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A. Proofs for Behavioral Cloning

We prove Theorem 5.1 in this section by proving Lemma 5.2,5.3. In this section, we abuse notation and define `µ(�, f) :=
`µ(⇡�,f ), where `µ is defined in Equation 4. We rewrite it here for convenience.

`µ(⇡) = E
(s,a)⇠µ

`(⇡(s), a) = E
(s,a)⇠µ

� log(⇡(s)a)

Let f̂�

x = argmin
f2F

`x(�, f) be the optimal task specific parameter for task µ by fixing representation �. Thus by our

definitions in Section 5, we get ⇡�,x = ⇡�,f̂
�

x . We assume w.l.o.g. that A = [K]. Remember that ` : 4(A)⇥A ! R is
defined as `(v, a) = � log(va) for some v 2 RK and va is the coordinate corresponding to action a 2 A = [K]. We define
a new function class and loss function that will be useful for our proofs

F
0 = {x ! Wx | W 2 RK⇥d, kWkF  1} (9)

`0(v, a) = � log(softmax(v)a),v 2 RK , a 2 A (10)

We basically offloaded the burden of computing softmax from the class F to the loss `0. We can convert any function
f 0

2 F
0 to one in F by transforming it to softmax(f 0). We now proceed to proving the lemmas

Proof of Lemma 5.2. We can then rewrite the various loss functions from Section 5 as follows
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E
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E
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`0(f̂ 0
�
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where f̂ 0
�

µ
2 argminf 02F 0 `x(�,softmax(f 0)). It is easy to show that both `0(·, a) `0(f 0(·), ·) are 2-lipschitz in their

arguments for every a 2 A and f 0
2 F

0. Using a slightly modified version of Theorem 2(i) from Maurer et al. (2016), we
get that for �̂ 2 argmin�2� L̂(�), with probability at least 1� � over the choice of X
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where Q0 = sup
y2Rdn\{0}

1
kyk

E sup
f2F 0

n,KP
i=1,j=1

�ijf 0(yi)j . First we discuss why we need a modified version of their theorem.

Our setting differs from the setting for Theorem 2 from Maurer et al. (2016) in the following ways

• F
0 is a class of vector valued function in our case, whereas in Maurer et al. (2016) it is assumed to contain scalar

valued. The only place in the proof of the theorem where this shows up is in the definition of Q0, which we have updated
accordingly.

• Maurer et al. (2016) assumes that `0(·, a) is 1-lipschitz for every a 2 A and that f 0(·) is L lipschitz for every f 0
2 F

0.
However the only properties that are used in the proof of Theorem 16 are that `0(·, a) is 1-lipschitz and that `0(f 0(·), a) is
L-lipschitz for every a 2 A, which is exactly the property that we have. Hence their proof follows through for our setting
as well.

Lemma A.1. Q0 := sup
y2Rdn\{0}

1
kyk

E sup
f2F 0

n,KP
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�ijf 0(yi)j 
p
K
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Proof.
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where we use Jensen’s inequality and linearity of expectation for (b) and properties of standard normal gaussian variables
for (c). For (a) we observe that sup

kWkF1

P
K

j=1hWj , Aji = sup
kWkF1hW,Ai = kAkF =

P
K

j=1 kAjk
2.

Plugging in Lemma A.1 into Equation 11 completes the proof.

We now proceed to prove the next lemma.

Proof of Lemma 5.3. Suppose L̄(�) = E
µ⇠⌘

E
x⇠µn

`µ(⇡�,x)  ✏. Consider a task µ ⇠ ⌘ and samples x ⇠ µn and let

✏µ(x) = `µ(⇡�,x) so that L̄(�) = E
µ⇠⌘

E
x⇠µn

✏µ(x). Since ⇡⇤

µ
is deterministic, we get

E
s⇠⌫⇤

µ

E
a⇠⇡�,x

I{a 6= ⇡⇤

µ
(s)} = E

s⇠⌫⇤
µ

[1� ⇡�,x(s)⇡⇤
µ
(s)]

 E
s⇠⌫⇤

µ

[� log(1� (1� ⇡�,x(s)⇡⇤
µ
(s)))]

= E
s⇠⌫⇤

µ

[� log(⇡�,x(s)⇡⇤
µ
(s))] = ✏µ(x)

where we use the fact that x  � log(1� x) for x < 1. for the first inequality. Thus by using Theorem 2.1 from Ross et al.
(2011), we get that Jµ(⇡�,x)� Jµ(⇡⇤)  H2✏µ(x). Taking expectation w.r.t. µ ⇠ ⌘ and x ⇠ µn completes the proof.

Proof of Theorem 5.1. By using Assumption 5.2, we are guaranteed the existence of ⇡µ 2 ⇧�
⇤

such that ⇡µ(s)�⇤
µ
(s) �

1� � for every s 2 S . Thus we can get an upper bound on L(�)
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µ
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 E
µ⇠⌘

E
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µ

� log(1� �)  2�

where in the last step we used � log(1� x)  2x for x < 1/2. Hence from Lemma 5.2 we get L̄(�̂)  2� + ✏gen,h, which
combining with Lemma 5.3 gives the desired result.
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B. Proofs for Observation-Alone

Before proving Theorem 6.1, we introduce the following loss functions, as we did in the proof sketch for the behavioral
cloning setting. We again abuse notation and define `µ(�, f) := `µ(⇡�,f ), where `µ is defined in Equation 6. Let
f̂�

x = argmin
f2F

`x(�, f) be the optimal task specific parameter for task µ by fixing representation �. As before, we define the

following

L̄h(�h) = E
µ⇠⌘

E
x⇠µ

n

h

`µ
h
(�, f̂�h

x )

We first show a guarantee on the performance of representations (�̂1, . . . , �̂H) as measured by the functions L̄1, . . . , L̄H .
Theorem B.1. With probability at least 1� � in the draw of X = (X(1), . . . ,X(H)), 8h 2 [H]

L̄h(�̂h)  min
�2�

Lh(�) + c✏gen,h(�) + c0✏gen,h(F ,G) + c00
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T
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h
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n
+ G(G(s̄h))

n

i
+ RK

p
K

p
n

We then connect the losses L̄h to the expected cost on the tasks.
Theorem B.2. Consider representations (�1, . . . ,�H) with L̄h(�h)  ✏h. Let x = (x1, . . . ,xH) be samples at different

levels for a newly sampled task µ ⇠ ⌘ such that xh ⇠ µn

h
. Let ⇡�,x = (⇡�1,x1 , . . . ,⇡�H ,xH ) be policies learned using the

samples, then under Assumption 6.1,

E
µ⇠⌘

E
x
J(⇡�,x)� E

µ⇠⌘

J(⇡⇤

µ
) 
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be
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E
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[✏⇡

�,x

be
] is the average inherent Bellman error.

It is easy to show that under Assumption 6.2, min�2� Lh(�) = 0 for every h 2 [H]. Thus from Theorem B.1, we get that

L̄h(�̂h)  ✏gen,h, where ✏gen,h = ✏gen,h(�) + ✏gen,h(F ,G) + c00
q

ln(H/�)
T

. Invoking Theorem B.2 on the representations
{�̂h} completes the proof.

B.1. Proof of Theorem B.1

Before proving the theorem, we discuss important lemmas. In yet another abuse of notation, we define `µ
h
(�, f, g) =
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Let m̂x(�) = min
f2F

max
g2G

ˆ̀x
h
(�, f, g) = ˆ̀x

h
(�, f̂�

x , ĝ
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We prove these lemmas later. First we prove Theorem B.1 using them. If �⇤
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where for the first part we use Lemma B.4, second part we use Lemma B.5, third part is upper bounded by 0 by optimality

of �̂h, fourth is upper bounded by O(
q
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T
) by Hoeffding’s inequality and fifth is bounded by the following argument:
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B.2. Proof of Theorem B.2

Consider a task µ. For simplicity of notation, we use ⇡h instead ⇡�h,xh , ⇡ instead of ⇡�,x. Let ⌫⇡
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Taking expectation wrt µ ⇠ ⌘ and x ⇠ µn completes the proof.

B.3. Proofs of Lemmas

In the following proofs, we will require the well known Slepian’s lemma which lets us exploit lipschitzness of functions in
gaussian averages

Lemma B.7 (Slepian’s lemma). Let {X}s2S and {Y }s2S be zero mean Gaussian processes such that

E(Xs �Xt)
2
 E(Ys � Yt)

2, 8s, t 2 S

Then

E sup
s2S

Xs  E sup
s2S

Ys

We now move on to proving earlier lemmas.
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Proof of Lemma B.3. Again we define F
0 as in Equation 9. Let `(v,↵,�, a) = Ksoftmax(v)a↵ � �, and let
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is 1-lipschitz, Using Theorem 8(i) from (Maurer et al., 2016), we get that
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where the gaussian average is defined as
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where sh = {si}ni=1, s̄h = {s̄i}ni=1, s̃h = {s̃i}ni=1. We will now use the lipschitzness of ` to get the following.

Claim B.8.
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This follows by writing
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and then using the per argument lipschitzness of ` described earlier and AM-RMS inequality proves the claim. We move on
to decoupling the gaussian average using Slepian’s lemma

Claim B.9. The gaussian average satisfies the following
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where the gaussian average for a class of functions is defined in Equation 2.
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Claim B.8 gives us that E
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)2 and then Slepian’s lemma will then give us that
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thus proving the claim. Furthermore, we notice that G(F 0(�(sh)))  Q0, where Q0 is defined in Lemma A.1. Thus
combining all of this, we get
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where we used Lemma A.1 for the last inequality. This completes the proof

Proof of Lemma B.4.
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where (a) follows by observing that maxg[✓(g) � ✓0(g)]  maxg ✓(g) �maxg ✓0(g) for any functions ✓, ✓0, for the first
inequality and (b) follows from Lemma B.3.

Proof of Lemma B.5. We will be using Slepian’s lemma Using Theorem 8(ii) from (Maurer et al., 2016), we get that
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where S = {(m̂(�)x1 , . . . , m̂(�)xT
) : � 2 �}. We bound the Gaussian average of S using Slepian’s lemma. Define two

Gaussian processes indexed by � as
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For x = {(sj , aj , s̃j , s̄j)}, consider 2 representations � and �0,
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where we prove the first inequality later, second inequality comes from g being upper bounded by 1 and by Cauchy-Schwartz
inequality, third inequality comes from the 2-lipschitzness of f .
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Thus by Slepian’s lemma, we get
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Plugging this into Equation 12 completes the proof. To prove the first inequality above, notice that
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ḡ(s)]|]

 �h + 2✏⇡
be



Provable Representation Learning for Imitation Learning via Bi-level Optimization

C. Data Set Collection Details

C.1. Dataset from trajectories

Given n expert trajectories for a task µ, for each trajectory ⌧ = (s1, a1, . . . , sH , aH) we can sample an h ⇠ U([H]) and
select the pair (sh, ah) from that trajectory8. This gives us n i.i.d. pairs {(sj , aj)}nj=1 for the task µ. We collect this for T
tasks and get datasets x(1), . . . ,x(T ).

C.2. Dataset from trajectories and interaction

Given 2n expert trajectories for a task µ, we use first n trajectories to get independent samples from the distributions
⌫⇤1,µ, . . . , ⌫

⇤

H,µ
respectively for the s̄ states in the dataset. Using the next n trajectories, we get samples from ⌫⇤0,µ, . . . , ⌫

⇤

H�1,µ
for the s states in the dataset, and for each such state we uniformly sample an action a from A and then get a state s̃ from Ps,a

by resetting the environment to s and playing action a. We collect this for T tasks and get datasets X(i) = {x(i)
1 , . . . ,x(i)

H
}

for every i 2 [T ], where each dataset x(i)
h

a set of n tuples obtained level h. Rearranging, we can construct the datasets
Xh = {x(1)

h
, . . . ,x(T )

h
}.

D. Experiment Details

For the policy optimization experiments, we use 5 random seeds to evaluate our algorithm. We show the results for 1 test
environment as the results for other test environments are also showing the algorithm works but the magnitude of reward
might be different, so we do not average the numbers over different test environments.

Environment Setup We first describe the construction of the NoisyCombinationLock environment. The state space is
R50. Each state s is in the form of [snoise, sindex, sreal], where snoise 2 R10 is sampled from N (0, wI), sindex 2 R10 is an
one-hot vector indicating the current step and sreal 2 R10 is sampled from N (0, wI). The constant w is set to

p
0.05 such

that ksrealk has expected norm of 1. The action space is {�1, 1}. Each MDP is parametrized by a vector c
⇤
2 {�1, 1}20,

which determines the optimal action sequence. We use different a
⇤ to define different environments. The transition model is

that: Let s = [snoise, sindex, sreal] be the current state and a be the action. If sindex = ei for some i and c
⇤

i
asreali > 0, then

s0index = ei+1. Otherwise s0index will be all zero. s0noise and s0real will always be sampled from the Gaussian distribution. The
reward is 1 if and only if sindex is not a zero vector, otherwise it’s 0. Note that once sindex is all zero, it will not change and
the reward will always be 0. The maximum horiozn is set to 20 and therefore, the optimal policy has return 20. The initial
sindex is always e1.

The SwimmerVelocity environment is similar to goal velocity experiments in (Finn et al., 2017a), and is based on the
Swimmer environment in OpenAI Gym (Brockman et al., 2016). The only difference is the reward function, which is now
defined by r(s) = |v � vgoal|, where v is the current velocity of the agent and vgoal is the goal velocity. The state space is
still R8. The original action space in Swimmer is R2, and we discretize the action space, such that each entry can be only
one of {�1,�0.5, 0, 0.5, 1}. We also reduce the maximum horizon from 1000 to 50.

Experts For NoisyCombinationLock, the demonstrations are generated by the optimal policy, which has access to the
hidden vector c

⇤. For SwimmerVelocity, we trained the experts for 1 million steps by PPO (Schulman et al., 2017) to make
sure it converges with code from Dhariwal et al. (2017).

Architecture For all of our experiments in Figure 1 and 2, the function � is parametrized by �(x) = � (Wx+ b) where
W, b are learnable parameters of a linear layer and � (·) is the ReLU activation function. However, the number of hidden
units might vary. Note that in the experiments of verifying our theory (Figure 1), we train a policy (and the representation)
at each step so the dimension of representation is smaller. See Table 1 for our choice of hyperparameters.

Optimization All optimization, including training �,⇡ and behavior cloning baseline, is done by Adam (Kingma & Ba,
2014) with learning rate 0.001 until it converges, except NoisyCombinationLock in policy optimization experiments in
Figure 2 where we use learning rate 0.01 for faster convergence. To solve Equation equation 5 and equation 7, we build a

8In practice one can use all pairs from all trajectories, even though the samples are not strictly i.i.d.
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BC (Figure 1, left two) OA (Figure 1, right two) RL (Figure 2)
NoisyCombinationLock 5 5 40

SwimmerVelocity 100 20 100

Table 1. Number of hidden units for different experiments.

joint loss over � and all f ’s in each task,

L(�, f1, . . . , fT ) =
1

nT

TX

t=1

nX

j=1

� log(⇡�,ft(st
j
)at

j

). (13)

Then we minimize L(�, f1, . . . , fT ) and obtain the optimal �.


