�h) \marUh ))|
 |P ((he�h

⇤) \marUh )|
 P ((he�h

⇤)  ✏.

where the second inequality follows from

(he�h) ✓ (he�h
⇤) [ (h⇤�h),

and thus

(he�h)\marUh ✓ ((he�h
⇤)\marUh )[ ((h⇤�h)\marUh ).

Note that |LU

P (h) � LU

P,he
(h)|  ✏ for all h 2 H implies

that we also have:

| inf
h2H

LU

P (h)� inf
h2H

LU

PX ,he
(h)|  ✏

Thus, for the output hr of the above procedure, we get

LU

P (hr)  LU

PX ,he
(hr) + ✏

= inf
h2H

LU

PX ,he
(h) + ✏

 inf
h2H

LU

P (h) + 2✏

Substituting ✏/2 for ✏ in this argument completes the proof.
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C.3.2. 0/1-REALIZABILITY ON A U -CLUSTERABLE

TASK: 9h⇤ 2 H WITH L0/1
P (h⇤) = 0 AND

9f⇤ 2 F WITH LU

P (f
⇤) = 0

We start by observing that the existence of an f
⇤ 2 F with

LU

P (f
⇤) = 0 implies that the support of PX is sitting on

U-separated clusters. Note that we do not assume that the
perturbation type U induces a symmetric relation; we can
nevertheless consider the clusters as connected components
of a directed graph where we place a directed edge between
two domain instances x and x

0 if and only if x is in the
support of PX and x

0 2 U(x). The assumption LU

P (f
⇤) = 0

then implies that these clusters are label-homogeneous. This
observation leads to a simple, yet improper learning scheme
for the robust loss.

We show that, if the distribution is also 0/1-realizable by H,
a leaner that knows that marginal, can return a hypothesis
with robust loss at most ✏. We note that here, the learner
does not return a hypothesis from the class H. In return, the
guarantee is stronger in the sense that the robust loss of the
returned classifier is close to the overall (among all binary
predictors, rather than just those in H) best achievable robust
loss.

Theorem 30. Let X be some domain, H a hypothesis class
with finite VC-dimension and U : X ! 2X any perturba-
tion type. If a learner has access to a labeled sample of
size

Õ

✓
VC(H) + log 1/�

✏

◆

and, additionall has access to PX , then the class F of all
binary predictors is learnable with respect to the robust loss
`
U and the class of distributions P that are realizable by H

(that is, L0/1
P (H) = 0) and robust realizable with respect to

F (that is, LU

P (F) = 0).

Proof. Recall that, to avoid measurability issues, we either
assume a countable domain, or, in case of an uncountable
domain, that the perturbation sets are open balls with respect
to some separable metric. The arguments below hold for
both cases.

We now start by observing that the existence of an f
⇤ 2 F

with LU

P (f
⇤) = 0 implies that the support of PX is sitting

on U-separated clusters. Note that (in the case of a count-
able domain) we do not assume that the perturbation type U
induces a symmetric relation. We derive the clusters as fol-
lows: we define a (directed) graph on X , where we place an
edge between from domain elements x to x

0 if and only if x
is in the support of PX and x

0 2 U(x). We now let C ✓ 2X

be the collection of connected components of the induced
undirected graph. Since LU

P (f
⇤) = 0, thus P (marUf⇤) = 0,

the function f
⇤ is label homogeneous on these clusters (ex-

cept, potentially, for subsets of PX -measure 0, and we may

then identify f
⇤ with a function that is label homogeneous

on the clusters).

Now, since P is H-realizable, there is an h
⇤ 2 H with

L0/1
P (h⇤) = 0. Note that h⇤ is not necessarily label ho-

mogeneous on the clusters (since h
⇤ may have a positive

robust loss, that is it may be the case that P (marUh⇤) > 0).
However, h⇤ agrees with f

⇤ on the support of PX

(except on a set with measure 0), since both functions have
zero binary loss, L0/1

P (h⇤) = L0/1
P (f⇤) = 0. Let supp(PX)

denote the support of PX . That is, for any cluster C 2 C,
h
⇤ is label-homogeneous (and in agreement with f

⇤) on the
subset C \ supp(PX).

Note that, since we assume knowledge of the marginal, we
may assume that a learner knows the collection of clusters
C and the support of PX . We now define a learning scheme
as follows.

As in the proof of Theorem 10, due to the H-realizability
(L0/1

P (H) = 0), we know that with high probability over
a large enough sample S, all functions h 2 VS(H) in the
version space satisfy L0/1

P (h)  ✏. Moreover, due to the H-
realizability, there will exist functions (for example h

⇤) in
the version space that label the intersections C \ supp(PX)
of the clusters in with the support of PX homogeneously.
Thus, employing the knowledge of PX , the learner can
prune the version space by removing all functions from
the version space that don’t label all sets C \ supp(PX)
homogeneously, and pick a function hp from this pruned
version space.

Now the learner can construct a new classifier fp, that agrees
with hp on the sets C\supp(PX) and labels the full clusters
homogeneously, that is, if x 2 C \ supp(PX) for some
cluster C 2 C, then we set fp(x0) = hp(x) for all x0 2
C. Now, by construction of fp (recall the definition of
the clusters), we get P (marUfp) = 0. Moreover, we have
P (errfp)  ✏ (inherited from hp since hp and fp agree on
the support of PX ). Thus

LU

P (fp)  ✏  LU

P (H) + ✏,

which is what we needed to show.

D. Proof from Section 4
Proof of Observation 17. We prove this statement for the
case when the certifier is restricted to be deterministic, and
leave the proof of the probabilistic case to future work.
Suppose the entire data distribution is concentrated on one
point, and wlog suppose the point is the origin and has
label 1. Let B be the unit ball centred at the origin. Thus
the certifier’s task is to determine if h passes through B or
not. We construct a scheme for answering the certifier’s
queries in a way so that no matter what sequence of queries
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it chooses to ask, once it commits to a verdict, we can find a
halfspace that is consistent with the answers we provided to
the queries, but inconsistent with the certifier’s verdict.

It is easier to work in a dual space using a standard duality
argument, where the dual of a point (a, b) is the line ax +
by + 1 = 0 and vice versa. This duality transform has the
following two useful properties: 1) a point is to the left of a
line if and only if the dual of the point is to the left of the
dual of the line, and 2) a point is inside the unit ball if and
only if its dual does not intersect the unit ball. Thus in the
dual space, the certifier picks a line and asks whether the
hidden point is to its left or right, and needs to determine if
the hidden point is inside the unit ball or not. Our strategy,
then, is to consider the arrangement of lines created by the
certifier’s queries thus far, and locate a cell that contains a
part of B’s circumference. We answer the certifier’s query
as if the point was inside this cell. This cell will have a non-
zero volume whenever the certifier stops, and we can select
a point inside the cell that is inside or outside B depending
on the certifier’s answer. That we can always find such a cell
can be seen with an argument using induction. For the base
case, there are no queries and hence no lines. Thus the entire
place is such a cell. Suppose we have identified such a cell
after seeing m lines. If the next line does not pass through
the cell it still satisfies the property in question. If the next
line does pass through the cell, it divides the cell into two
smaller cells one of which will satisfy the property.

E. Proof of Theorem 28
We start by providing the definition of proper sample com-
pression for adversarially robust learning.

Definition 31 (Adversarially Robust Proper Compression).
We say (H,U) admits robust proper compression of size
k if there exist a (decoder) function � : (X ⇥ Y )k ! H
such that the following holds: for every h 2 H and every
SX ⇢ X , there exist KX ⇢ SX such that

8x 2 SX , `
U (h, x, h(x)) = `

U (�(K), x, h(x))

where K is the labeled version of KX (labeled by h).

Note that in the above definition, k = |K| can potentially
depend on the size of the set, m = |SX |. However, this
dependence should be sub-linear (e.g., logarithmic) to later
result in a non-vacuous sample complexity upper bound.
The following theorem draws the connection between com-
pression and robust learning.

Theorem 32. If (H,U) admits an adversarially robust
proper compression of size k, then the sample complex-
ity of robust learning of (H,U) in the robustly realizable
setting is O(k log(k/✏)/✏2).

Proof. This theorem can be proved in a similar way to that
of classical (non-robust) sample compression proposed by
(Littlestone & Warmuth, 1986). For the proof in the context
of robust compression we refer the reader to Lemma 11 in
(Montasser et al., 2019). Note that the hypothesis returned
by the decoder of the compression scheme has to have zero
robust loss on all of the samples (due to robust realizability).

In order to proceed, we need to show that for properly com-
pressible classes, the existence of a perfect proper efficient
adversary means that a small-sized robust proper compres-
sion scheme exists.

Theorem 33. Let H be any properly (non-robustly) com-
pressible class. Assume (H,U) has a perfect proper adver-
sary with query complexity O(m). Then (H,U) admits a
robust proper compression of size O(V C(H) log(m)).

Let us postpone the proof of Theorem 33 for now and com-
plete the proof of Theorem 28.

Proof of Theorem 28. Assume that (H,U) has a perfect,
proper, and efficient adversary. Based on Theorem 33, we
conclude that (H,U) admits a robust proper compression
scheme of size O(V C(H) log(m)). We can now use The-
orem 32 to bound the sample complexity of learning. In
particular, it will be enough to have m > ⌦(k log(k/✏)/✏2)
where k = ⇥(V C(H) log(m)). Therefore, it will suffice to
have m = ⌦(V C(H) log2(V C(H)/✏)/✏2).

Therefore, it only remains to construct a robust proper com-
pression scheme and prove Theorem 33. We denote by SX

the unlabeled portion of the sample S.

Proof of Theorem 33. Recall that we want to show that
there exists KX ⇢ SX such that

8x 2 SX , `
U (h, x, h(x)) = `

U (�(K), x, h(x))

where K is the labeled version of KX (labeled by h).
We know that (H,U) has a perfect adversary with query
complexity O(m). Let QS be the set of queries that the
adversary asks on S to find the adversarial points (so
|QS | = O(m)). Let Q be the labeled version of QS (i.e.,
each query with its answer from h). We claim that for a
proper compression to succeed it will be enough to have

8z 2 SX [QS ,�(K)
��
z
= h

��
z

(1)

The reason is that if the two hypotheses from H have the
same behaviour on T = SX [ QS then they should have
the same robust loss on SX as well (otherwise the adversary
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would not be perfect). The final step is to come up with a
proper compression scheme that satisfies (1).

Let TY be the labeled version of T that is labeled by h. Re-
call that H is a properly (non-robustly) compressible class.
Therefore, TY can be properly (non-robustly) compressed
into a set I ✓ TY such that |TY | = O(V C(H) log(|TY |)).
The catch is that I may contain points that are outside of
S, and therefore we cannot simply use I for robust proper
compression. We can modify the compression scheme by
adding some additional bits of information so that its output
contains only points from S. For any x 2 S, let Qx ✓ U(x)
be the set of points that the adversary queries to attack x.
Note that |Qx| = O(1) due to the efficiency of the adver-
sary. We replace any (x, y) 2 S \ I with (x0, y0) where
(x0, y0) 2 S and x 2 U(x0). Also, we use a constant num-
ber of bits to encode the labels of Qx0 and also the subset of
Qx0 that was chosen by the non-robust compression scheme.
The decoder works as follows. Given (x0, y0), it can sim-
ulate the adversary on x0 (using the bits that represent the
labels) to recover Qx0 . It can use the other part of the bits to
recover the subset of Qx0 that was present in I (let us call
this set Gx). Finally, it would run the decoder of the proper
non-robust compression scheme on [x2SGx.


