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Abstract 
Machine learning (ML) systems often encounter 
Out-of-Distribution (OoD) errors when dealing 
with testing data coming from a distribution dif-
ferent from training data. It becomes important 
for ML systems in critical applications to ac-
curately quantify its predictive uncertainty and 
screen out these anomalous inputs. However, 
existing OoD detection approaches are prone to 
errors and even sometimes assign higher likeli-
hoods to OoD samples. Unlike standard learning 
tasks, there is currently no well established guid-
ing principle for designing OoD detection archi-
tectures that can accurately quantify uncertainty. 
To address these problems, we first seek to iden-
tify guiding principles for designing uncertainty-
aware architectures, by proposing Neural Ar-
chitecture Distribution Search (NADS). NADS 
searches for a distribution of architectures that 
perform well on a given task, allowing us to 
identify common building blocks among all 
uncertainty-aware architectures. With this for-
mulation, we are able to optimize a stochastic 
OoD detection objective and construct an ensem-
ble of models to perform OoD detection. We 
perform multiple OoD detection experiments and 
observe that our NADS performs favorably, with 
up to 57% improvement in accuracy compared to 
state-of-the-art methods among 15 different test-
ing configurations. 

1. Introduction 
Detecting anomalous data is crucial for safely applying ma-
chine learning in autonomous systems for critical applica-
tions and for AI safety (Amodei et al., 2016). Such anoma-
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lous data can come in settings such as in autonomous driv-
ing (Kendall & Gal, 2017; NHTSA, 2017), disease mon-
itoring (Hendrycks & Gimpel, 2016), and fault detection 
(Hendrycks et al., 2019b). In these situations, it is impor-
tant for these systems to reliably detect abnormal inputs so 
that their occurrence can be overseen by a human, or the 
system can proceed using a more conservative policy. 

The widespread use of deep learning models within these 
autonomous systems have aggravated this issue. De-
spite having high performance in many predictive tasks, 
deep networks tend to give high confidence predictions on 
Out-of-Distribution (OoD) data (Goodfellow et al., 2015; 
Nguyen et al., 2015). Moreover, commonly used OoD 
detection approaches are prone to errors and even assign 
higher likelihoods to samples from other datasets (Lee 
et al., 2018; Hendrycks & Gimpel, 2016). 

Unlike common machine learning tasks such as image clas-
sification, segmentation, and speech recognition, there are 
currently no well established guidelines for designing ar-
chitectures that can accurately screen out OoD data and 
quantify its predictive uncertainty. Such a gap makes Neu-
ral Architecture Search (NAS) a promising option to ex-
plore the better design of uncertainty-aware models (Elsken 
et al., 2018). NAS algorithms attempt to find an optimal 
neural network architecture for a specific task. Existing ef-
forts have primarily focused on searching for architectures 
that perform well on image classification or segmentation. 
However, it is unclear whether architecture components 
that are beneficial for image classification and segmenta-
tion models would also lead to better uncertainty quantifi-
cation (UQ) and thereafter be effective for OoD detection. 

Because of this, it is necessary to tailor the search objec-
tive in order to find the architectures that can accurately 
detect OoD data. However, designing an optimization ob-
jective that leads to uncertainty-aware models is also not 
straightforward. With no access to labels for OoD data, 
unsupervised/self-supervised generative models maximiz-
ing the likelihood of in-distribution data become the pri-
mary tools for UQ (Hendrycks et al., 2019a). However, 
these models counter-intuitively assign high likelihoods to 
OoD data (Nalisnick et al., 2019a; Choi & Jang, 2018; 
Hendrycks et al., 2019a; Shafaei et al.). Because of this, 
maximizing the log-likelihood is inadequate for OoD de-
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tection. On the other hand, Choi & Jang (2018) proposed 
using the Widely Applicable Information Criterion (WAIC) 
(Watanabe, 2013), a penalized likelihood score, as the OoD 
detection criterion, showing that it was robust for OoD de-
tection. However, the score was approximated using an en-
semble of models that was trained on maximizing the likeli-
hood and did not directly optimize the WAIC score. In line 
with this, previous work on deep uncertainty quantifica-
tion show that ensembles can help calibrate OoD classifier 
based methods, as well as improve OoD detection perfor-
mance of likelihood estimation models (Lakshminarayanan 
et al., 2017). Based on these findings, one might consider 
finding a distribution of well-performing architectures for 
uncertainty awareness, instead of searching for a single 
best performing architecture, as is typically done in exist-
ing NAS methods. 

To this end, we propose Neural Architecture Distribution 
Search (NADS) to identify common building blocks that 
naturally incorporate model uncertainty quantification and 
compose good OoD detection models. NADS searches for 
a distribution of well-performing architectures, instead of 
a single best architecture, by formulating the architecture 
search problem as a stochastic optimization problem. We 
optimize the WAIC score of the architecture distribution, 
a score that was shown to be robust towards estimating 
model uncertainty. By taking advantage of weight sharing 
between different architectures, as well as through a par-
ticular parameterization of the architecture distribution, the 
discrete search problem for NADS can be efficiently solved 
by a continuous relaxation (Xie et al., 2018; Chang et al., 
2019). Using the learned posterior architecture distribu-
tion, we construct a Bayesian ensemble of deep models to 
perform OoD detection, demonstrating state-of-the-art per-
formance in multiple OoD detection experiments. Specifi-
cally, our main contributions with NADS include: 

• NADS learns a posterior distribution on the architec-
ture search space to enable UQ for better OoD detec-
tion, instead of providing a maximum-likelihood point 
estimate to the best model. 

• We design a novel generative search space that is in-
spired by Glow (Kingma & Dhariwal, 2018), which is 
different from previous NAS methods. 

• We use the WAIC score as the reward to guide the ar-
chitecture search and provide a method to estimate this 
score for architecture search. 

• NADS yields state-of-the-art performance in multiple 
OoD detection experiments, making likelihood estima-
tion based OoD detection competitive against multi-
class classifier based approaches. Notably, our method 
yields consistent improvements in accuracy among 
15 different in-distribution – out-of-distribution test-
ing pairs, with an improvement of up to 57% accuracy 

against existing state-of-the-art methods. 

2. Background 
2.1. Neural Architecture Search 

Neural Architecture Search (NAS) algorithms aim to auto-
matically discover an optimal neural network architecture 
instead of using a hand-crafted one for a specific task. Pre-
vious work on NAS has achieved successes in image classi-
fication (Pham et al., 2018), image segmentation (Liu et al., 
2019), object detection (Ghiasi et al., 2019), structured pre-
diction (Chen et al., 2018), and generative adversarial net-
works (Gong et al., 2019). However, there has been no 
NAS algorithm developed for uncertainty quantificaton and 
OoD detection. 

NAS consists of three components: the proxy task, the 
search space, and the optimization algorithm. Prior work 
in specifying the search space either searches for an en-
tire architecture directly, or searches for small cells and ar-
range them in a pre-defined way. Optimization algorithms 
that have been used for NAS include reinforcement learn-
ing (Baker et al., 2017; Zoph et al., 2018; Zhong et al., 
2018; Zoph & Le, 2016), Bayesian optimization (Jin et al., 
2018), random search (Chen et al., 2018), Monte Carlo tree 
search (Negrinho & Gordon, 2017), and gradient-based op-
timization methods (Liu et al., 2018b; Ahmed & Torresani, 
2018; Xie et al., 2018; Chang et al., 2019). To efficiently 
evaluate the performance of discovered architectures and 
guide the search, the design of the proxy task is critical. 
Existing proxy tasks include leveraging shared parameters 
(Pham et al., 2018), predicting performance using a surro-
gate model (Liu et al., 2018a), and early stopping (Zoph 
et al., 2018; Chen et al., 2018). 

To the best of our knowledge, all existing NAS algorithms 
seek a single best performing architecture. In comparison, 
searching for a distribution of architectures allows us to 
analyze the common building blocks that all of the candi-
date architectures have. Moreover, this technique can also 
complement ensemble methods by creating a more diverse 
set of models tailored to optimize the ensemble objective, 
an important ingredient for deep uncertainty quantification 
(Lakshminarayanan et al., 2017; Choi & Jang, 2018). 

2.2. Uncertainty Quantification and OoD Detection 

Prior work on uncertainty quantification and OoD detec-
tion for deep models can be divided into model-dependent 
(Lakshminarayanan et al., 2017; Gal & Ghahramani, 2016; 
Boluki et al., 2020; Liang et al., 2017), and model-
independent techniques (Dinh et al., 2016; Germain et al., 
2015; Oord et al., 2016). Model-dependent techniques aim 
to yield confidence measures p(y|x) for a model’s predic-
tion y when given input data x. However, a limitation 
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of model-dependent OoD detection is that they may dis-
card information regarding the data distribution p(x) when 
learning the task specific model p(y|x). This could hap-
pen when certain features of the data are irrelevant for the 
predictive task, causing information loss regarding the data 
distribution p(x). Moreover, existing methods to calibrate 
model uncertainty estimates assume access to OoD data 
during training (Lee et al., 2018; Hendrycks et al., 2019b). 
Although the OoD data may not come from the testing dis-
tribution, this approach assumes that the structure of OoD 
data is known ahead of time, which can be incorrect in set-
tings such as active/online learning where new training dis-
tributions are regularly encountered. 

On the other hand, model-independent techniques seek 
to estimate the likelihood of the data distribution p(x). 
These techniques include Variational Autoencoders (VAEs) 
(Kingma & Welling, 2013), Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014), autoregressive 
models (Germain et al., 2015; Oord et al., 2016), and in-
vertible flow-based models (Dinh et al., 2016; Kingma & 
Dhariwal, 2018). Among these techniques, invertible mod-
els offer exact computation of the data likelihood, making 
them attractive for likelihood estimation. Moreover, they 
do not require OoD samples during training, making them 
applicable to any OoD detection scenario. Thus in this pa-
per, we focus on searching for invertible flow-based archi-
tectures, though the presented techniques are also applica-
ble to other likelihood estimation models. 

Along this direction, recent work has discovered that 
likelihood-based models can assign higher likelihoods to 
OoD data compared to in-distribution data (Nalisnick et al., 
2019a; Choi & Jang, 2018) (see Figure 9 of the supplemen-
tary material for an example). One hypothesis for such a 
phenomenon is that most data points lie within the typi-
cal set of a distribution, instead of the region of high like-
lihood (Nalisnick et al., 2019b). Thus, Nalisnick et al. 
(2019b) recommend to estimate the entropy using multi-
ple data samples to screen out OoD data instead of using 
the likelihood. Other uncertainty quantification formula-
tions can also be related to entropy estimation (Choi & 
Jang, 2018; Lakshminarayanan et al., 2017). However, it 
is not always realistic to test multiple data points in practi-
cal data streams, as testing data often come one sample at 
a time and are never well-organized into in-distribution or 
out-of-distribution groups. 

With this in mind, model ensembling becomes a natural 
consideration to formulate entropy estimation. Instead of 
computing the entropy by averaging over multiple data 
points, model ensembles produce multiple estimates of the 
data likelihood, thus “augmenting” one data point into as 
many data points as needed to reliably estimate the entropy. 
However, care must be taken to ensure that the model en-

semble produces likelihood estimates that agree with one 
another on in-distribution data, while also being diverse 
enough to discriminate OoD data likelihoods. 

In what follows, we propose NADS as a method that can 
identify distributions of architectures for uncertainty quan-
tification. Using a loss function that accounts for the diver-
sity of architectures within the distribution, NADS allows 
us to construct an ensemble of models that can reliably de-
tect OoD data. 

3. Neural Architecture Distribution Search 
Putting Neural Architecture Distribution Search (NADS) 
under a common NAS framework (Elsken et al., 2018), we 
break down our search formulation into three main compo-
nents: the proxy task, the search space, and the optimiza-
tion method. Specifying these components for NADS with 
the ultimate goal of uncertainty quantification for OoD de-
tection is not immediately obvious. For example, naively 
using data likelihood maximization as a proxy task would 
run into the issues pointed out by Nalisnick et al. (2019a), 
with models assigning higher likelihoods to OoD data. On 
the other hand, the search space needs to be large enough to 
include a diverse range of architectures, yet still allowing a 
search algorithm to traverse it efficiently. In the following 
sections, we motivate our decision on these three choices 
and describe these components for NADS in detail. 

3.1. Proxy Task 

The first component of NADS is the training objective that 
guides the neural architecture search. Different from ex-
isting NAS methods, our aim is to derive an ensemble of 
deep models to improve model uncertainty quantification 
and OoD detection. To this end, instead of searching for ar-
chitectures that maximize the likelihood of in-distribution 
data, which tends to cause models to incorrectly assign 
high likelihoods to OoD data, we instead seek architec-
tures that can perform entropy estimation by maximizing 
the Widely Applicable Information Criteria (WAIC) of the 
training data. The WAIC score is a Bayesian adjusted met-
ric to calculate the marginal likelihood (Watanabe, 2013). 
This metric has been shown by Choi & Jang (2018) to 
be robust towards the pitfall causing likelihood estimation 
models to assign high likelihoods to OoD data. The score 
is defined as follows: � � 

WAIC(X) = Eα∼p(α) Ep(x)[log p(x|α)] � � (1) 
− Vα∼p(α) Ep(x)[log p(x|α)] 

Here, E[·] and V[·] denote expectation and variance respec-
tively, which are taken over all architectures α sampled 
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Figure 1. Search space of a single block in the architecture 

from the posterior architecture distribution p(α). Such a 
strategy captures model uncertainty in a Bayesian fashion, 
improving OoD detection while also converging to the true 
data likelihood as the number of data points increases (Gel-
man et al., 2014). Intuitively, minimizing the variance of 
training data likelihoods allows its likelihood distribution 
to remain tight which, by proxy, minimizes the overlap 
of in-distribution and out-of-distribution likelihoods, thus 
making them separable. 

Under this objective function, we search for an optimal dis-
tribution of network architectures p(α) by deriving the cor-
responding parameters that characterize p(α). Because the 
score requires aggregating the results from multiple archi-
tectures α, optimizing such a score using existing search 
methods can be intractable, as they typically only consider 
a single architecture at a time. Later, we will show how to 
circumvent this problem in our optimization formulation. 

3.2. Search Space 

NADS constructs a layer-wise search space with a pre-
defined macro-architecture, where each layer can have a 
different architecture component. Such a search space has 
been studied by Zoph & Le (2016); Liu et al. (2018b); Real 
et al. (2019), where it shows to be both expressive and scal-
able/efficient. 

The macro-architecture closely follows the Glow architec-
ture presented in Kingma & Dhariwal (2018). Here, each 
layer consists of an actnorm, an invertible 1 × 1 convolu-
tion, and an affine coupling layer. Instead of pre-defining 
the affine coupling layer, we allow it to be optimized by 
our architecture search. The search space can be viewed in 
Figure 1. Here, each operational block of the affine cou-
pling layer is selected from a list of candidate operations 
that include 3 × 3 average pooling, 3 × 3 max pooling, 
skip-connections, 3 × 3 and 5 × 5 separable convolutions, 

3 × 3 and 5 × 5 dilated convolutions, identity, and zero. We 
choose this search space to answer the following questions 
towards better architectures for OoD detection: 

• What topology of connections between layers is best 
for uncertainty quantification? Traditional likelihood 
estimation architectures focus only on feedforward 
connections without adding any skip-connection struc-
tures. However, adding skip-connections may improve 
optimization speed and stability. 

• Are more features/filters better for OoD detection? 
More feature outputs of each layer should lead to a 
more expressive model. However, if many of those fea-
tures are redundant, it may slow down learning, overfit-
ting nuisances and resulting in sub-optimal models. 

• Which operations are best for OoD detection? Intu-
itively, operations such as max/average pooling should 
not be preferred, as they discard information of the 
original data point “too aggressively”. However, this 
intuition remains to be confirmed. 

3.3. Optimization 

Having specified our proxy task and search space, we now 
describe our optimization method for NADS. Specifically, 
let A denote our discrete architecture search space and 
α ∈ A be an architecture in this space. Let lθ∗ (α) be 
the loss function of architecture α with its parameters set 
to θ∗ such that it satisfies θ∗ = arg minθ l(θ|α) for some 
loss function l(·). We are interested in finding a distribution 
pφ(α) parameterized by φ that minimizes the expected loss 
of an architecture α sampled from it. We denote this loss 
function as L(φ) = Eα∼pφ(α)[lθ∗ (α)]. For our NADS, this 
loss function is the negative WAIC score of in-distribution 
data L(φ) = −WAIC(X). 

Several difficulties arise when naively attempting to opti-
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Figure 2. Summary of our architecture search findings: the most likely architecture structure for each block K found by NADS. 

mize this setup. Firstly, the objective function involves 
computing an expectation and variance over all possible 
discrete architectures. We alleviate this problem by approx-
imating the WAIC objective through Monte Carlo sam-
pling. Specifically, we can sample M architectures from 
pφ(α) and approximate the WAIC score expectation and 
variance terms as " 

N MX X 
WAIC(X) ≈ log p(xi|αj )− 

i=1 j=1 � M �# 
M �X �2 X 

(log p(xi|αj ))
2 − log p(xi|αj ) 

j=1 j=1 

(2) 

Despite this approximation, optimizing (2) with respect to 
pφ(α), a distribution over high-dimensional discrete ran-
dom variables α, is still intractable, as we would still 
need to search for the optimal network parameters for each 
newly sampled architecture. To circumvent this, we utilize 
a continuous relaxation for the discrete search space, allow-
ing us to approximately optimize the discrete architectures 
through backpropagation and weight sharing between com-
mon architecture blocks, as similarly implemented by Xie 
et al. (2018) and Chang et al. (2019). 

For clarity of exposition, we first focus on sampling an ar-
chitecture with a single hidden layer. In this setting, we 
intend to find a probability vector φ = [φ1, . . . , φK ] with 
which we randomly pick a single operation from a list of K 
different operations [o1, . . . , oK ]. Let b = [b1, . . . , bK ] de-
note the random categorical indicator vector sampled from 
φ, where bi is 1 if the ith operation is chosen, and zero 
otherwise. Note that b is equivalent to the discrete archi-
tecture variable α in this setting. With this, we can write 
the random output y of the hidden layer given input x as 

KX 
y = bi · oi(x). 

i=1 

Gumbel-Softmax reparameterization (Gumbel, 1954; Mad-
dison et al., 2014) as follows: 

exp((log(φi) + gi)/τ ) 
b̃i = Pk for i = 1, . . . , K. 

exp((log(φi) + gi)/τ ) j=1 

Here, g1 . . . gk ∼ − log(− log(u)) where u ∼ Unif(0, 1), 
and τ is a temperature parameter. For low values of τ , b ˜

approaches a sample of a categorical random variable, re-
covering the original discrete problem. While for high val-
ues, b̃ will equally weigh the K operations (Jang et al., 
2016). Using this, we can compute backpropagation by ap-
proximating the gradient of the discrete architecture α with 
the gradient of the continuously relaxed categorical random 
variable b̃, as rθ,φα = rθ,φb ≈ rθ,φ b̃. With this back-
propagation gradient defined, generalizing the above set-
ting to architectures with multiple layers simply involves 
recursively applying the above gradient relaxation to each 
layer. We can gradually remove the continuous relaxation 
and sample discrete architectures by annealing the tem-
perature parameter τ , allowing us to perform architecture 
search without using a validation set. 

3.4. Search Results 

We applied our architecture search on five datasets: CelebA 
(Liu et al.), CIFAR-10, CIFAR-100, (Krizhevsky et al., 
2009), SVHN (Netzer et al., 2011), and MNIST (LeCun). 
In all experiments, we used the Adam optimizer with a 
fixed learning rate of 1 × 10−5 with a batch size of 4 
for 10000 iterations. We approximate the WAIC score 
using M = 4 architecture samples, and set the tempera-
ture parameter τ = 1.5. The number of layers and latent 
dimensions is the same as in the original Glow architec-
ture (Kingma & Dhariwal, 2018), with 4 blocks and 32 
flows per block. Images were resized to 64 × 64 as in-
puts to the model. With this setup, we found that we are 
able to identify neural architectures in less than 1 GPU day 
on an Nvidia RTX 2080 Ti graphics card. 

To make optimization tractable, we relax the discrete Our findings are summarized in Figure 2, while more sam-
mask b to be a continuous random variable b ˜ using the ples from our architecture search can be seen in Section 3 of 
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Figure 3. ROC and PR curve comparison of the most challenging evaluation setups for our NADS ensemble. Here, ‘Baseline’ denotes 
the method proposed by (Hendrycks & Gimpel, 2016). Subcaptions denote training-testing set pairs. Additional figures are provided in 
Section 7 of the supplementary material. 

the supplementary material. Observing the most likely ar-
chitecture components found on all of the datasets, a num-
ber of notable observations can be made: 

• The first few layers have a simple feedforward struc-
ture, with either only a few convolutional operations or 
average pooling operations. On the other hand, more 
complicated structures with skip connections are pre-
ferred in the deeper layers of the network. We hypothe-
size that in the first few layers, simple feature extractors 
are sufficient to represent the data well. Indeed, recent 
work on analyzing neural networks for image data have 
shown that the first few layers have filters that are very 
similar to SIFT features or wavelet bases (Zeiler & Fer-
gus, 2014; Lowe, 1999). 

• The max pooling operation is almost never selected by 
the architecture search. This confirms our hypothesis 
that operations that discard information about the data 
is unsuitable for OoD detection. However, to our sur-
prise, average pooling is preferred in the first layers 
of the network. We hypothesize that average pooling 
has a less severe effect in discarding information, as it 
can be thought of as a convolutional filter with uniform 
weights. 

• The deeper layers prefer a more complicated structure, 
with some components recovering the skip connection 
structure of ResNets (He et al., 2016). We hypothesize 
that deeper layers may require more skip connections in 
order to feed a strong signal for the first few layers. This 
increases the speed and stability of training. Moreover, 
a larger number of features can be extracted using the 
more complicated architecture. 

Interestingly enough, we found that the architectures that 
we sample from our NADS perform well in image genera-
tion without further retraining, as shown in Section 4 of the 
supplementary material. 

4. Bayesian Model Ensemble of Neural 
Architectures 

4.1. Model Ensemble Formulation 

Using the architectures sampled from our search, we cre-
ate a Bayesian ensemble of models to estimate the WAIC 
score. Each model of our ensemble is weighted accord-
ing to its probability as in Hoeting et al. (1999). The log-
likelihood estimate as well as the variance of this model 
ensemble is given as follows: X 

Eα∼pφ(α)[log p(x)] = pφ(α) log p(x|α) 
α∈A 

MX pφ(αi) ≈ PM log p(x|αi) 
pφ(αj ) i=1 j=1 

M � X pφ(αi) Vα∼pφ(α)[log p(x)] ≈ PM V[log p(x|αi)] 
pφ(αj ) i=1 j=1 � 

+ (log p(x|αi))
2 − Eα∼pφ(α)[log p(x)]2 

Intuitively, we are weighing each member of the ensemble 
by their posterior architecture distribution pφ(α), a mea-
sure of how likely each architecture is in optimizing the 
WAIC score. We note that for our setup, V[log pαi (x)] is 
zero for each model in our ensemble; however, for mod-
els which do have variance estimates, such as models that 
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Figure 4. Effect of ensemble size to the distribution of WAIC scores estimated by model ensembles trained on different datasets. Larger 
ensemble sizes causes the WAIC score likelihood estimate of OoD data to be lower. Additional histograms for different ensemble sizes 
in Section 6 of the supplementary material are with higher resolution. 

incorporate variational dropout (Gal et al., 2017; Boluki 
et al., 2020; Kingma et al., 2015; Gal & Ghahramani, 
2016), this term may be nonzero. Using these estimates, we 
are able to approximate the WAIC score in Equation (1). 

4.2. Ensemble Results 

We trained our proposed method on 4 datasets Din: 
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN 
(Netzer et al., 2011), and MNIST (LeCun). In all exper-
iments, we randomly sampled an ensemble of M = 5 
models from the posterior architecture distribution pφ∗ (α) 
found by NADS. We then retrained each architecture for 
150000 iterations using Adam with a learning rate of 1 × 
10−5 . 

We first show the effects of increasing the ensemble size 
in Figure 4 and Section 6 of the supplementary material. 
Here, we can see that increasing the ensemble size causes 
the OoD WAIC scores to decrease as their correspond-
ing histograms shift away from the training data WAIC 
scores, thus improving OoD detection performance. Next, 
we compare our ensemble search method against a tradi-
tional ensemble method that uses a single Glow (Kingma & 
Dhariwal, 2018) architecture trained with multiple random 
initializations. We find that our method is superior for OoD 
detection compared to the traditional ensemble method, as 
shown in Table 1 of the supplementary material. 

We evaluate our NADS ensemble OoD detection method 
for screening out samples from datasets that the original 
model was not trained on (Dout). For SVHN, we used the 

Texture, Places, LSUN, and CIFAR-10 as the OoD dataset. 
For CIFAR-10 and CIFAR-100, we used the SVHN, Tex-
ture, Places, LSUN, CIFAR-100 (CIFAR-10 for CIFAR-
100) datasets, as well as the Gaussian and Rademacher 
distributions as the OoD dataset. Finally, for MNIST, we 
used the not-MNIST, F-MNIST, and K-MNIST datasets. 
We compared our method against a baseline method that 
uses maximum softmax probability (MSP) (Hendrycks & 
Gimpel, 2016), as well as two popular OoD detection meth-
ods: ODIN (Liang et al., 2017) and Outlier Exposure (OE) 
(Hendrycks et al., 2019b). 

ODIN attempts to calibrate the uncertainty estimates of an 
existing model by reweighing its output softmax score us-
ing a temperature parameter and through random pertur-
bations of the input data. For this, we use DenseNet as the 
base model as described in Liang et al. (2017). On the other 
hand, OE models are trained to minimize a loss regularized 
by an outlier exposure loss term, a loss term that requires 
access to OoD samples, although they are not required to 
be from the tested OoD distribution. 

We also show the improvements made by our design of the 
search space and the optimization objective by comparing 
our method to applying architecture search without taking 
these factors into consideration. To do this, we applied neu-
ral architecture search with the goal of maximizing classi-
fication accuracy on in-distribution data. Here, our search 
formulation closely follows the Differentiable Architecture 
Search (DARTS) method (Liu et al., 2018b). After identi-
fying the optimal architecture, we screen out OoD data us-
ing the maximum softmax probability (MSP) (Hendrycks 
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Table 1. OoD detection results on various evaluation setups. We compared our method with MSP (Baseline) (Hendrycks & Gimpel, 
2016), NAS following the DARTS search design (DARTS) (Liu et al., 2018b), and Outlier Exposure (OE) (Hendrycks et al., 2019b). 

Din Dout 
FPR% at TPR 95% AUROC% AUPR% 

Base DARTS OE Ours Base DARTS OE Ours Base DARTS OE Ours 

T not-MNIST 10.3 23.07 0.25 0.00 97.2 94.62 99.86 100 97.4 96.81 99.86 100 

M
N

IS F-MNIST 61.1 8.29 0.99 0.00 88.8 97.59 99.83 100 90.8 97.06 99.83 100 
K-MNIST 29.6 9.37 0.03 0.76 93.6 97.39 97.60 99.80 94.3 96.90 97.05 99.84 

Texture 33.9 23.43 1.04 0.07 89.3 94.25 99.75 99.26 86.8 80.98 99.09 97.75 
Places365 22.2 16.17 0.02 0.00 92.8 95.74 99.99 99.99 99.7 99.57 99.99 99.99 

SV
H

N
 

LSUN 26.8 16.16 0.05 0.02 88.2 95.44 99.98 99.99 90.4 87.36 99.95 99.99 
CIFAR10 23.2 16.82 3.11 0.37 91.1 95.36 99.26 99.92 91.9 87.45 97.88 99.83 

SVHN 30.5 19.47 8.41 17.05 89.5 93.58 98.20 97.65 94.9 96.25 97.97 99.07 
Texture 39.8 24.25 14.9 0.25 87.7 92.18 96.7 99.81 79.8 83.51 94.39 99.86 

10
 

Places365 36.0 41.64 19.07 0.00 88.1 87.65 95.41 100 99.5 99.42 95.32 100 
LSUN 14.6 30.02 15.20 0.44 95.4 90.11 96.43 99.83 96.1 86.88 96.01 99.89 

C
IF

A
R

CIFAR100 33.1 35.72 26.59 36.36 88.7 88.43 92.93 91.23 87.7 72.95 92.13 91.60 
Gaussian 6.3 11.67 0.7 0.00 97.7 95.55 99.6 100 93.6 87.46 94.3 100 

Rademacher 6.9 10.73 0.5 0.00 96.9 95.26 99.8 100 89.7 84.10 97.4 100 
SVHN 46.2 53.81 42.9 45.92 82.7 79.30 86.9 94.35 91.3 88.52 80.21 96.01 
Texture 74.3 62.49 55.97 0.42 72.6 75.00 84.23 99.76 60.1 57.77 75.76 99.81 0 

10 Places365 63.2 64.91 57.77 0.012 76.2 75.72 82.65 99.99 98.9 98.78 81.47 99.99 
LSUN 69.4 56.01 57.5 38.85 83.7 77.57 83.4 90.65 70.1 72.94 77.85 90.61 

C
IF

A
R

CIFAR10 62.5 61.62 59.96 45.62 75.8 76.15 77.53 83.27 74.0 71.41 72.82 81.48 
Gaussian 29.3 26.70 12.1 0.00 86.5 87.82 95.7 100 66.1 69.05 71.1 100 

Rademacher 59.4 16.19 17.1 0.00 51.7 92.05 93.0 100 32.7 73.02 56.9 100 

& Gimpel, 2016), a score that gives classification architec-
tures the ability to screen out OoD data. 

As shown in Tables 1 and 2 in the supplementary material, 
our method outperforms the baseline MSP and ODIN sig-
nificantly while performing better or comparably with OE, 
which requires OoD data during training, albeit not from 
the testing distribution. Notably, our method was able to 
achieve an improvement of 57% FPR on the CIFAR100 – 
Places365 setup compared to OE. Comparing the original 
architecture used by MSP and the identified architecture by 
DARTS, we can see that there is an improvement in OoD 
detection performance, however, because the architectures 
are not tailored to perform OoD detection, our NADS was 
also able to outperform it in our experiments. 

We plot Receiver Operating Characteristic (ROC) and 
Precision-Recall (PR) curves in Figure 3 and Section 7 of 
the supplementary material for more comprehensive com-
parison. In particular, our method consistently achieves 
high area under PR curve (AUPR%), showing that we are 
especially capable of screening out OoD data in settings 
where their occurrence is rare. Such a feature is impor-
tant in situations where anomalies are sparse, yet have dis-
astrous consequences. Notably, ODIN underperforms in 
screening out many OoD datasets, despite being able to 
reach the original reported performance when testing on 
LSUN using a CIFAR10 trained model. This suggests that 
ODIN may not be stable for use on different anomalous 
distributions. 

5. Conclusion 
Unlike NAS for common learning tasks, specifying a 
model and an objective to optimize for uncertainty esti-
mation and outlier detection is not straightforward. More-
over, using a single model may not be sufficient to ac-
curately quantify uncertainty and successfully screen out 
OoD data. We developed a novel neural architecture dis-
tribution search (NADS) formulation to identify a random 
ensemble of architectures that perform well on a given 
task. Instead of seeking to maximize the likelihood of in-
distribution data which may cause OoD samples to be mis-
takenly given a higher likelihood, we developed a search 
algorithm to optimize the WAIC score, a Bayesian adjusted 
estimation of the data entropy. Using this formulation, 
we have identified several key features that make up good 
uncertainty quantification architectures, namely a simple 
structure in the shallower layers, use of information pre-
serving operations, and a larger, more expressive structure 
with skip connections for deeper layers to ensure optimiza-
tion stability. Using the architecture distribution learned by 
NADS, we then constructed an ensemble of models to es-
timate the data entropy using the WAIC score. We demon-
strated the superiority of our method to existing OoD de-
tection methods and showed that our method has highly 
competitive performance without requiring access to OoD 
samples. Overall, NADS as a new uncertainty-aware archi-
tecture search strategy enables model uncertainty quantifi-
cation that is critical for more robust and generalizable deep 
learning, a crucial step in safely applying deep learning to 
healthcare, autonomous driving, and disaster response. 

http:score.We
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