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Abstract

Boosting is a technique that boosts a weak and
inaccurate machine learning algorithm into a
strong accurate learning algorithm. The Ad-
aBoost algorithm by Freund and Schapire (for
which they were awarded the Godel prize in
2003) is one of the widely used boosting algo-
rithms, with many applications in theory and prac-
tice. Suppose we have a y-weak learner for a
Boolean concept class C that takes time R(C),
then the time complexity of AdaBoost scales as
VC(C)-poly(R(C),1/7), where VC(C) is the VC-
dimension of C. In this paper, we show how quan-
tum techniques can improve the time complexity
of classical AdaBoost. To this end, suppose we
have a y-weak quantum learning algorithm for a
Boolean concept class C that takes time Q(C), we
introduce a quantum boosting algorithm whose
complexity scales as /VC(C) - poly(Q(C), 1/7);
thereby achieving quadratic quantum improve-
ment over classical AdaBoost in terms of VC(C).

1. Introduction

In the last decade, machine learning (ML) has received
tremendous attention due to its success in practice. Given
the broad applications of ML, there has been a lot of interest
in understanding what are the learning tasks for which quan-
tum computers could provide a speedup. In this direction,
there has been a flurry of quantum algorithms for practically
relevant machine learning tasks that theoretically promise
either exponential or polynomial quantum speed-ups over
classical computers. In the past, theoretical works on quan-
tum machine learning (QML) have focused on developing
efficient quantum algorithms with favourable quantum com-
plexities to solve interesting learning problems. Recently
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there have been efforts in understanding the interplay be-
tween learning algorithms and noisy quantum devices.

The field of QML has given us algorithms for various quan-
tum and classical learning tasks such as (i) quantum im-
provements to classical algorithms for practically-motivated
machine learning tasks such as perceptron learning (Kapoor
et al., 2016), support vector machines (Rebentrost et al.,
2013), kernel-based classifiers (Havlicek et al., 2019; Li
et al., 2019), algorithms to compute gradients (Rebentrost
et al., 2019; Gilyén et al., 2019), clustering (Kerenidis
et al., 2019; Aimeur et al., 2007), linear algebra (Prakash,
2014); (ii) learnability of guantum objects (Rocchetto, 2018;
Yoganathan, 2019; Aaronson, 2007), shadow tomography
of quantum states (Aaronson, 2018; Apeldoorn & Gilyén,
2019); (iii) a quantum framework to learn Boolean-valued
concept classes (Bernstein & Vazirani, 1993; Bshouty &
Jackson, 1999; Atict & Servedio, 2005; Arunachalam et al.,
2019); (iv) quantum algorithms for optimization (Harrow
et al., 2009; Apeldoorn et al., 2020; Chakrabarti et al., 2018);
(v) quantum algorithms for machine learning based on gener-
ative models (Lloyd & Weedbrook, 2018; Gao et al., 2017).

While these results are promising and establish that quantum
computers can indeed provide an improvement for interest-
ing machine learning tasks, there are still several challenges
that remain. One important question is whether the assump-
tions made in some quantum machine learning algorithms
are practically feasible? Recently, a couple of works (Chia
et al., 2019; Jethwani et al., 2019) demonstrated that under
certain assumptions QML algorithms can be dequantized,
i.e., they showed the existence of efficient classical algo-
rithms for machine learning tasks which were previously
believed to provide exponential quantum speedups. In this
paper we address another important question:

Suppose we implement a QML algorithm A on a
quantum device and due to noise in the device, the
performance of A is weak, i.e., the output of A
is correct on a slightly better-than-half fraction of
the inputs. Can we boost the performance of A
so that As output is correct on 99% of the inputs?

Inspired by the classical Adaptive Boosting algorithm (also
referred to as AdaBoost) due to (Freund & Schapire, 1999),
the classical AdaBoost can be used immediately to convert
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a weak quantum learning algorithm to a strong algorithm.
In this paper, we provide a quantum boosting algorithm
that quadratically improves upon the classical AdaBoost
algorithm. Using our quantum boosting algorithm, not only
can we convert a weak and inaccurate QML algorithm into
a strong accurate algorithm, but we can do it in time that is
quadratically faster than classical boosting techniques.

2. Classical Boosting

We now briefly describe (Valiant, 1984)s Probably Approxi-
mately Correct (PAC) model of learning. Letnn > 1and C C
{c:{0,1}™ — {—1,1}} be a concept class. For v > 0, we
say an algorithm A ~y-learns C in the PAC model if: for every
¢ € C and distribution D : {0,1}™ — [0, 1], given examples
(z,c(x)) where  ~ D, Aoutputs h : {0,1}" — {-1,1}
such that Pr,.p[h(x) = ¢(x)] > 1/2+ ~. In the quantum
PAC model, we allow a quantum learner to possess a quan-
tum computer and quantum examples Y \/Dy|z, c(z)).
We call ~ the bias of an algorithm, i.e., v measures the ad-
vantage over random guessing. We say A is a weak learner
(resp. strong learner) if the bias y scales inverse polyno-
mially with n, i.e., v = 1/ poly(n) (resp. 7 is a universal
constant independent of n, for simplicity we let v = 1/6).

In the early 1990s, (Schapire, 1990; Freund, 1995; Freund
& Schapire, 1999) came up with the beautiful boosting algo-
rithm called AdaBoost that efficiently solves the following
problem: suppose we are given a weak learner as a black-
box, can we use this black-box to obtain a strong learner?
The AdaBoost algorithm by Freund and Schapire was one
of the few theoretical boosting algorithms that were simple
enough to be extremely useful in practice, with applications
ranging from game theory, statistics, optimization, vision
and speech recognition and information geometry. Given
the success of AdaBoost in theory and practice, Freund and
Schapire won the Godel prize in 2003.

AdaBoost algorithm. We now give a sketch of the classi-
cal AdaBoost algorithm. Let .4 be a weak PAC learning algo-
rithm for C that runs in time R(C) and has biasy > 0, i.e., A
does slightly better than random guessing (think of v as
inverse-polynomial in n). The goal of boosting is the follow-
ing: for every unknown distribution D : {0,1}" — [0,1]
and unknown concept ¢ € C, construct a hypothesis H
that satisfies Pro p[H (z) = c(z)] > 2. The AdaBoost
algorithm by Freund and Schapire produces such an H by
invoking .4 polynomially many times. The algorithm works
as follows: it first obtains M different labelled examples
S = {(x;,c(x;)) : i € [M]} where z; ~ D and then Ad-
aBoost is an iterative algorithm that runs for 7" steps (for
some M, T which we specify later). Let D' be the uni-
form distribution on S. At the tth step, AdaBoost defines a
distribution D* depending on D*~! and invokes A on the

sample S and distribution D*. Using the output hypothesis
h: of the weak learner A, the AdaBoost algorithm computes
the weighted error e, = Pry.pt[hi(x) # c(x)] which is
the probability of h; misclassifying a randomly selected
training example drawn from the distribution D*. The algo-

rithm then uses ¢; to compute a weight a; = % In (t—f*)

and updates the distribution D? to D*! as follows
D! e o
DIt = Zz «
x Zt eat

where Z; = > o DL exp(—c(z)azhy(x)).! After T it-
erations, the algorithm outputs the hypothesis H(x) =

if hi(z) = e(x)
otherwise ,

(D

sign <ZtT:1 atht(x)), where oy is the weight and h; is
the weak hypothesis computed in the tth iteration.

It remains to answer three important questions: (1) What
is T, (2) What is M, (3) Why is H a strong hypothesis?
The punchline of AdaBoost is the following: by selecting
the number of iterations 7' = O(log M), the hypothesis H
satisfies H(z) = c(x) for every x € S. However, note
that this does not imply H is a strong hypothesis. Using a
standard Hoeffding bound, Freund and Schapire showed that
with high probability (taken over the samples in S), suppose
the number of labelled examples M is at least O(VC(C))
(where VC(C) is a combinatorial dimension that can be
associated with C), then H not only perfectly classifies every
x € S, but it also satisfies Pryp[H (z) = ¢(z)] > 2/3.
Hence H is a strong hypothesis for the target concept ¢
under the unknown distribution D.

Theorem 2.1 (Schapire & Freund, 2012) Fix n,~y > 0. Let
n>1landC C {c: {0,1}" — {—1,1}} be a concept
class. Let D : {0,1}™ — [0, 1] be an unknown distribution.
Let A be a weak PAC algorithm that takes time R(C) to
learn C with bias y. Let M be the smallest integer exceed-
ing M > Vi(zc) . log(VCn(zC ), Suppose we run AdaBoost
for T > ((log M) -log(1/6))/(2v?) rounds, then with prob-
ability > 1 — § (over the randomness of the algorithm), we
obtain a hypothesis H that has zero training error and small
generalization error Pr,p[H (x) # ¢(x)] < 1. Moreover
the time complexity of the classical AdaBoost algorithm is

9) (Vcn“) “R(C)- 2 log(1/5)> 2

3. Our results

The main contribution of this paper is a quantum algorithm
that runs in time quadratically faster in O(VC(C)) to obtain

!This distribution update is referred to as the Multiplicative
Weights Update Method (MMUW). See (Arora et al., 2012) on
how one can cast AdaBoost into the standard MMUW framework.

’Here, 5() hides poly-logarithmic factors in the parenthesis.
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a strong learner for the concept class C.

Theorem 3.1 (Informal) Ler n > 1 and C C {c

{0,1}™ — {—1,1}}. Let A be a weak quantum PAC learn-
ing algorithm that takes time Q(C) and has bias ~y. Then
the quantum complexity of converting A to a strong PAC
learning algorithm is O (wVC(C) -Q(C)3/? . "2>

,Yll

We now make a few remarks regarding our main theorem:

1. Comparing our bound with classical AdaBoost complex-
ity, we get a quadratic improvement in terms of VC(C). Also
observe that the time complexity of quantum PAC learning
Q(C) could be polynomially or even exponentially smaller
than classical PAC learning time complexity R(C).?

2. Although our dependence on 1/+ is worse than the classi-
cal complexity, we believe our complexity should be improv-
able using quantum techniques (and we leave it as an open
question to improve the exponent of the factor 1/+). We re-
mark that although the complexity of our quantum boosting
algorithm is weaker than the classical complexity in terms
of 1/ = poly(n), observe that many concept classes have
VC dimension that scales exponentially with n, in which
case our quadratic improvement in terms of VC(C) “beats”
the “polynomial loss” (in terms of 1/+) in the complexity
of our quantum boosting algorithm.

3. There have been a few prior works (Neven et al., 2012;
Schuld & Petruccione, 2018; Wang et al., 2019) which touch
upon AdaBoost but none of them rigorously prove that quan-
tum techniques can improve boosting. As far as we are
aware, ours is the first work that proves quantum algorithms
can quadratically improve the complexity of classical Ad-
aBoost. Given the importance of AdaBoost in classical ma-
chine learning, our quadratic quantum improvement could
potentially have various applications in QML.*

3.1. Why quantum does not “trivially” give a quantum
speedup to AdaBoost?

We now give a sketch of our quantum boosting algorithm.
The quantum algorithm follows the structure of the classical
AdaBoost algorithm. On a very high level, our quantum
speedup is obtained by using quantum techniques to esti-

*In (Arunachalam & Wolf, 2018), the authors prove that the
sample complexity of classical and quantum PAC learning is the
same up to constant factors, but there does exist concept classes
demonstrated by (Servedio & Gortler, 2004) for which there could
be exponential separations in time complexity between quantum
and classical learning.

4 Although our quantum boosting algorithm uses quantum
phase estimation as a subroutine, which isn’t implementable in
near-term quantum computers, we leave it as an open question if
one could use variational techniques as proposed by Peruzzo et
al. (Peruzzo et al., 2014) in place of phase estimation.

mate the quantity e, = 3~ o D% - [hy(x) # c(z)] quadrat-
ically faster than classical methods. In order to do so, one
could use quantum algorithms for mean estimation, which
given a set of numbers «aq,...,ap € [0, 1], produces an
approximation of 77 > ie(a) Qi in time O(v/M) (Nayak &
Wu, 1999; Brassard et al., 201 1),5 whereas classical methods
would use time ©(M). However, using the mean estima-
tion subroutine to improve the time complexity of classical
AdaBoost comes with various issues which we discuss now:

1. Errors while computing ¢;s: Quantumly, the mean
estimation subroutine approximates £, up to an addi-
tive error & in time O(v/M /§). Suppose we obtain &/
satisfying |e} — ;| < §. Recall that the distribution
update in the tth step of AdaBoost is given by

Dl = D; " {eo‘t if ht(l) = c(x) )
t et otherwise ,
where Z; = 37 ¢ D% exp(—c(z)azhy(z)) and oy =
1In((1 — &)/e). Given an additive approxima-
tion &} of &, first note that the approximate weights
o, = 31In((1 — €})/e}) could be very far from a.
Moreover, it is not clear why the updated distribu-
tion D' defined as Dit' = 2 - D} exp(aje(z) -
hi(x)) is even close to a distribution. ~Another
possible way to update our distribution would be
Ditl = Z%’ - Dt exp(—ajc(x) - hy(z)), where Z] =

> wes DL exp(—c(z)ajhi(x)), so by definition Di+1
is a distribution. However, in this case note that a quan-
tum learner cannot compute Z; exactly in time o(M)
but instead can only approximate Z, and we face the
same issue as mentioned above.®

2. Strong approximation of ¢,: One possible way to get
around this would be to estimate ; very well so that
one could potentially show that D'+ is close to a dis-
tribution. However, observe that if D!+ should be
close to a distribution, then we requirea § = 1/ VM-
approximation of ¢; and such a strong approxima-
tion increases the complexity from O(v/M) to O(M)
which removes the entire quantum speedup.

3. Noisy inputs to a quantum learner: Let us further
assume that we could spend time O (M) as mentioned
above to estimate ¢, very well (instead of using clas-
sical techniques to compute ;). Suppose we ob-
tain D! which is close to a distribution. Recall that
the input to a quantum learner should be copies of

>We omit poly-logarithmic factors in the complexity.

®Note that computing Z; would take time O(M) classically
even though we have knowledge of o, since Z; involves a sum-
mation of M terms.
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a quantum state [1;) = > ¢~/ DL|x,c(x)). How-
ever, we only have access to a quantum state |¢t> =

> ozes \/7\1: c(x)) + |x¢), where |x¢) is orthogonal
to the first part of |¢t> (note that |¢,) is not a quan-
tum state without the additional register |y;) since
Y owes Efb < 1). Now it is unclear what will be the out-
put of a quantum learner on input |¢;) instead of |1)¢).

4. Why is the final hypothesis good: Assume for now
that we are able to show that the learner, on input
copies of |¢;), produces a weak hypothesis h; for
the target concept c. Then, after T steps of the
quantum boosting algorithm, the final hypothesis is
H(z) = sign (Zil aéht(x))
why H should satisfy H(x) = c(z) for even a constant
fraction of the xs in S. Observe that the analysis of
classical AdaBoost crucially used that H(z) = c(z)
for most x € S in order to conclude that the generaliza-
tion error is small, i.e., Pry p[H (z) # c(z)] < 1/3
where D is an unknown distribution over {0, 1}".

. It is not at all clear

3.2. Quantum algorithm for boosting

In this paper, our main contribution is a quantum boosting
algorithm that overcomes all the issues mentioned above.

We now give more details of our quantum boosting algo-
rithm. In order to avoid the issues mentioned in the previous
section, our main technical contribution is the following:
we provide a quantum algorithm that modifies the standard
distribution update rule of classical AdaBoost in order to
take care of the approximations of £;s. Moreover, we show
that the output of our modified quantum boosting algorithm
has the same guarantees as classical AdaBoost.

We now discuss the important modification: the distribution
update step. As mentioned before, classically one can com-
pute the quantity ¢ = Pr,.p[h(z) # ¢(z)] in time O(M).
Quantumly, we describe a subroutine that for a fixed J, per-
forms the following: outputs ‘yes’ if ¢ > Q((1—-6)/(QT?))
and ‘no’ otherwise. In the ‘yes’ instance, the algorithm also
outputs an approximation ¢’ that satisfies |¢’ — | < d¢’
and in the ‘no’ instance, the algorithm outputs an ¢’ that
satisfies |¢/ — ¢| < 1/(QT?). The essential point here is the
subroutine takes time O(v/M /§).” The subroutine crucially
uses the fact that in the ‘yes’ instance, the complexity of
the standard quantum mean estimation algorithm (that given
a1, ..., outputs a j-approximation of ﬁ ZiE[M] ;)
scales as O(\/M /9). However, in the ‘no’ instance, ob-
taining a good multiplicative approximation of ¢ using the
quantum mean estimation algorithm could potentially take
time O(M). In this case, we do not need a good approxima-

"The ‘yes’ and ‘no’ events of this subroutine happen with high
probability, we omit this for simplicity in exposition.

tion of € and instead we simply sete’ = 7 = 1/QT?. We
will justify this shortly.

Depending on whether we are in the ‘yes’ instance or ‘no’
instance of the subroutine, we update the distribution differ-
ently. In the ‘yes’ instance, we make a distribution update
that resembles the standard AdaBoost update using the ap-
proximation ¢} instead of ;. We let Z, = 24/¢}(1 — ¢}),

o, =1In (\/(1 — 5;)/57’5) and update D!, as follows

if hi(z) = e(x)
otherwise .

Dt+1 (3)

D¢ e %
- = X ,
(1 + 25) s e%t
However, in the ‘no’ instance, we cannot hope to get a

good multiplicative approximation in time O(+v/ M). In this
case, we crucially observe that weaker approximations of

=In (\/(1 - 62)/52) is sufficient in the hy-
pothesis H(x) = sign (Zthl a;ht(x)),

worse approximation of ¢; still allows us to show that H has
small training error. Hence, in the ‘no’ instance, we simply

lete; =7,2Z,=2y/7(1 —7) and o} zln( (1—7')/7)

the weights o}

i.e., obtaining a

and update 153 as follows:

s D [ ghet (o) = cla)
x (1+ ﬁ)zt ﬁ . e%t otherwise .

Note that the distribution update above is not the standard
boosting distribution update and differs from it by assigning
higher weights to the correctly classified training examples
and lower weights to the misclassified ones. In both cases of
the distribution update, observe that D need not be a distri-
bution. However we are able to show that D is very close to
a distributiog, i.e., with some technical work we can argue
that ) ¢ D, € [1—300,1]. This aspect is very crucial be-
cause, in every iteration of the quantum boosting algorithm

we will pass copies of [®') = > _o\/ Dy, c(x)) +x),*
to the quantum learner instead of the ideal quantum state

|®) = > g VDzlz, c(x)) (since our algorithm starts with

many copies of ) VD, D, |z, c(x)) our algorithm also has
access to these copies of |®')). A priori it is not clear,
what will be the output of the weak quantum learner on
the input |®’). However, we show that the state |®') is
close to |®), in particular we show that [(®'|®)| > 1 — 4.
Suppose a weak quantum learner outputs a weak hypothe-
sis h when given copies of the state |®) (with probability
atleast 1 — 1/T), we show that the same quantum learner
will output h when given copies of the state |®’), with
probability at least 1 — 9/7. By applying a union bound
over T rounds of quantum boosting, we can bound the prob-
ability of obtaining a good hypothesis. Finally, after T’

8 Again note that we need |x) because D is not a distribution,

and ), \/7\300

) is not a valid quantum state.
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rounds, our quantum boosting algorithm outputs the hypoth-
esis H(z) = sign (Zthl aéht(:v)) forallz € {0,1}™.

It remains to show that the final hypothesis H of the quan-
tum boosting algorithm, with the modified distribution up-
dates has zero training error. We remark that the calculations
to prove this part is fairly involved, and the analysis is in-
spired by the analysis of standard AdaBoost. Crucially, we
use the structure of the modified distribution updates to show
that [ has zero training error. In order to go from zero train-
ing error to small generalization error, we use the same ideas
as in classical AdaBoost to show that, if the number of clas-
sical labelled examples M is at least O(VC(C)), then H has
generalization error at most 1/3. The overall time complex-
ity of our quantum boosting algorithm is dominated by the
subroutine in estimating ¢ for every iteration, which scales
as O(v/M) and the remaining part of the quantum boost-
ing algorithm involves invoking the weak quantum learner
which takes time )(C) and basic arithmetic operations. So
the overall complexity of our quantum boosting algorithm
scales as O(/VC(C) -n? - Q(C)?/?), which is quadratically
better than classical AdaBoost in terms of VC(C).

Application to classical AdaBoost. We remark that our
main technical contribution, i.e., the modified distribution
update rule is also applicable to classical Adaboost. In
particular, suppose in classical AdaBoost we obtain ap-
proximations &} instead of the exact weighted errors £; in
time P. Then our robust classical Adaboost algorithm (i.e.,
AdaBoost with modified distribution update) can still pro-
duce a hypothesis H that has zero training error and the
complexity of such a robust classical AdaBoost algorithm
will be proportional to O(P). Clearly, it is possible that P
could be much smaller than M (which is the time taken by
classical AdaBoost to compute ¢; exactly) in which case
the robust classical AdaBoost algorithm can be faster than
standard classical AdaBoost. As far as we are aware, ours
is the first work that considers approximating the weighted
errors € (which could potentially be much faster than exactly
computing es) and shows that changing the distribution up-
date in AdaBoost still allows to produce a strong hypothesis.

4. Preliminaries

Quantum information. In this paper, we assume famil-
iarity with the following quantum information notation.
Let |0) = ((1)) and |1) = (?) be the basis for C2, the
space in which single qubits live. An arbitrary single
qubit state is a superposition of |0),|1) and has the form
al0) + A1) = (g) where o, 3 € C and |a)? + |8]? = 1.
Multi-qubit quantum states can be simply obtained by tak-

ing tensor products of single-qubit quantum states. Over-
all an arbitrary n-qubit quantum state 1)) € C2" can be

written as [1)) = >_ (g 1y Qa|®) Where o € C and
>, laz* = 1. A valid quantum operation on quantum
states can be expressed as a unitary matrix U (which satis-
fies UU* = U*U = I). An application of a unitary U to
the state |1)) results in the quantum state U|).

Quantum oracle access. We say A is given query access to
¢:{0,1}™ — {—1,1} if, A can query ¢, i.e., A can obtain
¢(x) for  of it’s choice. Similarly, we say .A has quantum
query access to ¢, if A can query ¢ in a superposition, i.e., A
can perform the map O, : |z,b) — |z,c(x) - b) for every
x € {0,1}" and b € {—1,1}. The query complexity of a
quantum algorithm will be in terms of how many quantum
queries are made throughout the quantum algorithm and
the time complexity of a quantum algorithm will refer to the
total number of gates involved in the quantum algorithm (i.e.,
the number of gates it takes to implement various unitaries
during the quantum algorithm) as well as the number of
gates it takes to prepare quantum states.

Quantum subroutines. In this paper we will use two
quantum subroutines. The first quantum algorithm by (Bras-
sard et al., 2011) estimates the mean of numbers quadrati-
cally faster on a quantum computer than classical algorithms
for mean estimation.

Theorem 4.1 (Mean Estimation) Given a black-box for
the function F : {1,...,N} — [0, 1], there exists a quan-
tum algorithm that with probability at least 2/3 computes
an additive e-approximation of + Zi\; F(i) using O(1/¢)
evaluations of F'.

Observe that classically estimating the mean sz\;1 F(i)
up to additive precision ¢ would take ©(1/¢?) many eval-
uations of F' and Theorem 4.1 gives a quadratic speedup
compared to classical algorithm in estimating the mean. The
second subroutine which we will use is amplitude ampli-
fication by (Brassard et al., 2002), a well-known quantum
subroutine which performs the following task: suppose we
have a (classical) algorithm A that outputs 1 with proba-
bility p and 0 otherwise, then classically we need to repeat
A ©(1/p) many times before one of the repetitions of A
outputs a 1. Quantumly, amplitude amplification is a pro-
cedure that invokes A and the inverse of A (denoted A~1)
O(1//p) many times before outputting 1 with high proba-
bility, hence providing a quadratic quantum speedup over
classical randomized algorithms.

Theorem 4.2 (Amplitude amplification) Suppose there
exists a unitary U on n qubits that satisfies the following
Ul0™) = valo) ++/'1 — aly1) for an unknown a > 0 and
arbitrary orthogonal quantum states |1g), |11). Then there
exists a quantum algorithm that outputs |1pg) with probabil-
ity exactly o’ > 0 using an expected number ©(+/a’/a) of
applications of U, U~ ".
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PAC learning. The Probably Approximately Correct
(PAC) model of learning was introduced by (Valiant, 1984).
A concept class C is a collection of Boolean functions
¢:{0,1}™ — {—1, 1}, which are often referred to as con-
cepts. In the PAC model, there is an unknown distribution
D :{0,1}" — [0, 1] under which a learner needs to learn C,
i.e., alearner A is given labelled examples (z, c(x)) where
x ~ D and ¢ € C is an unknown target concept (which
the learner is trying to learn). The goal of A is to output
a hypothesis b : {0,1}" — {—1,1} and we say that A is
an (1, 0)-PAC learner for a concept class C if it satisfies:
for all ¢ € C and distributions D, given access to labelled
examples (z, ¢(x)), with probability > 1 — ¢, A outputs a
hypothesis A such that Pr,.p[h(z) # c(x)] <.

The sample complexity and time complexity of a learner is
the number of labelled examples and number of bit-wise
operations (i.e., time taken) that suffices to learn C (under
the hardest concept ¢ € C and distribution D). In the quan-
tum PAC model, a learner is a quantum algorithm given
access to the quantum examples » . +/D,|z,c(x)) and a
quantum computer. The remaining aspects of the quantum
PAC learning algorithm is defined analogous to the classical
PAC model. We now define what it means for an algorithm
A to be a strong and weak learner for a concept class C.

Definition 4.3 (Weak and strong learner) Lern > 1 and
C C {c: {0,1}" —» {-1,1}}. We say A is a weak
(resp. strong) learner for C if it satisfies: for every ¢ € C
and distribution D : {0,1}" — [0, 1], given query access
to ¢, A can output a hypothesis h such that Pryplh(z) =
c(@)] > § + sy (resp- Prop[h(z) = ¢(x)] > 5.)
Throughout, we will assume that we have classical or
quantum query access to the hypothesis h, and will not
assume explicit truth table description of h. Similarly,
we say h is a weak-hypothesis (resp. strong-hypothesis)
if |Prylh(z) = c(z)] — 1/2| > 1/poly(n) (resp. >
1/6). We now define two misclassification errors. Let
S = {(xlvyl)a cee (xJV[; yJVI)} where (wia yi) € {Oa 1}71 X
{—1,1} is drawn from a joint distribution D : {0, 1}" x
{-1,1} — [0,1]. The training error of h is defined
as the error of h on the training set S and given by
&= Zf\iﬂh(%) # y;]. In order to quantify the goodness
of the hypothesis h, the true error or the generalization
error of h is defined as Pr, ,y.p[h(z) # y].

5. Quantum Boosting

In this section, we use quantum techniques to improve the
complexity of AdaBoost. Like in AdaBoost, we break our
quantum boosting algorithm into two stages. Stage (1),
reduce training error: produce a hypothesis that does well
on the training set and Stage (2), reduce generalization error:
we show that for a sufficiently large training set, not only

does the hypothesis output in Stage (1) has a small training
error, but also has a small generalization error.

5.1. Quantum boosting: reducing training error

The bulk of the technical work in our quantum boosting
algorithm lies in reducing the training error. We now state
the main theorem for Stage (1) of our quantum algorithm.

Theorem 5.1 Lery >0, n > 1andC C {c: {0,1}" —
{—1,1}} be a concept class and D : {0,1}" — [0, 1] be
an unknown distribution. Let A be a quantum algorithm
that takes time QQ(C) to PAC learn C with bias ~y. Let M
be sufficiently large’ and T = O((log M)/~?). Given a
training set S = {(x;,c(x;))}iciar) where x; ~ D and
¢ € C, the quantum boosting algorithm takes time 6(\/M .
n? - Q(C)3/?T®), and with probability > 2/3, outputs a
hypothesis H that satisfies H(x;) = c¢(x;) forall i € S.

We describe the quantum boosting algorithm in this the-
orem statement now. Since the sample complexity of A
is at most the time complexity, we will assume that it suf-
fices to provide A with () quantum examples. Our quantum
algorithm is a T-round iterative algorithm similar to clas-
sical AdaBoost and in each round, our quantum algorithm
produces a distribution D. In the ¢th round our quantum
algorithm follows a three step process:

1. Invoke the weak quantum learner A to produce a weak
hypothesis h; under an approximate distribution D?
over the training set S.

2. By making quantum queries to h, our algorithm com-
putes €}, an approximation to &; = Pr__ 5. [h¢(x) #
c(z)]. We then use &, to update the distribution D*

to D*1. In this step, we depart from standard Ad-
aBoost.

3. Using ¢, compute a weight «}. After T steps, output a
hypothesis H (z) = sign (Zthl aght(m)).

Before describing our quantum algorithm, we state a lemma
which we use in performing step (2) in the procedure above.

Lemma 5.2 Let § = 1/(10QT?). there exists a procedure
that outputs &' and satisfies the following: with probability
> 1 —106/T, if the output is {¢', yes}, then |¢ — &'| <
8¢'; and if the output is {¢' = 1/(QT?), no}, then | —
e'| < 1/(QT?). The time complexity of the procedure is
O(VIQY2Tn2),

We now describe our quantum boosting algorithm.

“We quantify what we mean by sufficiently large in the next
section, in particular in Theorem 5.5.
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Algorithm 1 Quantum boosting algorithm

Input: Quantum weak learner A with time complexity @,
a training sample S = {(x;, ¢(x;))}icar), Where z; ~ D
and D : {0,1}"™ — [0, 1] is an unknown distribution.

Initialize: Let D! = D! be the uniform distribution on S.
Let hg be the constant function,'® T = O((log M) /~?) and
§=1/(10QT?). ej = 1/2.

1: for t = 1 to T (assume quantum query access to
hi,...,ht—1 and knowledge of €7,...,¢,_;.) do

2:  Prepare Q + 1 many copies of |¢) =
\/% ZCEGS |$,C(1’),Di> Let |(I)1> = |1/}1>
Phase (1): Obtaining hypothesis h;

3:  Using quantum queries to {h1, ..., h;—1 } and knowl-
edge of {/,...,¢},_;}, prepare the state

|D3) = Z |, c(x
ZEES

4:  Apply amplitude amplification (in Theorem 4.2) to

Ywes \ Dils c(x)) + [xu).
5. Pass |®6)®? to the quantum learner A to obtain h.

prepare |Pg) =

Phase (2): Estimating weighted errors &,

6:  Using quantum queries to hy, prepare |¢5) =
e 7 cl@), DL - () # cla))).

7. Let& = Pr,_5.[hi(x) # c(x)]. Prepare [¢)g) =
V1= €/M|do)|0) + v/&/M|p)1).

8:  Invoke Lemma 5.2 to estimate ; with &}.

Phase (3): Updating distributions

9: Iflemma 5.2 outputs ‘yes’: let Z; = 2
o) =1 ((1 — ) /5;). Update

Dt " e~
(14 26)Z; e
10 If lemma 5.2 outputs ‘no’: let Z, =

(2MQT2 ) /(QT?), o) = (\/QT2—1),
A+l _ Dt
T (1+2/( QT2))Zt
{(2 ~1/(QT?))e

er(l—¢),

if hi(z) = c(x)

otherwise .

Dt+1

if he(z) = c(x)
otherwise .

(1/(QT?))e

11: end for
Output: Hypothesis H defined as

sign (Zthl aght(x)) forall z € {0,1}".

H(z) =

We do not discuss the steps of our quantum boosting al-
gorithm due to space constraints and give more details in
Section B of the supplementary material. Now we make a
couple of remarks. First, note that we use the notation D;
in the quantum boosting algorithm because { D"}, is not
a distribution (which is also Why we need to use the state

|xt) in step (4) because ) o \/Dt|z, c(x

quantum state), instead we show that D* is “close” to a
distribution in the following sense

Claim 5.3 Let ¢t > 1, D' : {0, 1}% — [0,1] be defined as
0). Then Y .o DL € [1 —300,1].

We also show that, not only are these distributions are close
but the weighted training error of the hypotheses under these
“distributions” are close.

) is not a valid

in steps (9), (1

Claim 5.4 Lett > 1, & = Pr,_ 5. [hi(x) # c(x)] be the
weighted error corresponding to the approximate distribu-
tion Dt and £; = Prypt|hi(x) # c(x)] correspond to the
true distribution D'. Then |g; — &, < 500.

We prove these claims along with a few more facts (which
are used in showing that the quantum algorithm produces a
strong H) in Section C' of the supplementary material.

Working with approximate distributions is an important
difference between standard AdaBoost and our quantum
boosting algorithm. In AdaBoost, one assumes that the €s
can be computed exactly by spending time O(M ), however
quantumly, we can only approximate £ with &’ using the
quantum mean estimation algorithm (in Theorem 4.1) in
time O(v/M). Hence, using ¢’ in Phase (3) results in a
sub-normalized distribution in the quantum algorithm.

Second, as we mentioned in the introduction we differ from
AdaBoost crucially in phase (3). The quantum mean estima-
tion algorithm gives a good approximation in time O(v/M)
only when & is “large”, in which case we use the standard
AdaBoost distribution step in Step (9). In case €; is “small”,
since we cannot hope to get a good approximation of &;
in time O(v/M), we fix ¢, = 1/QT? and use a different
distribution update compared to AdaBoost in Step (10). The
intuition as to why fixing £, = 1/QT? is sufficient is that,
when &; is “small”, we observe that obtaining worse ap-
proximations of oy = % In (%) are sufficient in the final

output hypothesis H = sign (Zle a,’fht) In particular,
with weaker approximations of «;, we show that using the
«}, obtained by fixing ¢} = 1/QT? (whenever &, is small)
is sufficient to show that the final hypothesis H is strong

hypothesis. We make this rigorous in the supplementary
material in Section D. We remark that Sections C', D of the

"Precisely, we let the query operation Oh, corresponding to hg
be the identity map.
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supplementary material (which prove the correctness of the
quantum boosting algorithm) are mathematically technical
and are the non-trivial aspects of our quantum algorithm.

5.1.1. PROOF OF CORRECTNESS

We first bound the probability of failure of the quantum
boosting algorithm in obtaining the strong hypothesis H.
The first source of error is due to amplitude amplification
in step (4) of the boosting algorithm, which fails with prob-
ability < % The second error is due to the quantum
weak learner failing to output a weak hypothesis in step (5),
whose probability is < ?%T The third source of error is in
estimating &; in step (8), the probability of failure in esti-
mating &; is < O(1/(QT?)). Applying a union bound over
the T rounds and all the failure events, we ensure that the
overall probability of not outputting H can be made an arbi-
trary constant (with a constant overhead in the complexity).

It remains to argue that the training error of H is 0, i.e.,
H(z) = c(z) for every (z,c(x)) € S. To analyze this we
crucially use the structure of the modified distribution up-
date step in Phase (3). Proving that the final H has zero
training error departs from standard AdaBoost convergence
analysis and due to space constraints we defer it to Sec-
tion D of the supplementary material.'!

5.1.2. COMPLEXITY OF THE ALGORITHM

Our quantum algorithm begins with the state
\/%ers |z, c(x)) given access to S = {wz;,c(z;)}i.
Assuming that a quantum RAM can prepare a uniform
superposition ﬁ Y weglT,c(x)) using O(nlog M)
gates, the time complexity of preparing the initial state
[P1) @ |@1)®9 is O(nQlog M). We could also assume
that a quantum learning algorithm is given uniform quantum
examples ﬁ > wes |, c(x)), in which case we do not

need to assume a quantum RAM. '

""For a more coherent exposition of the theorems alongside
proofs, we refer the reader to (Arunachalam & Maity, 2020).

2Given the QRAM assumption has been controversial and
seems strong in quantum machine learning, we make a couple
of remarks: (i) our quantum boosting algorithm only requires a
QRAM to prepare the uniform superposition over classical data S
at the start of each iteration. Also, our quantum algorithm does not
use QRAM as an oracle for Grover-like algorithms, so the negative
results of (Arunachalam et al., 2015) do not apply to our algorithm;
(ii) we use the QRAM at the start of 7' = O(log M) iteration
of our algorithm to prepare |to), so even if the quantum time
complexity of preparing |t0) is O(v/M), then our complexity in-
creases by an additive O(v/M log M) term and we still do not lose
our quantum speedup; (iii) of course if QRAM is infeasible then
we can also assume that a quantum learner has access to uniform
quantum examples or has quantum query access to the training
examples in S (i.e., can perform the map |x,b) — |z,b - c¢(z)) for
x € 5). and in both cases we do not need a QRAM.

In phase (1) of the quantum algorithm, we first update the
distribution registers from D' to Dt. This step involves us-
ing O(Qt) quantum queries to {hq, ..., hy—1 } which can be
performed in time O((Q)t), and other arithmetic operations
that can be performed in time O(n?Qt). We then perform
amplitude amplification (in Theorem 4.2) to prepare |Pg)
which takes time O(n?v/MQt) (in Section E in the supple-
mentary material we make explicit what are the unitaries for
which we are applying amplification.) Finally, we pass @
copies of |®g) to the weak learner A which outputs a hypoth-
esis hy in time (). Note that we require the quantum learning
algorithm to output an oracle for h; instead of explicitly out-
putting a circuit for h;. In phase (2), the algorithm in steps
(6), (7) performs a query as well as a quantum gate for phase
rotation in order to prepare |t)s) using O(n) gates. The next
step is the mean estimation step (in Theorem 4.1) to com-
pute ¢}, which takes time O(v/MQ?/?>T? - tn?) (again in
Section (E) we explicitly mention the unitaries to which
we apply Theorem 4.1). Finally, Phase (3) of our quan-
tum boosting algorithm involves basic arithmatic operations
which takes time O(n?). The total complexity of the algo-
rithm scales as é(m -poly(n,Q,T)).

5.2. Reducing generalization error

In the previous section we showed that our quantum boost-
ing algorithm produces a hypothesis H that perfectly clas-
sifies the training set S = {(xs,c(x:))}iepm], Where
(24, c(x;)) was sampled according to the unknown D. Re-
call that the goal of our quantum boosting algorithm is to
output a hypothesis H : {0,1}"™ — {—1,1} that satisfies
Pry.p[H(z) = ¢(z)] > 1 —n. We saw in Theorem 2.1
that as long as M, i.e., the number of training examples is
large enough, then not only does H has zero training error,
but it also ensures small generalization error. In particular,
in Stage (2) of classical AdaBoost we simply use Theo-
rem 2.1 to argue that: suppose the training error of H is 0,
then the generalization error of H is at most 7 as long as
M > O(VC(C)/n?). Using Theorem 2.1, we now prove
our main theorem:

Theorem 5.5 (Complexity of Quantum Boosting) Fix
n>0,v>0.Letn > 1andC C {c:{0,1}" —» {-1,1}}
be a concept class and D : {0,1}™ — [0, 1] be an unknown
distribution. Let A be a weak PAC quantum algorithm that
has bias v and takes time Q(C). Suppose M satisfies

L V() loa(VE(C)/+?)
> ),

M

Suppose we run Algorithm 1, then with probability > 1 — ¢
(over the randomness of the algorithm), we obtain a hypoth-
esis H that has training error at most 1/10 and general-
ization error Prpp[H(x) # c(x)] < n+ 1/10. Moreover,
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the time complexity of the quantum boosting algorithm is

_ o2
To=0 (VVH(C) QR I polylog<1/6>>.

Picking = 1/10 we get that H has generalization error at
most 1/5. Recall that the complexity of classical AdaBoost

isTe =0 %@J%(C)%log(l/é) . In comparison, T

is quadratically better than T in terms of the VC dimension
of the concept class C and 1/n. Additionally, we could
potentially have Q(C) < R(C) since the the quantum time
complexity of a weak learner can be much lesser than the
classical time complexity of learning as shown by (Servedio
& Gortler, 2004) (under complexity-theoretic assumptions).

Open questions. We conclude with a few interesting ques-
tions: (i) can we improve the polynomial dependence on
1/~ in the quantum complexity of boosting? (ii) can we use
the quantum boosting algorithm to improve the complexities
various quantum algorithms that use classical AdaBoost on
top of a weak quantum algorithms? (iii) are there practically
relevant concept classes which have large VC dimension
for which our quantum boosting algorithm gives a large
quantum speedup, (iv) could one replace the quantum phase
estimation step in our quantum boosting algorithm by varia-
tional techniques developed by (Peruzzo et al., 2014)?

Subsequent work. After our work was submitted to
ICML 2020, (Hamoudi et al., 2020) posted a paper on arXiv
proposing a quantum speedup for the Hedge algorithm by
Freund and Schapire, which can be viewed as a boosting
algorithm using multiplicative weights method.
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