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Abstract

A common strategy in modern learning systems
is to learn a representation that is useful for many
tasks, a.k.a. representation learning. We study
this strategy in the imitation learning setting for
Markov decision processes (MDPs) where multi-
ple experts’ trajectories are available. We formu-
late representation learning as a bi-level optimiza-
tion problem where the “outer” optimization tries
to learn the joint representation and the “inner”
optimization encodes the imitation learning setup
and tries to learn task-specific parameters. We
instantiate this framework for the imitation learn-
ing settings of behavior cloning and observation-
alone. Theoretically, we show using our frame-
work that representation learning can provide sam-
ple complexity benefits for imitation learning in
both settings. We also provide proof-of-concept
experiments to verify our theory.

1. Introduction

Humans can often learn from experts quickly and with a
few demonstrations and we would like our artificial agents
to do the same. However, even for simple imitation learning
tasks, the current state-of-the-art methods require thousand
of demonstrations. Humans do not learn new skills from
scratch. We can summarize learned skills, distill them and
build a common ground, a.k.a, representation that is useful
for learning future skills. Can we build an agent to do the
same?

The current paper studies how to apply representation learn-
ing to imitation learning. Specifically, we want our agent
to be able to learn a representation from multiple experts’
demonstrations, where the experts aim to solve different
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Markov decision processes (MDPs) that share the same
state and action spaces but can differ in the transition and
reward functions. The agent can use this representation to
reduce the number of demonstrations required for a new
imitation learning task. While several methods have been
proposed (Duan et al., 2017; Finn et al., 2017b; James et al.,
2018) to build agents that can adapt quickly to new tasks,
none of them, to our knowledge, give provable guarantees
showing the benefit of using past experience. Furthermore,
they do not focus on learning a representation. See Section 2
for more discussions.

In this work, we propose a framework to formulate this
problem and analyze the statistical gains of representation
learning for imitation learning. The main idea is to use
bi-level optimization formulation where the “outer” opti-
mization tries to learn the joint representation and the “inner”
optimization encodes the imitation learning setup and tries
to learn task-specific parameters. In particular, the inner
optimization is flexible enough to allow the agent to interact
with the environment. This framework allows us to do a
rigorous analysis to show provable benefits of representa-
tion learning for imitation learning. With this framework at
hand, we make the following concrete contributions:

• We first instantiate our framework in the setting where
the agent can observe experts’ actions and tries to find
a policy that matches the expert’s policy, a.k.a, behavior
cloning. This setting can be viewed as a straightforward
extension of multi-task representation learning for super-
vised learning (Maurer et al., 2016). We show in this
setting that with sufficient number of experts (possibly
optimizing for different reward functions), the agent can
learn a representation that provably reduces the sample
complexity for a new target imitation learning task.

• Next, we consider a more challenging setting where the
agent cannot observe experts’ actions but only their states,
a.k.a., the observation-alone setting. We set the inner
optimization as a min-max problem inspired by (Sun
et al., 2019). Notably, this min-max problem requires the
agent to interact with the environment to collect samples.
We again show that with sufficient number of experts, the
agent can learn a representation that provably reduces
the sample complexity for a target task where the agent
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cannot observe actions from source and target experts.
• We conduct experiments in both settings to verify our

theoretical insights by learning a representation from mul-
tiple tasks using our framework and testing it on a new
task from the same setting. Additionally, we use these
learned representations to learn a policy in the RL setting
by doing policy optimization. We observe that by learn-
ing representations the agent can learn a good policy with
fewer samples than needed to learn a policy from scratch.

The key contribution of our work is to connect existing
literature on multi-task representation learning that deals
with supervised learning (Maurer et al., 2016) to single
task imitation learning methods with guarantees (Syed &
Schapire, 2010; Ross et al., 2011; Sun et al., 2019). To our
knowledge, this is the first work showing such guarantees
for general losses that are not necessarily convex.

Organization: In Section 2, we review and discuss re-
lated work. Section 3 reviews necessary concepts and de-
scribes the basic representation learning setup. In Section 4,
we formulate representation learning for imitation learning
as a bi-level optimization problem and give an overview of
the kind of results we prove. In Section 5, we show our
theoretical guarantees for behavior cloning, i.e., the case
when the agent can observe experts’ actions. In Section 6,
we discuss our theoretical result for the observation alone
setting. In Section 7, we present our experimental results
showing the benefit of representation learning for imitation
learning via our framework. We conclude in Section 8 and
defer technical proofs to appendix.

2. Related Work

Representation learning has shown its great power in various
domains; see Bengio et al. (2013) for a survey. Theoreti-
cally, Maurer et al. (2016) studied the benefit representation
learning for sample complexity reduction in the multi-task
supervised learning setting. Recently, Arora et al. (2019) an-
alyzed the benefit of representation learning via contrastive
learning. While these papers all build representations for the
agent / learner, researchers also try to build representations
about the environment / physical world (Wu et al., 2017).

Imitation learning can help with sample efficiency of many
problems (Ross & Bagnell, 2010; Sun et al., 2017; Daumé
et al., 2009; Chang et al., 2015; Pan et al., 2018). Most
existing work consider the setting where the learner can
observe expert’s action. A general strategy is use supervised
learning to learn a policy that maps the state to action that
matches expert’s behaviors. The most straightforward one
is behavior cloning (Pomerleau, 1991), which we also study
in our paper. More advanced approaches have also been pro-
posed (Ross et al., 2011; Ross & Bagnell, 2014; Sun et al.,
2018). These approaches, including behavior cloning, often

enjoy sound theoretical guarantees in the single task case.
Our work extends the theoretical guarantees of behavior
cloning to the multi-task representation learning setting.

This paper also considers a more challenging setting, imita-
tion learning from observation alone. Though some model-
based methods have been proposed (Torabi et al., 2018;
Edwards et al., 2018), these methods lack theoretical guar-
antees. Another line of work learns a policy that minimizes
the difference between the state distributions induced by it
and the expert policy, under certain distributional metric (Ho
& Ermon, 2016). Sun et al. (2019) gave a theoretical analy-
sis to characterize the sample complexity of this approach
and our method for this setting is inspired by their approach.

A line of work uses meta-learning for imitation learn-
ing (Duan et al., 2017; Finn et al., 2017b; James et al., 2018).
Our work is different from theirs as we want to explicitly
learn a representation that is useful across all tasks whereas
these work try to learn a meta-algorithm that can quickly
adapt to a new task. For example, Finn et al. (2017b) used
a gradient based method for adaptation. Recently Raghu
et al. (2019) argued that most of the power of MAML (Finn
et al., 2017a) like approaches comes from learning a shared
representation.

On the theoretical side of meta-learning and multi-task learn-
ing, Baxter (2000) performed the first theoretical analysis
and gave sample complexity bounds using covering num-
bers. Maurer (2009) analyzed linear representation learning,
while Bullins et al. (2019); Denevi et al. (2018) provide
efficient algorithms to learn linear representations that can
reduce sample complexity of a new task. Another recent
line of work analyzes gradient based meta-learning methods,
similar to MAML (Finn et al., 2017a). Existing work on
the sample complexity and regret of these methods (Denevi
et al., 2019; Finn et al., 2019; Khodak et al., 2019) show
guarantees for convex losses by leveraging tools from online
convex optimization. In contrast, our analysis works for ar-
bitrary function classes and the bounds depend on the Gaus-
sian averages of these classes. Recent work (Rajeswaran
et al., 2019) uses a bi-level optimization framework for
meta-learning and improves computation aspects of meta-
learning through implicit differentiation; our interest lies in
the statistical aspects.

3. Preliminaries

Markov Decision Processes (MDPs): Let M =
(S,A, P, C, ⌫) be an MDP, where S is the state space, A is
the finite action space with |A| = K, H 2 Z+ is the plan-
ning horizon, P : S⇥A ! 4 (S) is the transition function,
C : S ⇥A ! R is the cost function and ⌫ 2 4(S) is the
initial state distribution. We assume that cost is bounded
by 1, i.e. C(s, a)  1, 8s 2 S, a 2 A. This is a stan-
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dard regularity condition used in many theoretical reinforce-
ment learning work. A (stochastic) policy is defined as
⇡ = (⇡1, . . . ,⇡H), where ⇡h : S ! 4(A) prescribes a
distribution over action for each state at level h 2 [H]. For
a stationary policy, we have ⇡1 = · · · = ⇡H = ⇡. A policy
⇡ induces a random trajectory s1, a1, s2, a2, . . . , sH , aH
where s1 ⇠ ⌫, a1 ⇠ ⇡1(s), s2 ⇠ Ps1,a1 etc. Let ⌫⇡

h
denote

the distribution over S induced at level h by policy ⇡. The
value function V ⇡

h
: S ! R is defined as

V ⇡
h
(sh) = E

"
HX

i=h

C(si, ai) | ai ⇠ ⇡i(si), si+1 ⇠ Psi,ai

#

and the state-action function Q⇡
h
(sh, ah) is defined as

Q⇡
h
(sh, ah) = Esh+1⇠Ps

h
,a

h
[V ⇡

h
(sh+1)]. The goal is to

learn a policy ⇡ that minimizes the expected cost J(⇡) =
Es1⇠⌫V ⇡

1 (s1). We define the Bellman operator at level h
for any policy ⇡ as �⇡

h
: RS

! RS , where for s 2 S and
g 2 RS ,

(�⇡
h
g)(s) := Ea⇠⇡h(s),s0⇠Ps,a

[g(s0)] (1)

Multi-task Imitation learning: We formally describe the
problem we want to study. We assume there are multiple
tasks (MDPs) sampled i.i.d. from a distribution ⌘. A task
µ ⇠ ⌘ is an MDP Mµ = (S,A, H, Pµ, Cµ, ⌫µ); all tasks
share everything except the cost function, initial state dis-
tribution and transition function. For simplicity of presen-
tation, we will assume a common transition function P for
all tasks; proofs remain exactly the same even otherwise.
For every task µ, ⇡⇤

µ
= (⇡⇤

1,µ, . . . ,⇡
⇤

H,µ
) is an expert pol-

icy that the learner has access to in the form of trajectories
induced by that policy. The trajectories may or may not
contain expert’s actions. These correspond to two settings
that we discuss in more detail in Section 5 and Section 6.
The distributions of states induced by this policy at different
levels are denoted by {⌫⇤1,µ, . . . , ⌫

⇤

H,µ
} and the average state

distribution as ⌫⇤
µ
= 1

H

HP
h=1

⌫⇤
h,µ

. We define V ⇤

h,µ
to be the

value function of ⇡⇤

µ
and Jµ to be the expected cost function

for task µ. We will drop the subscript µ whenever the task
at hand is clear from context. Of interest is also the special
case where the expert policy ⇡⇤

µ
is stationary.

Representation learning: In this work, we wish to learn
policies from a function class of the form ⇧ = F � �,
where � ✓ {� : S ! Rd

| k�(s)k2  R} is a class of
bounded norm representation functions mapping states to
vectors and F ✓ {f : Rd

! �(A)} is a class of func-
tions mapping state representations to distribution over ac-
tions. We will be using linear functions, i.e. F = {x !

softmax(Wx) | W 2 RK⇥d, kWkF  1}. We denote a
policy parametrized by � 2 � and f 2 F by ⇡�,f , where
⇡�,f (a|s) = f(�(s))a. In some cases, we may also use the

policy ⇡�,f (a|s) = I{a = argmax
a02A

f(�(s))a0}
1. Denote

⇧� = {⇡�,f : f 2 F} to be the class of policies that use �
as the representation function.

Given demonstrations from expert policies for T tasks sam-
pled independently from ⌘, we wish to first learn repre-
sentation functions (�̂1, . . . , �̂H) so that we can use a few
demonstrations from an expert policy ⇡⇤ for new task µ ⇠ ⌘
and learn a policy ⇡ = (⇡1, . . . ,⇡H) that uses the learned
representations, i.e. ⇡h 2 ⇧�̂h , such that has average cost
of ⇡ is not too far away from ⇡⇤. In the case of stationary
policies, we need to learn a single � by using tasks and learn
⇡ 2 ⇧� for a new task. The hope is that data from multiple
tasks can be used to learn a complicated function � 2 �
first, thus requiring only a few samples for a new task to
learn a linear policy from the class ⇧�.

Gaussian complexity: As in (Maurer et al., 2016), we
measure the complexity of a function class H ✓ {h : X !

Rd
} on a set X = (X1, . . . , Xn) 2 X

n by using the follow-
ing Gaussian average

G(H(X)) = E

2

64sup
h2H

d,nX

i=1
j=1

�ijhi(Xj) | Xj

3

75 (2)

where �ij are independent standard normal variables.
Bartlett & Mendelson (2003) also used Gaussian averages
to show some generalization bounds.

4. Bi-level Optimization Framework

In this section we introduce our framework and give a high-
level description of the conditions under which this frame-
work gives us statistical guarantees. Our main idea is to
phrase learning representations for imitation learning as the
following bi-level optimization

min
�2�

L(�) := E
µ⇠⌘

min
⇡2⇧�

`µ(⇡) (3)

Here `µ is the inner loss function that penalizes ⇡ being
different from ⇡⇤

µ
for the task µ. In general, one can use any

loss `µ that is used for single task imitation learning, e.g.
for the behavioral cloning setting (cf. Section 5), `µ is a
classification like loss that penalizes the mismatch between
predictions by ⇡⇤ and ⇡, while for the observation-alone set-
ting (cf. Section 6) it is some measure of distance between
the state visitation distributions induced by ⇡ and ⇡⇤. The
outer loss function is over the representation �. The use of
bi-level optimization framework naturally enforces policies
in the inner optimization to share the same representation.

While Equation 3 is formulated in terms of the distribution ⌘,
in practice we only have access to few samples for T tasks;

1Break ties in any way
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let x(1), . . . ,x(T ) denote samples from tasks µ(1), . . . , µ(T )

sampled i.i.d. from ⌘. We thus learn the representation �̂ by
minimizing empirical version L̂ of Equation 3.

L̂(�) =
1

T

TX

i=1

min
⇡2⇧�

`x
(i)

(⇡) =
1

T

TX

i=1

`x
(i)

(⇡�,x(i)

)

where `x is the empirical loss on samples x and ⇡�,x =
argmin⇡2⇧� `x(⇡) corresponds to a task specific policy
that uses a fixed representation �. Our goal then is to show
that for a new task µ ⇠ ⌘, the learned representation can be
used to learn a policy ⇡�̂,x by using samples x from the task
µ that has low expected MDP cost Jµ (defined in Section 3)

Informal Theorem 4.1. With high probability over the

sampling of train task data and with sufficient number

of tasks and samples (expert demonstrations) per task,

�̂ = argmin�2� L̂(�) will satisfy

E
µ⇠⌘

E
x
Jµ(⇡

�̂,x)� E
µ⇠⌘

Jµ(⇡
⇤

µ
) is small

At a high level, in order to prove such a theorem for a par-
ticular choice of `µ, we would need to prove the following
three properties about `µ and `x:

1. `x(⇡) concentrates to `µ(⇡) simultaneously for all ⇡ 2

⇧� (for a fixed �), with sample complexity depending
on some complexity measure of ⇧� rather than being
polynomial in |S|;

2. if � and �0 induce “similar” representations then
min⇡2⇧� `µ(⇡) and min

⇡2⇧�0 `µ(⇡) are close;
3. a small value of `µ(⇡) implies a small value for Jµ(⇡)�

Jµ(⇡⇤

µ
).

The first property ensures that learning a policy for a single
task by fixing the representation is sample efficient, thus
making representation learning a useful problem to solve.
The second property is specific to representation learning
and requires `µ to use representations in a smooth way.
This ensures that the empirical loss for T tasks is a good
estimate for the average loss on tasks sampled from ⌘. The
third property ensures that matching the behavior of the
expert as measured by the loss `µ ensures low average cost
i.e., `µ is meaningful for the average cost; any standard
imitation learning loss will satisfy this. We prove these three
properties for the cases where `µ is the either behavioral
cloning loss or observation-alone loss, with natural choices
for the empirical loss `x. However the general proof recipe
can be used for potentially many other settings and loss
functions.

In the next section, we will describe representation learning
for behavioral cloning as an instantiation of the above frame-
work and describe the various components of the framework.
Furthermore we will describe the results and give a proof

sketch to show how the aforementioned properties help us
show our final guarantees. The guarantees for this setting
follow almost directly from results in (Maurer et al., 2016)
and (Ross et al., 2011). Later in Section 6 we describe
the same for the observations alone setting which is more
non-trivial.

5. Representation Learning for Behavioral

Cloning

Choice of `µ: We first specify the inner loss function in
the bi-level optimization framework. In the single task set-
ting, the goal of behavioral cloning (Syed & Schapire, 2010;
Ross et al., 2011) is to use expert trajectories of the form
⌧ = (s1, a1, . . . , sH , aH) to learn a stationary policy2 that
tries to mimic the decisions of the expert policy on the states
visited by the expert. For a task µ, this reduces to a super-
vised classification problem that minimizes a surrogate to
the following loss `µ0�1(⇡) = Es⇠⌫⇤

µ
,a⇠⇡⇤

µ
(s)I{⇡(s) 6= a}.

We abuse notation and denote this distribution over (s, a) for
task µ as µ; so (s, a) ⇠ µ is the same as s ⇠ ⌫⇤

µ
, a ⇠ ⇡⇤

µ
(s).

Prior work (Syed & Schapire, 2010; Ross et al., 2011) have
shown that a small value of `µ0�1(⇡) implies a small differ-
ence J(⇡)� J(⇡⇤). Thus for our setting, we choose `µ to
be of the following form

`µ(⇡) = E
s⇠⌫⇤

µ
,a⇠⇡⇤

µ
(s)

`(⇡(s), a) = E
(s,a)⇠µ

`(⇡(s), a) (4)

where ` is any surrogate to 0-1 loss I{a 6= argmax
a02A

⇡(s)a0}

that is Lipschitz in �(s). In this work we consider the logistic
loss `(⇡(s), a) = � log(⇡(s)a).

Learning � from samples: Given expert trajectories
for T tasks µ(1), . . . , µ(T ) we construct a dataset X =
{x(1), . . . ,x(T )

}, where x(t) = {(st
j
, at

j
)}n

j=1 ⇠ (µ(t))n

is the dataset for task t. Details of the dataset construc-
tion are provided in Section C.1. Let S denote the set of
states {st

j
}. Instantiating our framework, we learn a good

representation by solving �̂ = argmin
�2�

L̂(�), where

L̂(�) :=
1

T

TX

t=1

min
⇡2⇧�

1

n

nX

j=1

`(⇡(st
j
), at

j
)

=
1

T

TX

t=1

min
⇡2⇧�

ˆ̀x(t)

(⇡) (5)

where `x is loss on samples x = {(sj , aj)}nj=1 defined as
`x(⇡) = 1

n

P
n

j=1 `(⇡(sj), aj).

Evaluating representation �̂: A learned representation
�̂ is tested on a new task µ ⇠ ⌘ as follows: draw sam-

2We can easily extend the theory to non-stationary policies
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ples x ⇠ µn using trajectories from ⇡⇤

µ
and solve ⇡�̂,x =

arg min
⇡2⇧�̂

ˆ̀x(⇡). Does ⇡�̂,x have expected cost Jµ(⇡�̂,x)

not much larger than Jµ(⇡⇤

µ
)? The following theorem an-

swers this question. We make the following two assump-
tions to prove the theorem.

Assumption 5.1. The expert policy ⇡⇤

µ
is deterministic for

every µ 2 support(⌘).

Assumption 5.2 (Policy realizability). There is a repre-

sentation �⇤
2 � such that for every µ 2 support(⌘),

⇡µ 2 ⇧�
⇤

such that ⇡µ(s)⇡⇤
µ
(s)

3
� 1 � �, 8s 2 S for

some � < 1/2.

The first assumption holds if ⇡⇤

µ
is aiming to maximize some

cost function. The second assumption is for representation
learning to make sense: we need to assume the existence of
a common representation �⇤ that can approximate all expert
policies and � measures this expressiveness of �. Now we
present our first main result about the performance of the
learned representation on a new imitation learning task µ,
whose performance is measure by the average cost Jµ.

Theorem 5.1. Let �̂ 2 argmin
�2�

L̂(�). Under Assump-

tions 5.1,5.2, with probability 1 � � over the sampling of

dataset X, we have

E
µ⇠⌘

E
x⇠µn

Jµ(⇡
�̂,x)� E

µ⇠⌘

Jµ(⇡
⇤

µ
)  H2(2� + ✏gen)

where ✏gen = cG(�(S))
T
p
n

+ c0R
p
K

p
n

+ c00
q

ln(4/�)
T

, for some

small constants c, c0, c00.

To gain intuition for what the above result means, we give
a PAC-style guarantee for the special case where the class
of representation functions � is finite. This follows directly
from the above theorem and the use of Massart’s lemma.

Corollary 5.1. In the same setting as Theorem 5.1, sup-

pose � is finite. If number of tasks satisfies T �

c1 max
n

H
4
R

2 log(|�|)
✏2

, H
4 ln(4/�)

✏2

o
, and number of samples

(expert trajectories) per task satisfies n � c2
H

4
R

2
K

✏2
for

small constants c1, c2, then with probability 1� �,

E
µ⇠⌘

E
x⇠µn

Jµ(⇡
�̂,x)� E

µ⇠⌘

Jµ(⇡
⇤

µ
)  H2� + ✏

Discussion: The above bound says that as long as we
have enough tasks to learn a representation from � and suf-
ficient samples per task to learn a linear policy, the learned
policy will have small average cost on a new task from ⌘.
The first term H2� is small if the representation class � is
expressive enough to approximate the expert policies (see
Assumption 5.2). The results says that if we have access

3We abuse notation and use ⇡⇤
µ(s) instead of argmax

a2A
⇡⇤
µ(s)a

to data from T = O
⇣

H
4
R

2 log(|�|)
✏2

⌘
tasks sampled from ⌘,

we can use them to learn a representation such that for a
new task we only need n = O

⇣
H

4
R

2
K

✏2

⌘
samples (expert

demonstrations) to learn a linear policy with good perfor-
mance. In contrast, without access to tasks, we would need
n = O

⇣
max

n
H

4
R

2 log(|�|)
✏2

, H
4
R

2
K

✏2

o⌘
samples from the

task to learn a good policy ⇡ 2 ⇧ from scratch. Thus if the
complexity of the representation function class � is much
more than number of actions (log(|�|) � K in this case),
then multi-task representation learning might be much more
sample efficient4. Note that the dependence of sample com-
plexity on H comes from the error propagation when going
from `µ to Jµ; this is also observed in single task imitation
learning (Ross et al., 2011; Sun et al., 2019).

We give a proof sketch for Theorem 5.1 below, while the
full proof is deferred to Section A.

5.1. Proof sketch

The proof has two main steps. In the first step we bound the
error due to use of samples. The policy ⇡�,x that is learned
on samples x ⇠ µn is evaluated on the distribution µ and
the average loss incurred by representation � across tasks is
L̄(�) = E

µ⇠⌘

E
x⇠µn

`µ(⇡�,x).

On the other hand, if the learner had complete access to the
distribution ⌘ and distributions µ for every task, then the
loss minimizer would be �⇤ = argmin�2� L(�), where
L(�) := E

µ⇠⌘

min
⇡2⇧�

`µ(⇡). Using results from (Maurer et al.,

2016), we can prove the following about �̂

Lemma 5.2. With probability 1 � � over the choice of X,

�̂ 2 argmin
�2�

L̂(�) satisfies

L̄(�̂)  min
�2�

L(�) + c
G(�(S))

T
p
n

+ c0
R
p
K

p
n

+ c00
r

ln(1/�)

T

The proof of this lemma is provided in Section A.

The second step of the proof is connecting the loss L̄(�)
and the average cost Jµ of the policies induced by � for
tasks µ ⇠ ⌘. This can obtained by using the connection
between the surrogate 0-1 loss `µ and the cost Jµ that has
been established in prior work (Ross et al., 2011; Syed &
Schapire, 2010). The following lemma uses the result for
deterministic expert policies from Ross et al. (2011).

Lemma 5.3. Given a representation � with L̄(�)  ✏. Let

x ⇠ µn
be samples for a new task µ ⇠ ⌘. Let ⇡�,x

be the

policy learned by behavioral cloning on the samples, then

4These statements are qualitative since we are comparing upper
bounds.
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under Assumption 5.1

E
µ⇠⌘

E
x⇠µn

Jµ(⇡
�,x)� E

µ⇠⌘

Jµ(⇡
⇤

µ
)  H2✏

This suggests that representations with small L̄ do well
on the imitation learning tasks. A simple implication of
Assumption 5.2 that min�2� L(�)  L(�⇤)  �, along
with the above two lemmas completes the proof.

6. Representation Learning for Observations

Alone Setting

Now we consider the setting where we cannot observe ex-
perts’ actions but only their states. As in Sun et al. (2019),
we also solve a problem at each level; consider a level
h 2 [H].

Choice of `µ
h

: Let ⇡⇤

µ
= {⇡⇤

1,µ, . . . ,⇡
⇤

H,µ
} be the se-

quence of expert policies (possibly stochastic) at different
levels for the task µ. Let ⌫⇤

h,µ
be the distribution induced

on the states at level h by the expert policy ⇡⇤

µ
. The goal in

imitation learning with observations alone (Sun et al., 2019)
is to learn a policy ⇡ = (⇡1, . . . ,⇡H) that matches the
distributions ⌫⇡

h
with ⌫⇤

h
for every h, w.r.t. a discriminator

class G5 that contains the true value functions V ⇤

1 , . . . , V
⇤

H

and is approximately closed under the Bellman operator
of ⇡⇤. Instead, in this work we learn ⇡ that matches the
distributions ⇡h · ⌫⇤

h

6 and ⌫⇤
h+1 for every h w.r.t. to a class

G ✓ {g : S ! R, |g|1  1} that contains the value func-
tions and has a stronger Bellman operator closure property.
For every task µ, `µ

h
is defined as

`µ
h
(⇡) = max

g2G

[ E
s⇠⌫

⇤
h,µ

E
a⇠⇡(s)
s̃⇠Ps,a

g(s̃)� E
s̄⇠⌫

⇤
h+1,µ

g(s̄)] (6)

= max
g2G

[ E
s⇠⌫

⇤
h,µ

E
a⇠U(A)
s̃⇠Ps,a

K⇡(a|s)g(s̃)� E
s̄⇠⌫

⇤
h+1,µ

g(s̄)]

where we rewrite `µ
h

by importance sampling in the second
equation; this will be useful to get an empirical estimate.
While our definition of `µ

h
differs slightly from the one used

in Sun et al. (2019), using similar techniques, we will show
that small values for `µ

h
(⇡h) for every h 2 [H] will ensure

that the policy ⇡ = (⇡1, . . . ,⇡H) will have expected cost
Jµ(⇡) close to Jµ(⇡⇤

µ
). We abuse notation, and for a task

µ we denote µ = (µ1, . . . , µH) where µh is the distribution
of (s, a, s̃, s̄) used in `µ

h
; thus (s, a, s̃, s̄) ⇠ µh is equivalent

to s ⇠ ⌫⇤
h,µ

, a ⇠ U(A), s̃ ⇠ Ps,a, s̄ ⇠ ⌫⇤
h+1,µ.

Learning �h from samples: We assume, 1) access to 2n
expert trajectories for T independent train tasks, 2) ability

5If G contains all bounded functions, then it reduces to mini-
mizing TV between ⌫⇡

h and ⌫⇤
h.

6The sampling s ⇠ ⇡h ·⌫⇤
h is defined as sampling s0 ⇠ ⌫⇤

h, a ⇠
⇡h(s

0), s ⇠ Ps0,a.

to reset the environment at any state s and sample from the
transition P (·|s, a) for any a 2 A. The second condition is
satisfied in many problems equipped with simulators. Us-
ing the sampled trajectories for the T tasks {µ(1), . . . , µ(T )

}

and doing some interaction with environment, we get the fol-
lowing dataset X = {X1, . . . ,XH} where Xh is the dataset
for level h. Specifically, Xh = {x(1)

h
, . . . ,x(T )

H
} where

x(i)
h

= {(si
j
, ai

j
, s̃i

j
, s̄i

j
)}n

j=1 ⇠ (µ(i))n is the dataset for
task i at level h. Additionally we denote Sh = {si

j
}
T,n

i=1,j=1

to be all the s-states in Xh, S̃h and S̄h are similarly de-
fined as the collections of all the s̃-states and s̄-states re-
spectively. Details about how this dataset is constructed
from expert trajectories and interactions with environment
is provided in Section C.2. We learn the representation
�̂h = argmin

�2�
L̂h(�), where

L̂h(�) =
1

T

TX

i=1

min
⇡2⇧�

max
g2G

1

n

nX

j=1

[K⇡(ai
j
|si

j
)g(s̃i

j
)� g(s̄i

j
)]

=
1

T

TX

i=1

min
⇡2⇧�

ˆ̀x(i)

h
(⇡) (7)

where for dataset x = {(sj , aj , s̃j , s̄j)}nj=1, ˆ̀x
h
(⇡) :=

max
g2G

1
n

nP
j=1

[K⇡(aj |sj)g(s̃j) � g(s̄j)]. Note that because

of the max operator over the class G, ˆ̀x
h

is not an unbiased
estimator of `µ

h
when x ⇠ µn

h
. However we can still show

generalization bounds.

Evaluating representations �̂1, . . . , �̂H : Learned repre-
sentations are tested on a new task µ ⇠ ⌘ as follows: get
samples x = (x1, . . . ,xH)7 for all levels using trajecto-
ries from ⇡⇤

µ
, where xh ⇠ µn

h
. For each level h, learn

⇡�̂h,xh = argmin
⇡2⇧�̂

ˆ̀xh

h
(⇡) and consider the policy

⇡�̂,x = (⇡�̂1,x1 , . . . ,⇡�̂H ,xH ). Before presenting the guar-
antee for ⇡�̂,x, we introduce a notion of Bellman error that
will show up in our results. For a policy ⇡ = (⇡1, . . . ,⇡H)
and an expert policy ⇡⇤ = (⇡⇤

1 , . . . ,⇡
⇤

H
), we define the

inherent Bellman error

✏⇡
be

:= max
h2[H]

max
g2G

min
g02G

E
s⇠(⌫⇤

h
+⌫

⇡
h
)/2

[|g0(s)� (�⇡
h
g)(s)|]

(8)

We make the following two assumptions for the subsequent
theorem. These are standard assumptions in theoretical
reinforcement learning literature.

Assumption 6.1 (Value function realizability). V ⇤

h,µ
2 G

for every h 2 [H], µ 2 support(⌘).
7Note that we do not need the datasets xh at different levels to

be independent of each other
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Assumption 6.2 (Policy realizability). There are represen-

tations �⇤

1, . . . ,�
⇤

H
2 � such that ⇡⇤

h,µ
2 ⇧�

⇤
h for every

h 2 [H], µ 2 support(⌘).

Now we present our main theorem for the observation-alone
setting.

Theorem 6.1. Let �̂h 2 argmin
�2�

L̂h(�). Under Assump-

tions 6.1,6.2, with probability 1 � � over sampling of

X = (X1, . . . ,XH), we have

E
µ⇠⌘

E
x
J(⇡�̂,x)� E

µ⇠⌘

J(⇡⇤

µ
) 

HX

h=1

(2H � 2h+ 1)✏gen,h +O(H2)✏�̂
be

where ✏�̂
be

= E
µ⇠⌘

E
x
[✏⇡

�̂,x

be
] is the average inherent Bellman

error and

✏gen,h =c1
KG(�(Sh))

T
p
n

+ c2
RK

p
K

p
n

+ c3

r
ln(H/�)

T

+ c4 E
µ⇠⌘

E
x⇠µn


KG(G(s̃h))

n
+

G(G(s̄h))

n

�

We again give a PAC-style guarantee for the special case
where the class of representation functions � and value
function class G are finite. It follows from the above theorem
and Massart’s lemma.

Corollary 6.1. In the setting of Theorem 6.1, sup-

pose �,G are finite. If number of tasks satis-

fies T � c1 max
n

H
4
R

2
K

2 log(|�|)
✏2

, H
4 ln(H/�)

✏2

o
, and

number of samples (trajectories) per task satisfies

n � c2 max
n

H
4
K

2 log(|G|)
✏2

, H
4
R

2
K

3

✏2

o
for small constants

c1, c2, then with probability 1� �,

E
µ⇠⌘

E
x
J(⇡�̂,x)� E

µ⇠⌘

J(⇡⇤

µ
)  O(H2)✏�̂

be
+ ✏.

Discussion: As in the previous section, the number of
samples required for a new task after learning a represen-
tation is independent of the class � but depends only on
the value function class G and number of actions. Thus
representation learning is very useful when the class �
is much more complicated than G, i.e. R2 log(|�|) �

max{log(|G|), R2K}. In the above bounds, ✏�̂
be

is a Bell-
man error term. This type of error terms occur commonly
in the analysis of policy iteration type algorithms (Munos,
2005; Munos & Szepesvári, 2008). We remark that unlike in
Sun et al. (2019), our Bellman error is based on the Bellman
operator of the learned policy rather than the optimal policy.
Le et al. (2019) used a similar notion that they call inherent

Bellman evaluation error.

The proof of Theorem 6.1 follows a similar outline to that
of behavioral cloning. However we cannot use results from
(Maurer et al., 2016) directly since we are solving a min-
max game for each task. We provide the proof in Section B.

7. Experiments

In this section we present our experimental results. These
experiments have two aims:

1. Verify our theory that representation learning can reduce
the sample complexity in the new imitation learning task.

2. Test the power of representations learned via our frame-
work in a broader context. We wish to see if the learned
representation is useful beyond imitation learning and
can be used to learn a policy in the RL setting.

Since our goal of the experiment is to demonstrate the ad-
vantage of representation learning, we only consider the
standard baseline where for a task we learn a policy ⇡ from
the class ⇧ from scratch (without learning a representation
first using other tasks).

We conduct our experiments on two environments. Noisy-
CombinationLock is a variant of the standard Combination-
Lock environment (Kakade et al., 2003), we add additional
noisy features to confuse the agent. Different tasks involve
different combinations for the lock. SwimmerVelocity is a
modifed environment the Swimmer environment from Ope-
nAI gym (Brockman et al., 2016) with Mujoco simulator
(Todorov et al., 2012), and this environment is similar to the
one used in (Finn et al., 2017a). The goal in SwimmerVeloc-
ity is to move at a target velocity (speed and direction) and
the various tasks differ in target velocities. See Section D
for more details about these two environments.

7.1. Verification of Theory

We first present our experimental results to verify our theory.

Representation learning for Behavioral Cloning We
first test our theory on representation learning for behavioral
cloning. We learn the representation using Equation 5 on
the first T tasks. The specification of policy class and other
experiment details are in Section D.

The first plot in Figure 1 shows results on the NoisyCombi-
nationLock environment. We observe that in NoisyCombi-
nationLock, even one expert can help and more experts will
always improve the average return.

The second plot in Figure 1 shows results on the Swim-
merVelocity environment. Again, more experts always help.
Furthermore, we observe an interesting phenomenon. When
the number of experts is small (2 or 4), the baseline method
can outperform policies trained using representation learn-
ing, though the baseline method requires more samples to
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Figure 1. Experiments for verifying our theory. From left to right: Representation learning for behavioral cloning on NoisyCombina-
tionLock, representation learning for behavioral cloning on SwimmerVelocity, representation learning for observations alone setting on
NoisyCombinationLock, representation learning for observations alone setting on SwimmerVelocity, We compare imitation learning
based on learned representation using 1 - 16 experts to the baseline method (without representation learning). The error bars are calculated
using 5 seeds and indicate one standard deviation.

Figure 2. Experiments on Policy Optimization with representation trained by imitation learning. Left: Results on NoisyCombinationLock.
Right: Results on SwimmerVelocity. We compare policy optimization based on learned representation using 1 - 16 experts to the baseline
method (without representation learning).

achieve this. This behavior is actually expected according
to our theory. When the number of experts is small, we
may learn a sub-optimal representation and because we fix
this representation for training the policy, more samples for
the test task cannot make this policy better, whereas more
samples always make the baseline method better.

Representation Learning for Observations Alone Set-

ting We next verify our theory for the observations alone
setting. We learn the representation using Equation 7 on the
first T tasks. Again, the specification of policy class and
other experiment details are in Section D.

The results for NoisyCombinationLock and SwimmerVeloc-
ity are shown in the third and the fourth plots in Figure 1,
respectively. We observe similar phenomenon as the first
and the second plot. Increasing the number of experts al-
ways help and baseline method can outperform policies
trained using representation learning when the number of
trajectories for the test task is large.

We remark that comparing with the behavioral cloning set-
ting, the observations alone setting often has smaller return.
We suspect the reason is that Equation 7 considers the worst
case g in G, thus it prefers pessimistic policies. Also this set-

ting does not have access to the experts actions as opposed
to the behavioral cloning setting.

7.2. Policy optimization with representations trained

by imitation learning

We test whether the learned representation via imitation
learning is useful for the target reinforcement learning prob-
lem. We use Equation 5 to learn representations and we
use a proximal policy optimization method (Schulman et al.,
2017) to learn a linear policy over the learned representation.
See Section D for details.

The results are reported in Figure 2 and are very encouraging.
For both NoisyCombinationLock and SwimmerVelocity en-
vironments, we observe that when the number of experts
to learn the representation is small, the baseline method
enjoys better performance than the policies trained using
representation learning. On the other hand, as the number
of experts increases, the policy trained using representation
learning can outperform the baseline, sometime significantly.
This experiment suggests that representations trained via
imitation learning can be useful beyond imitation learning,
especially when the target task has few samples.
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8. Conclusion

The current paper proposes a bi-level optimization frame-
work to formulate and analyze representation learning for
imitation learning using multiple demonstrators. Theoreti-
cal guarantees are provided to justify the statistical benefit
of representation learning. Some preliminary experiments
verify the effectiveness of the proposed framework. In par-
ticular, in experiments, we find the representation learned
via imitation learning is also useful for policy optimization
in the reinforcement learning setting. We believe it is an
interesting theoretical question to explain this phenomenon.
Additionally, extending this bi-level optimization frame-
work to incorporate methods beyond imitation learning is
an interesting future direction. Finally, while we fix the
learned representation for a new task, once could instead
also fine-tune the representation given samples for a new
task and a theoretical analysis of this would be of interest.
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