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A. In-Silico Design problems

problem Num Num Batch Vocab Seq Init
inst. rounds size size length size

TfBind8 12 10 100 4 8 0
TfBind10 2 10 100 4 10 0
RandomMLP 16 10 100 20 20/40 0
RandomRNN 12 10 100 20 20/40 0
PfamHMM 24 10 500 20 50-100 500
ProteinDistance 24 6 500 20 50-100 0
PDBIsing 10 10 500 20 20/50 0
UTR 1 10 1000 4 50 0

Table 1: Information about benchmark problems, including the
number of instances per problem, the number of optimization
rounds, batch size, vocabulary size, sequence length, and the num-
ber of initial samples. RandomMLP and RandomRNN considers
sequences of length 20 or 40. The sequence length of PfamHMM
and ProteinDistance varies between 50 and 100. PfamHMM pro-
vides methods with 500 initial samples. All other problems do not
provide initial samples.

Table 1 summarizes the considered optimization problems.
For each problem, we construct multiple instances by vary-
ing the protein target (PDBIsing, PfamHMM, TfBind), or
the neural network architecture and random seed for weight
initialization (RandomMLP/RandomRNN). We provide ad-
ditional details per problem in the following sub-sections.

A.1. TfBind

The optimization goal is to produce length-8 DNA se-
quences that maximize the binding affinity towards a partic-
ular transcription factor. We use the following transcription
factor to create 12 optimization problems: CRX REF R1,
CRX R90W R1, NR1H4 REF R1, NR1H4 C144R R1,
HOXD13 REF R1, HOXD13 Q325R R1, GFI1B REF R1,
FOXC1 REF R1, PAX4 REF R1, PAX4 REF R2,
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POU6F2 REF R1, and SIX6 REF R1.

We min-max normalize the binding affinity values for each
transcription factor target to the zero-one interval.

TfBind10 differs from TfBind8 in that sequences are of
length 10 and only two transcription factors (Cbf1 and Pho4)
are available, which were characterized experimentally (Le
et al., 2018).

A.2. Random Neural Network

The goal is to optimize the scalar output of a randomly
initialize neural network. Optimization proceeds over 10
rounds with a batch size 100. We construct different in-
stances by varying the sequence length (20 or 40), the vo-
cabulary size (4 or 20), the random seed (0 or 13), and the
architecture of the network (described in the following).

RandomMLP considers networks with a varying number of
convolutional and fully connected layers. Networks have
either no convolutional layer, or one layer with 128 units, a
kernel width of 13, and a stride size of 1. The number of
fully connected layers is either one (128 hidden units) or
three (128, 256, 512 hidden units). We use a linear activation
function for the output layer and a relu activation function
for all other layers.

RandomRNN considers networks with one (128 hidden
units), two (128, 256 hidden units), or three (128, 256, 512
hidden units) LSTM layers.

A.3. PfamHMM

Sequences annotated by Pfam within each family have vari-
able length and the likelihood under the HMM can be evalu-
ated for arbitrary-length sequences. For simplicity, however,
here we consider optimization over fixed-length sequences.
The length is chosen as the median length of unaligned
sequence domains that belong to the Pfam-full sequence
alignment for the corresponding family.

The initial dataset is obtained by (1) selecting all sequences
from Pfam-full that belong to the given family and have
the chose length, (2) evaluating their likelihood under the
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HMM, and (3) sampling 500 sequences with a likelihood
below the 50th percentile.

We selected families relatively short sequences. Future work
might consider longer sequences while optimizing only a
subset of positions.

A.4. ProteinDistance

The ProteinDistance problem tasks methods to find se-
quences with a high cosine similarity in the embedding
space to a chosen target sequence. We used the network
from Bileschi et al. (2019) to obtain embeddings of pro-
posed sequences. This network was trained to classify the
Pfam family of a protein sequence, and its embeddings have
been shown to capture broad protein features that are useful
for fewshot learning. We construct optimization problems
by choosing different Pfam HMM seed sequences as the
target sequence, and used the same Pfam families that we
used the PfamHMM problem.

A.5. PDBIsingModel

We employ f(x) =
∑

i φi(xi) + β
∑

ij Cijφ(xi, xj),
where xi refers to the character in the i-th position of se-
quence x. Cij is a binary contact map dictating which posi-
tions are in contact and φ(xi, xj) is a position-independent
coupling block. We construct optimization problems
by choosing 10 different proteins from the Protein Data
Bank (Berman et al., 2003). Cij = 1 if the Cα atoms of
the amino acid residues at positions i and j are separated
by less than 8 Angstroms in the protein’s 3D structure. The
coupling block is based on global co-occurence probabil-
ities of contacting residues (Miyazawa & Jernigan, 1996).
The local terms φi(xi) are set using the sequence of amino
acids for the true PDB protein. The score for setting xi to
a specified value is given by the log Blosum substitution
probability between that value and the corresponding value
in the PDB sequence. Finally, β is chosen heuristically such
that the local terms do not dominate the objective too much.

B. Optimization Methods
B.1. Model-Based Optimization

We follow (Angermueller et al., 2020) for building the re-
gressor model. We optimize the hyper-parameters of diverse
regressor models by randomized search, and evaluate model
performance by explained variance score estimated by five-
fold cross validation. We select all models with a score
≥ 0.4 and build an ensemble by averaging their predictions.
We consider the following scikit-learn (Pedregosa et al.,
2011) regressor classes and hyper-parameters:

– BayesianRidge: alpha 1, alpha 2, lambda 1, lamdba 2
– RandomForestRegressor: max depth, max features,

n estimators
– LassoRegressor: alpha
– GaussianProcessRegressor: kernel (RBF, Ratio-

nalQuadratic, Matern) and kernel parameters

We use the posterior mean acquisition function, which per-
formed as good or better as the upper confidence bound,
expected improvement, or probability of improvement. We
optimize the acquisition function using evolutionary search
for 500 rounds with a batch size of 25. We construct the next
batch by selecting the top n unique and novel sequences
with the highest acquisition function value.

B.2. Latent-Space Model-Based Optimization

An alternative approach to discrete optimization is to train
an encoder-decoder model that enables mapping discrete
sequences to and from continuous vectors and moving the
optimization process into the continuous space (Gómez-
Bombarelli et al., 2018; Kusner et al., 2017; Roeder et al.,
2018; Killoran et al., 2017; Cao et al., 2019; Luo et al.,
2018; Gupta & Kundaje, 2019). The approach has been
introduced for problems with a large amount of (unlabeled)
initial data in a single-round optimization set up, which
we extend to multi-round optimization. In each round, we
use all the observed sequence-reward pairs to jointly train a
variational auto-encoder (VAE) (Kingma & Welling, 2014)
and a neural network regressor from latent embeddings to
the corresponding rewards. Jointly training the regressor and
VAE encourages organizing latent representations by reward
scores (Gómez-Bombarelli et al., 2018). Once the encoder-
decoder model has been fixed, similar to the previous work,
we train a new regressor from scratch on the embedding-
reward pairs, and use it to score new sequences during
continuous optimization.

We train the VAE by maximizing the variational lower-
bound (Kingma & Welling, 2014). We anneal the KL di-
vergence and the neural network regressor loss over time.
We standard scale regressor target labels, and use the mean-
squared error as traning objective. The encoder and decoder
architectures match those in the DbAs-VAE; the regressor
is a fully-connected network with a single hidden layer. We
consider the following hyper-parameters (actual values in
the parentheses): latent space size (50), learning rate (0.006),
weight of the regressor loss term (2 * sequence length), sig-
moid annealing slope (1.), batch size (20), number of epochs
(60), hidden sizes for the encoder (128), decoder (128), and
regressor (50).

For training a new regressor on the embedding-reward pairs,
we use the ensemble-based approach described Section B.1.

We perform optimization in the latent space using the cross-
entropy method with a diagonal multivariate Gaussian gen-
erative model. We perform weighted maximum likelihood
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on high scoring samples, re-weighted by the likelihood ratio
of a given prior and the current generative model (CbAs)
(Brookes et al., 2019). We use as prior a diagonal multi-
variate Gaussian generative model fit on the training data of
the VAE and regressor. The re-weighting approach encour-
ages the optimization trajectory to remain close to the prior,
which is desirable as the latent regressor performance is ex-
pected to degrade as we move away from training samples.

We run the cross-entropy method for a fixed number of
iterations. The proposed batch is obtained by decoding
the best-scoring unique samples (according to the regres-
sor score) across multiple runs of the cross-entropy method
with different random seeds. We tune the following hyper-
parameters (actual values in the parentheses): the number of
cross-entropy method instances (25), the number iterations
per instance (20), the number of samples drawn per itera-
tion (100), and the number high-scoring samples to extract
(10). We initialize the cross-entropy method with the embed-
dings of the highest scoring 25 sequences observed during
the optimization. Finally, we note that, as optimization is
being performed in the continuous space, one could use a
differentiable regressor and gradient-based optimization.

B.3. Evolution

Evolution generates a new child sequence by selecting two
parents from the population of (x, f(x)) pairs, recombining
them, and mutating them. At each optimization rounds, at
repeats these steps iteratively to generate a batch of child
sequences. Following (Real et al., 2019), samples are no
longer considered during parent selection after a fixed num-
ber optimization rounds to prevent elite samples from dom-
inating the population (”death by old age”). Two parents
are chosen for each child via tournament selection, which
involves taking the best of T samples from the alive popula-
tion. The chosen parent sequences A and B are recombined
by copying the sequences from left to right beginning with
a pointer on parent A. At each position, the pointer has
some probability (we used 0.1) of switching to reading the
other parent. After crossover, we mutate the child by chang-
ing each position to a different value with a fixed mutation
probability (we used 0.01).

B.4. DbAs-VAE

We follow (Brookes & Listgarten, 2018) and use a fully
connected MLP encoder and decoder with one hidden layer
and 64 units, 32 latent vectors, which is trained with a
learning rate of 0.01 for 60 epochs and a batch size of 20.
We use a quantile-cutoff of 0.85.

B.5. DbAs-RNN

Same as DbAs-VAE, except that the generative model is a
LSTM with one hidden layer and 128 hidden units.

B.6. FBGAN

Following (Gupta & Zou, 2018), we use a Wasserstein GAN
as generative model inside cross-entropy optimization. Un-
like using a fixed threshold for selecting sequences, we use a
quantile cutoff since it performed better in our experiments
on diverse problems. We tune the quantile cutoff, learning
rate, batch size, discriminator and generator training epochs,
the gradient penalty weight, the Gumble softmax tempera-
ture, and the number of latent variables of the generator.

B.7. P3BO

We use the population size of 15, and note that similar
performance can be achieved with a smaller population size
greater than 5 (see Figure 11). We use MBO, DbAs-VAE,
DbAs-RNN, Evolution, and SMW as constituent algorithm
classes (Section 6.1). We sample hyper-parameters of these
algorithm classes from following distributions:

SMW This method is hyper-parameter free.

Evolution

– crossover probability: uniform(interval(0.1, 0.3))
– mutation probability: uniform(interval(0.05, 0.2))

DbAs-VAE

– quantile: uniform(0.825, 0.975)
– learning rate: loguniform(interval(0.008, 0.012))
– num vae units: uniform(categorical(64, 128))

DbAs-RNN

– quantile: uniform(0.9, 0.975)
– learning rate: loguniform(interval(0.0005, 0.012))
– num lstm units: uniform(categorical(64, 128))

MBO

– acquisition function(uniform(categorical([PosteriorMean,
UCB])))

– ucb scale factor: uniform(interval(0.5, 1.2))
– regressor: uniform(categorical([’Ensemble’,

’BayesianRidge’]))

Here, ’Ensemble’ refers to the ensemble model described in
B.1 and ’BayesianRidge’ to the BayesianRidge regressor of
the scikit-learn package.

C. Diversity metrics
Finding not only one but multiple diverse high reward se-
quences is desirable to increase the chance that some of the
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found sequences satisfy downstream screening criteria that
are not captured by the primary optimization objective, e.g.
stability or viscosity. For quantifying diversity, we devised
the following metrics:

Mean pairwise Hamming distance We compute the
mean pairwise Hamming distance of sequence in a batch.
We also considered the Edit distance but found it to be too
slow to compute for problems with large batch sizes.

Mean entropy For a given batch of sequences, we com-
pute the entropy over characters at each position, and then
average over positions. Since we found this metric to be
highly correlated with the mean pairwise Hamming distance
(R2 = 0.99), we only show results for the mean pairwise
Hamming distance.

Reward vs. Hamming distance We plot the mean re-
ward of sequences in a batch. vs. the mean pairwise Ham-
ming distance, which shows the trade-off of these two met-
rics.

Number of high-reward clusters For problems with
known maximum we first select all sequences proposed
so far with a reward above a threshold, e.g 0.8 ·max f(x).
We then cluster the selected sequences using hierarchical
complete linkage clustering, and count the number of result-
ing clusters with a minimum length-normalized Hamming
distance if 0.5. This metric can be only maximized by find-
ing both well separated and high reward sequences.

Fraction of optima found This metric can be only com-
puted for enumerative optimization problems, in our case
TfBind8. In a pre-computation step, we first select all possi-
ble sequences with a reward ≥ 0.9 (the maximum reward
is 1.0, Section A.1). We then cluster selected sequences
into distinct clusters with a minimum edit distance of 3
using hierarchical complete linkage clustering. We define
the sequence with the highest reward of each cluster as one
optimum. We count an optimum as found if the exact same
sequence is proposed. We treat the forward and reverse
sequence as two distinct optima. This metric differs from
the Number of high-reward clusters metric in two points: 1)
the number of clusters is normalized by the total number
of clusters, and 2) the edit distance is used for clustering
sequences to assign sequences that contain similar motifs at
different positions to the same cluster.

D. Additional results
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Figure 1: Visualization of alternative diversity (Section C) for the PdbIsing, ProteinDistance, TfBind8, and UTR problem. We find that
DbAs-VAE and Evolution generate more diverse sequences than P3BO, albeit with a lower reward. P3BO finds significantly more diverse
and higher reward sequences than both MBO and SMW, and provides overall a good trade-off between finding high reward and diverse
sequences.
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Figure 2: Performance curves for the RandomMLP and TfBind10 problem, which were not shown in the main text due to space limitations.
Lines show the average over all targets available for each problem, while the shaded areas indicate the 95% boostrap confidence-intervals.

Figure 3: Performances curves for additional baselines (FBGAN and DbAs-RNN), which were not shown in the main text due to space
limitations. Lines show the average over all instances per optimization problem, while the shaded areas indicate the 95% bootstrap
confidence-intervals.
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Figure 4: Insights into Adaptive-P3BO applied to the UTR problem. Shown are the credit score (left), the number of sequences sampled
(middle), and the number of instances (right) per algorithm class over time. Since Evolution has the highest credit score (relative
improvement) for early rounds, more sequences are sampled from Evolution (middle), and Adaptive-P3BO increases the number of
Evolution instances from 4 to 11 (the total population size is 15). The adaptation starts after three warm-up rounds used to reliably
estimate the credit score of algorithms.
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(a) Performance of P3BO when removing individual algorithms.

(b) Performances of methods when used stand-alone without data sharing.

(c) Performances of methods when used inside P3BO with data sharing.

Figure 5: Performance of P3BO on the PdbIsing, PfamHMM, and UTR problem when removing individual algorithms from its
population. The top row compares P3BO with all algorithms (P3BO full) to variants with one algorithm removed. The middle row shows
the performance of algorithms when used stand-alone without sharing data (samples (x, f(x)))a, and the bottom row when used inside
P3BO with data sharing. Removing MBO from the population of P3BO results in a performance drop on PdbIsing (top row) due to the
good performance of MBO on that problem (middle row). In contrast, DbAs-VAE is the best performing algorithm on PfamHMM, which
results in a performance drop when removing it. Sharing samples acquired by one algorithm with all other algorithms in the population
(bottom row) results in a higher performance of individual algorithms than without sharing samples (middle row). For example, SMW
benefits from the high-reward sequences found by MBO on PdbIsing in early rounds (middle row, left plot) and thereby manages to find
sequences with a higher reward than MBO in following rounds (bottow row, left plot).



Population-Based Black-Box Optimization for Biological Sequence Design: Supplementary Material

(a) t-SNE of sequences without data sharing.

(b) t-SNE of sequences with data sharing.

Figure 6: t-SNE of sequences proposed by different algorithms with and without sharing samples (x, f(x)) between algorithms. The
shape of each point (sequence) corresponds to the algorithm that proposed the sequence x and the color to the reward f(x). Without
sharing samples, methods propose distinct, well separated, sequences, and only MBO finds high reward sequences quickly. By sharing
samples, methods benefit from the high reward sequences discovered by MBO in early rounds and propose similar sequences in subsequent
rounds. Results are shown for PdbIsing problem with PDB structure 1KDQ.
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Figure 7: Performance comparison of P3BO and Adaptive-P3BO when starting with a poorly initialized population of algorithms. By
adapting the population online, Adaptive-P3BO can recover from the initial population, resulting in a clear performance improvement.

Figure 8: Comparison of the relative improvement reward function described in Section 3.2 with the rank-based reward function as
proposed by Fialho et al. (2010). Both approaches perform similarly across problems.
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Figure 9: Performance of P3BO and Adaptive-P3BO when using the relative improvement scoring function described in Section 3.2
(dashed line) vs. scoring methods randomly (solid line).

Figure 10: Sensitivity of P3BO to the softmax temperature τ for computing selection probabilities (Section 3.2) on the PfamHMM,
ProteinDistance, and UTR problem. Shows that scaling the number of sequences sampled from algorithms in the population proportional
to their credit score (τ < 10) is better than sampling sequences uniformly (τ ≥ 10).
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Figure 11: Cumulative maximum of P3BO for different population sizes N on three optimization problems. While a population size of
15 is best on average, similar performances can be achieved with smaller populations. Using only one algorithm (N = 1) results in a
clear performance decrease. For this analysis, the initial population was sampled randomly from a pool of algorithms as described in
Section 6.2, subject to sampling at least one instance per algorithm class.

Figure 12: Relative performance of methods depending on the number of samples per optimization round (batch size). The y-axis
corresponds to the area under the cumulative max reward curve, min-max normalized across methods. Error bars show the variation
across five optimization problems (one instance of the ProteinDistance, PfamHMM, UTR, and RandomMLP problem). Shows that P3BO
is applicable to optimization settings with various batch sizes, including non-batched optimization.
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