
Low-loss connection of weight vectors: distribution-based approaches.
Supplementary Materials

A. Experiments with different architectures
We made a few additional experiments to see how the con-
sidered methods perform on different architectures. In par-
ticular, we observe how the considered methods perform
while we vary 1) the width of One Hidden layer network
(Table 1) and 2) the depth of a dense network (Table 2). All
experiments were done on CIFAR10.

In Table 1 we present experiments with underparameterized
as well as overparameterized One Hidden layer networks.
For any number of parameters, we observe approximately
the same pattern of dependence of connection quality on
the connection method. Performance of most connection
methods degrades at smaller numbers of parameters, but this
is to be expected from the general logic of the distributional
approach.

in Table 2 we consider networks with 3, 5 or 7 layers. We
use 6144 neurons in the first hidden layer, 2000 neurons in
the second hidden layers, and 1000 neurons in each of the
remaining layers. Perhaps the most interesting observation
that one can make here is that increasing depth from 3 to 5
improves performance of almost all connection methods.

To connect minima with Garipov’s curves we use
the original implementation of their numerical al-
gorithm (https://github.com/timgaripov/
dnn-mode-connectivity.git).

B. Ensembling with Weight Adjustment
In Table 3 we compare WA ensemble methods against en-
sembles of independently trained networks. WA(n) in the ta-
ble refers to Weight Adjusment procedure that is performed
on the n’th layer counting from the last layer of neural
network (e.g. WA(1) is an ensemble with the last layer
adjusted). We can see from the table that the amount of
diversity in the ensemble is crucial for the performance:
the more diversity (i.e., the higher n), the more accurate
the output is. However, it comes with a cost of additional
computations on inference and required storage. Also, note
that the method WA(1) slightly improves the results over
one model, and it comes without the costs listed above.

These results were obtained for VGG16 (Simonyan & Zis-
serman, 2014) and PreResNet110 (He et al., 2016) trained
with SGD for 400 epochs, with learning rate 0.01 and batch

size 128. We use standard data augmentation as in (Huang
et al., 2017). We train VGG16 without batch normalization.

We use the following implementations of VGG16 and Pre-
ResNet110.

• VGG16: https://github.com/pytorch/
vision/blob/master/torchvision/
models/vgg.py

• PreResNet110: https://github.com/
bearpaw/pytorch-classification/
blob/master/models/cifar/preresnet.
py

C. Error rate dynamics along the path
In Fig. 1 we show how test error changes along the paths
proposed by WA-based connection methods for VGG16 on
CIFAR10 dataset. The observed oscillations are associated
with the 15 intermediate layer-by-layer transitions.

0 2 4 6 8 10 12 14
t

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

te
st

 e
rro

r (
%

)

VGG16
Linear + WA
Arc + WA
OT + WA

Figure 1: Test error of WA-based methods along the path
on CIFAR10.

In Table 2 of the main text we see that some connection
methods fail to connect two minima of VGG16 network.
Namely, Linear, Arc, Linear + Butterfly and Arc + Butterfly
has accuracy equals to random guess or even lower. OT +
Butterfly method performs better, but has a high variance –
we are currently investigating this issue. Note that neither
of these methods uses Weight Adjustment procedure to im-
prove the results. In Fig. 2 we show examples of paths with

https://github.com/timgaripov/dnn-mode-connectivity.git
https://github.com/timgaripov/dnn-mode-connectivity.git
https://github.com/pytorch/vision/blob/master/torchvision/ models/vgg.py
https://github.com/pytorch/vision/blob/master/torchvision/ models/vgg.py
https://github.com/pytorch/vision/blob/master/torchvision/ models/vgg.py
https://github.com/bearpaw/ pytorch-classification/blob/master/models/cifar/preresnet.py
https://github.com/bearpaw/ pytorch-classification/blob/master/models/cifar/preresnet.py
https://github.com/bearpaw/ pytorch-classification/blob/master/models/cifar/preresnet.py
https://github.com/bearpaw/ pytorch-classification/blob/master/models/cifar/preresnet.py


Low-loss connection of weight vectors: distribution-based approaches. Supplementary Materials

Table 1: Test accuracy (%) of different methods for One Hidden layer networks with different width on CIFAR10.

Width
Methods 100 500 1000 2000
Linear 33.20± 2.03 35.39± 1.42 36.35± 1.68 39.34± 1.52
Arc 35.82± 1.64 36.73± 1.44 38.07± 1.41 41.34± 1.39
Linear + Weight Adjustment 45.89± 0.54 53.56± 0.33 55.55± 0.19 57.66± 0.26
Arc + Weight Adjustment 46.13± 0.46 53.84± 0.32 55.82± 0.19 57.88± 0.24
OT 53.73± 0.41 56.86± 0.40 56.18± 0.18 56.49± 0.46
OT + Weight Adjustment 55.10± 0.35 59.04± 0.17 58.95± 0.19 58.96± 0.21
Garipov (3) 53.94± 0.35 58.47± 0.21 58.99± 0.16 58.74± 0.23
Garipov (5) 53.81± 0.35 57.59± 0.27 57.89± 0.25 57.88± 0.32

End Points 56.47± 0.26 59.51± 0.32 59.14± 0.23 59.12± 0.26

Table 2: Test accuracy (%) of different methods for Dense networks with different depths on CIFAR10.

Depth
Methods 3 5 7
Linear 27.19± 1.12 30.70± 2.21 25.43± 2.04
Arc 40.17± 0.84 37.92± 1.84 35.94± 2.77
Linear + Butterfly 38.38± 0.84 50.66± 0.83 47.23± 1.10
Arc + Butterfly 49.63± 0.86 52.44± 4.42 47.47± 3.31
Linear + Weight Adjustment 51.87± 0.24 59.62± 0.13 58.12± 0.16
Arc + Weight Adjustment 58.86± 0.29 61.03± 0.17 60.15± 0.14
OT + Butterfly 59.11± 0.46 60.78± 0.39 59.89± 0.44
OT + Weight Adjustment 61.67± 0.49 61.29± 0.21 60.35± 0.24
Garipov(3) 61.38± 0.36 60.42± 0.19 58.95± 0.18
Garipov(5) 60.75± 0.32 59.51± 0.21 58.02± 0.27

End Points 63.25± 0.36 61.72± 0.21 61.02± 0.24

0 2 4 6 8 10 12 14
t

20

40

60

80

100

te
st

 e
rro

r (
%

)

VGG16
Linear
Arc
OT

Figure 2: Test error of Butterfly methods along the connect-
ing path (on CIFAR10).

failed Butterfly connections. As we can see, all Butterfly
methods have low connection errors up to the 12th layer,
after which the errors increase drastically.

Finally, we illustrate the variance of the OT + Butterfly
method. In Fig. 3 we show accuracy on six different paths

and observe that the main variance happens again on the
12’th layer.

0 2 4 6 8 10 12 14
t

10

20

30

40

50

60

te
st

 e
rro

r (
%

)

VGG16

Figure 3: Test error of the method OT along six different
paths (on CIFAR10).



Low-loss connection of weight vectors: distribution-based approaches. Supplementary Materials

Table 3: Test accuracy (%) of ensemble methods with respect to number of models in ensemble and architectures on
CIFAR10.

Number of models in ensemble
Architecture method 1 3 5 7

Dense 3
WA(1) 63.12 64.22 64.53 64.53
WA(2) 63.12 65.35 66.27 66.69
Ind 63.12 65.67 66.6 67.04

Dense 5

WA(1) 61.71 62.44 62.51 62.68
WA(2) 61.71 62.48 62.77 62.82
WA(3) 61.71 62.99 63.42 63.64
WA(4) 61.71 63.1 63.71 64.19
Ind 61.71 63.07 63.8 64.33

Dense 7

WA(1) 60.81 61.13 61.23 61.2
WA(2) 60.81 61.54 61.74 61.89
WA(3) 60.81 62.25 62.53 62.64
WA(4) 60.81 63. 63.35 63.6
WA(5) 60.81 62.97 63.46 63.63
Ind 60.81 63.35 63.78 64.01

VGG16
WA(1) 91.52 91.54 91.58 91.59
WA(2) 91.52 91.64 91.62 91.61
Ind 91.52 92.88 93.12 93.4

PreResNet110 WA(1) 92.49 92.46 92.53 −
Ind 92.49 93.81 94.08 −

REFERENCES

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E
Hopcroft, and Kilian Q Weinberger. Snapshot ensembles:
Train 1, get m for free. arXiv preprint arXiv:1704.00109,
2017.

Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.


	Experiments with different architectures
	Ensembling with Weight Adjustment
	Error rate dynamics along the path 

