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Abstract

Explanation methods promise to make black-box

classifiers more transparent. As a result, it is

hoped that they can act as proof for a sensible,

fair and trustworthy decision-making process of

the algorithm and thereby increase its acceptance

by the end-users. In this paper, we show both the-

oretically and experimentally that these hopes are

presently unfounded. Specifically, we show that,

for any classifier g, one can always construct an-

other classifier g̃ which has the same behavior on

the data (same train, validation, and test error) but

has arbitrarily manipulated explanation maps. We

derive this statement theoretically using differen-

tial geometry and demonstrate it experimentally

for various explanation methods, architectures,

and datasets. Motivated by our theoretical in-

sights, we then propose a modification of existing

explanation methods which makes them signifi-

cantly more robust.

1. Introduction

Explanation methods4 are increasingly adopted by machine

learning practitioners and incorporated into standard deep

learning libraries (Kokhlikyan et al., 2019; Alber et al.,

2019; Ancona et al., 2018). The interest in explainabil-

ity is partly driven by the hope that explanations can act as

proof for a sensible, fair, and trustworthy decision-making

process(Aı̈vodji et al., 2019; Lapuschkin et al., 2019). As an

example, a bank could provide explanations for its rejection

of a loan application. By doing so, the bank can demon-

strate that the decision was not based on illegal or ethically

1Machine Learning Group, Technische Universität Berlin,
Germany 2Max-Planck-Institut für Informatik, Saarbrücken,
Germany 3Department of Brain and Cognitive Engineering,
Korea University, Seoul, Korea. Correspondence to: Pan
Kessel <pan.kessel@tu-berlin.de>, Klaus-Robert Müller <klaus-
robert.mueller@tu-berlin.de>.

Proceedings of the 37
th International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

4See (Samek et al., 2019) and references therein for a detailed
overview.

questionable features. It can furthermore provide feedback

to the customer. In some situations, an explanation of an

algorithmic decision may even be required by law.

However, this hope is based on the assumption that expla-

nations faithfully reflect the underlying mechanisms of the

algorithmic decision. In this work, we demonstrate unequiv-

ocally that this assumption should not be made carelessly

because explanations can be easily manipulated.

In more detail, we show theoretically that for any classifier

g, one can always find another classifier g̃ which agrees

with the original g on the entire data manifold but has (al-

most) completely controlled explanations. This surprising

result is established using techniques of differential geome-

try. We then demonstrate experimentally that one can easily

construct such manipulated classifiers g̃.

In the example above, a bank could use a manipulated classi-

fier g̃ that uses mainly unethical features, such as the gender

of the applicant, but has explanations which suggest that the

decision was only based on financial features.

Briefly put, the manipulability of explanations arises from

the fact that the data manifold is typically low-dimensional

compared to its high-dimensional embedding space. The

training process only determines the classifier in directions

along the manifold. However, many explanation methods

are mainly sensitive to directions orthogonal to the data man-

ifold. Since these directions are undetermined by training,

they can be changed at will.

This theoretical insight allows us to propose a modification

to explanation methods which make them significantly more

robust with respect to such manipulations. Namely, the ex-

planation is projected along tangential directions of the data

manifold. We show, both theoretically and experimentally,

that these tangent-space-projected (tsp) explanations are in-

deed significantly more robust. We thereby establish a novel

and exciting connection between the fields of explainability

and manifold learning.

In summary, our main contributions are as follows:

• Using differential geometry, we establish theoretically

that popular explanation methods can be easily manip-

ulated.
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• We validate our theoretical predictions in detailed ex-

periments for various explanation methods, classifier

architectures, and datasets, as well as for different

tasks.

• We propose a modification to existing explanation

methods which make them more robust with respect to

these manipulations.

• In doing so, we relate explainability to manifold learn-

ing.

1.1. Related Works

This work was crucially inspired by (Heo et al., 2019). In

this reference, adversarial model manipulation for explana-

tions is proposed. Specifically, the authors empirically show

that one can train models such that they have structurally

different explanations while suffering only a very mild drop

in classification accuracy compared to their unmanipulated

counterparts. For example, the adversarial model manipu-

lation can change the positions of the most relevant pixels

in each image or increase the overall sum of relevances in

a certain subregion of the images. Contrary to their work,

we analyze this problem theoretically. Our analysis leads us

to demonstrate a stronger form of manipulability. Namely,

the model can be manipulated such that it structurally repro-

duces arbitrary target explanations while keeping all class

probabilities the same for all data points. Our theoretical

insights not only illuminate the underlying reasons for the

manipulability but also allow us to develop modifications

of existing explanation methods which make them more

robust. Another approach (Kindermans et al., 2019) adds a

constant shift to the input image, which is then eliminated

by changing the bias of the first layer. For some methods,

this leads to a change in the explanation map. Contrary to

our approach, this requires a shift in the data. In (Adebayo

et al., 2018), explanation maps are changed by randomiza-

tion of (some of) the network weights. This is different to

our method as it dramatically changes the output of the net-

work and is proposed as a consistency check of explanations.

In (Dombrowski et al., 2019) and (Ghorbani et al., 2019),

it is shown that explanations can be manipulated by an in-

finitesimal change in input while the output of the network

is approximately unchanged. Contrary to this approach, we

manipulate the model and keep the input unchanged.

1.2. Explanation Methods

We consider a classifier g : RD → R
K which classifies

an input x ∈ R
D in K categories with the predicted class

given by k = argmaxi g(x)i. The explanation method is

denoted by hg : RD → R
D and associates an input x with

an explanation map hg(x) whose components encode the

relevance score of each input for the classifier’s prediction.

We note that, by convention, explanation maps are usually

calculated with respect to the classifier before applying the

final softmax non-linearity (Kokhlikyan et al., 2019; Alber

et al., 2019; Ancona et al., 2018). Throughout the paper, we

will therefore denote this function as g.

We use the following explanation methods:

Gradient: The map hg(x) =
∂g
∂x

(x) is used and quantifies

how infinitesimal perturbations in each pixel change the

prediction g(x) (Simonyan et al., 2014; Baehrens et al.,

2010).

x ⊙ Grad: This method uses the map hg(x) = x⊙ ∂g
∂x

(x)
(Shrikumar et al., 2017). For linear models, the exact contri-

bution of each pixel to the prediction is obtained.

Integrated Gradients: This method defines

hg(x) = (x− x̄)⊙

∫ 1

0

∂g(x̄+ t(x− x̄))

∂x
dt

where x̄ is a suitable baseline. We refer to the original

reference (Sundararajan et al., 2017) for more details.

Layer-wise Relevance Propagation (LRP): This method

(Bach et al., 2015; Montavon et al., 2017) propagates rele-

vance backwards through the network. In our experiments,

we use the following setup: for the output layer, relevance

is given by

RL
i = δi,k =

{

1, for i = k

0, for i 6= k
,

which is then propagated backwards through all layers but

the first using the z+-rule

Rl
i =

∑

j

xl
i(W

l)+ji
∑

i x
l
i(W

l)+ji + ǫ
Rl+1

j , (1)

where (W l)+ denotes the positive weights of the l-th layer,

xl is the activation vector of the l-th layer, and ǫ > 0 is

a small constant ensuring numerical stability. For the first

layer, we use the zB-rule to account for the bounded input

domain

R0
i =

∑

j

x0
jW

0
ji − lj(W

0)+ji − hj(W
0)−ji

∑

i(x
0
jW

0
ji − lj(W 0)+ji − hj(W 0)−ji)

R1
j ,

where li and hi are the lower and upper bounds of the input

domain respectively.

For theoretical analysis, we consider the ǫ-rule in all lay-

ers for simplicity. This rule is obtained by substituting

(W l)+ → W l in (1). We refer to the resulting method as

ǫ-LRP.

This choice of methods is necessarily not exhaustive. How-

ever, it covers two classes of attribution methods, i.e. propa-

gation and gradient-based explanations. Furthermore, the



Fairwashing Explanations with Off-Manifold Detergent

chosen methods are widely used in practice (Kokhlikyan

et al., 2019; Alber et al., 2019; Ancona et al., 2018).

2. Manipulation of Explanations

In this section, we will theoretically deduce that explanation

methods can be arbitrarily manipulated by adversarially

training a model.

2.1. Mathematical Background

In the following, we will briefly summarize the basic tools

of differential geometry before applying them in the context

of explainability in the next section. For additional technical

details, we refer to Appendix A.1.

A D-dimensional manifold M is a topological space which

locally resembles R
D. More precisely, for each p ∈ M ,

there exists a subset U ⊂ M containing p and a dif-

feomorphism φ : U → Ũ ⊂ R
D. The pair (U, φ) is

called coordinate chart and the component functions xi

of φ(p) = (x1(p), . . . , xD(p)) are called coordinates.

A d-dimensional submanifold S is a subset of M which is

itself a d-dimensional manifold. M is called the embedding

manifold of S. A properly embedded submanifold S ⊂ M

is a submanifold embedded in M which is also closed as a

set.

Let p ∈ M be a point on a manifold M and γ : R → M

with γ(0) = p a curve through the point p. The set of

tangent vectors dγ = d
dt
γ(t)|t=0 of all curves through p

forms a vector space of dimension D. This vector space

is known as tangent space TpM . Let (U, φ) be a coordi-

nate chart on M with coordinates x. We can then define

φ ◦ λk(t) = (x1(p), . . . , xk(p) + t, . . . , xD(p)) with k ∈
{1, . . . , D}. This implicitly defines curves λk : R → M

through p. We denote the corresponding tangent vectors

as ∂k := d
dt
λk(t)|t=0 and it can be shown that they form a

basis of the tangent space TpM .

A vector field V on M associates with every point x ∈ M

an element of the corresponding tangent space, i.e. V (x) ∈
TxM .5 A conservative vector field V is a vector field that is

the gradient of a function f : M → R, i.e. V (x) = ∇f(x).
For submanifolds S, there are two different notions of vector

fields. A vector field V on the submanifold S associates

to every point on S a vector in its corresponding tangent

space TxS, i.e. V (x) ∈ TxS. A vector field V along the

submanifold S associates to every point on S a vector in

the corresponding tangent space of the embedding manifold

M , i.e. V (x) ∈ TxM . These concepts can be related as

follows: the tangent space TxM can be decomposed into

the tangent space TxS of S and its orthogonal complement

5More rigorously, vector fields are defined in terms of the tan-
gent bundle. We refrain from introducing bundles for accessibility.

TxS
⊥, i.e. TxM = TxS ⊕ TxS

⊥. A vector field along S

which only takes values in the first summand TxS is also a

vector field on S.

With these definitions, we can now state a crucial theorem

for our theoretical analysis. In Appendix A.1, we show that:

Theorem 1 Let S ⊂ M be d-dimensional submanifold prop-

erly embedded in the D-dimensional manifold M . Let

V =
∑D

i=d+1 v
i∂i be a conservative vector field along

S which assigns a vector in TpS
⊥ for each p ∈ S. For any

smooth function f : S → R, there exists a smooth extension

F : M → R such that

F |S = f

where F |S denotes the restriction of F on the submanifold

S. Furthermore, the derivative of the extension F is given

by

∇F (x) = (∇1f(x), . . .∇df(x), v
d+1(x), . . . , vD(x))

for all x ∈ S.

Technical details not withstanding, this theorem states that

a function f defined on a submanifold S can be extended to

the entire embedding manifold M . The extension’s deriva-

tives orthogonal to the submanifold S can be freely chosen.

This theorem is a generalization of the well-known subman-

ifold extension lemma (see, for example, Lemma 5.34 in

(Lee, 2012)) in that it not only shows that an extension exists

but also that one has control over the gradient of the exten-

sion F . While we could not find such a statement in the

literature, we suspect that it is entirely obvious to differential

geometers but typically not needed for their purposes.

2.2. Explanation Manipulation: Theory

From Theorem 1, it follows under a mild assumption that

one can always construct a model g̃ such that it closely

reproduces arbitrary target explanations but has the same

training, validation, and test loss as the original model g.

Assumption: the data lies on a d-dimensional submanifold

S ⊂ M properly embedded in the manifold M = R
D. The

data manifold S is of much lower dimensionality than its

embedding space M , i.e.

ǫ ≡
d

D
≪ 1 . (2)

We stress that this assumption is also known as the manifold

conjecture and is expected to hold across a wide range of

machine learning tasks. We refer to (Goodfellow et al.,

2016) for a detailed discussion.

Under this assumption, the following theorem can be derived

for the Gradient, x ⊙ Grad, and ǫ-LRP methods (only the

proof for the Gradient method is given; see Appendix 2 for

other methods):
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Theorem 2 Let hg : RD → R
D be the explanation of clas-

sifier g : RD → R with bounded derivatives |∇ig(x)| ≤
C ∈ R+ for i = 1, . . . , D.

For a given target explanation ht : RD → R
D, there exists

another classifier g̃ : RD → R which completely agrees

with the classifier g on the data manifold S, i.e.

g̃|S = g|S . (3)

In particular, both classifiers have the same train, validation,

and test loss.

However, its explanation hg̃ closely resembles the target ht,

i.e.

MSE(hg̃(x), h
t(x)) ≤ ǫ ∀x ∈ S , (4)

where MSE(h, h′) = 1
D

∑D
i=1(hi − h′

i)
2 denotes the mean-

squared error and ǫ = d
D

.

Proof: By Theorem 1, we can find a function G which

agrees with g on the data manifold S but has the derivative

∇G(x) = (∇1g(x), . . .∇dg(x), h
t
d+1(x), . . . , h

t
D(x))

for all x ∈ S. By definition, this is its gradient explanation

hG = ∇G.

As explained in Appendix A.2.1, we can assume without

loss of generality that |∇ig(x)| ≤ 0.5 for i ∈ {1, . . . , D}.

We can furthermore rescale the target map such that |ht
i| ≤

0.5 for i ∈ {1, . . . , D}. This rescaling is merely conven-

tional as it does not change the relative importance hi of

any input component xi with respect to the others. It then

follows that

MSE(hG(x), h
t(x)) = 1

D

D∑

i=1

(∇iG(x)− ht
i(x))

2 .

This sum can be decomposed as

1
D

d∑

i=1

(
∇ig(x)− ht

i(x)
)2

︸ ︷︷ ︸

≤1

+ 1
D

D∑

i=d+1

(
∇iG(x)− ht

i(x)
)2

︸ ︷︷ ︸
=0

and from this, it follows that

MSE(hG(x), h
t(x)) ≤

d

D
= ǫ ,

The proof then concludes by identifying g̃ = G. �

Intuition: Somewhat roughly, this theorem can be under-

stood as follows: two models, which behave identically on

the data, need to only agree on the low-dimensional sub-

manifold S. The gradients ”orthogonal” to the submanifold

S are completely undetermined by this requirement. By

the manifold assumption, there are however much more

”orthogonal” than ”parallel” directions and therefore the

explanation is largely controlled by these. We can use this

fact to closely reproduce an arbitrary target while keeping

the function’s values on the data unchanged.

We stress however that there are a number of non-trivial

differential geometric arguments needed in order to make

these statements rigorous and quantitative. For example, it

is entirely non-trivial that an extension to the embedding

manifold exists for arbitrary choice of target explanation.

This is shown by Theorem 1 whose proof is based on a

differential geometric technique called partition of the unity

subordinate to an open cover. See Appendix A.1 for details.

2.3. Explanation Manipulation: Methods

Flat Submanifolds and Logistic Regression: The previ-

ous theorem assumes that the data lies on an arbitrarily

curved submanifold and therefore has to rely on relatively

involved mathematical concepts of differential geometry.

We will now illustrate the basic ideas in a much simpler con-

text: we will assume that the data lies on a d-dimensional

flat hyperplane S ⊂ R
D.6 The points on the hyperplane S

obey the relation

∀x ∈ S : (ŵ(i))Tx = bi , i ∈ {1, . . . , D − d} , (5)

where {ŵ(i) ∈ R
D | i = 1, . . . , D − d} are a set of nor-

mal vectors to the hyperplane S and bi ∈ R are the affine

translations. We furthermore assume that we use logistic

regression as the classification algorithm, i.e.

g(x) = σ(wTx+ c) , (6)

where w ∈ R
D, c ∈ R are the weights and the bias respec-

tively and σ(x) = 1
1+exp(−x) is the sigmoid function. This

classifier has the gradient explanation7

hgrad(x) = w , (7)

We can now define a modified classifier by

g̃(x) = σ

(

wTx+
∑

i

λi(ŵ
(i)T x− bi) + c

)

, (8)

for arbitrary λi ∈ R. By (5), it follows that both classifiers

agree on the data manifold S, i.e.

∀x ∈ S : g(x) = g̃(x) , (9)

and therefore have the same train, validation, and test error.

However, the gradient explanations are now given by

hgrad(x) = w +
∑

i

λiŵ
(i) . (10)

6In mathematics, these submanifolds are usually referred to
as d-flats and only the case d = D − 1 is called hyperplane. We
refrain from this terminology.

7We recall that in calculating the explanation map, we take the
derivative before applying the final activation function.
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Since the λi can be chosen freely, we can modify the ex-

planations arbitrarily in directions orthogonal to the data

submanifold S (parameterized by the normal vectors ŵ(i)).

Similar statements can be shown for other explanation meth-

ods and we refer to the Appendix A.3 for more details.

As we will discuss in Section 2.4, one can use these tricks

even for data which does not (initially) lie on a hyperplane.

General Case: For the case of arbitrary neural networks

and curved data manifolds, we cannot analytically construct

the manipulated model g̃. We therefore approximately ob-

tain the model g̃ corresponding to the original model g by

minimizing the loss

L =
∑

xi∈T

||g(xi)− g̃(xi)||
2 + γ

∑

xi∈T

||hg̃(xi)− ht||2 ,

(11)

by stochastic gradient descent with respect to the parameters

of g̃. The training set is denoted by T and ht ∈ R
D is

a specified target explanation. Note that we could also

use different targets for various subsets of the data but we

will not make this explicit to avoid cluttered notation. The

first term in the loss L ensures that the models g and g̃

have approximately the same output while the second term

encourages the explanations of g̃ to closely reproduce the

target ht. The relative weighting of these two terms is

determined by the hyperparameter γ ∈ R+.

As we will demonstrate experimentally, the resulting g̃ will

closely reproduce the target explanation ht and have (ap-

proximately) the same output as g. Crucially, both state-

ments will be seen to hold also for the test set.

2.4. Explanation Manipulation: Practice

In this section, we will demonstrate manipulation of explana-

tions experimentally. We will first discuss applying logistic

regression to credit assessment and then proceed to the case

of deep neural networks in the context of image classifica-

tion. The code for all our experiments is publicly available at

https://github.com/fairwashing/fairwashing.

Credit Assessment: In the following, we will suppose

that a bank uses a logistic regression algorithm to classify

whether a prospective client should receive a loan or not.

The classification uses the features x = (xgender, xincome)
where

xgender =

{

1, for male

−1, for female
(12)

and xincome is the income of the applicant. Normalization

is chosen such that the features are of the same order of

magnitude. Details can be found in the Appendix B.

gender
income

taxes
−1.0

−0.5

0.0

0.5

1.0

re
le

va
nc

e

Original expl.

gender
income

taxes
−1.0

−0.5

0.0

0.5

1.0

re
le

va
nc

e

Manipulated expl.

Figure 1. x⊙Grad explanations for original classifier g and ma-

nipulated g̃ highlight completely different features. Colored bars

show the median of the explanations over multiple examples.

We then define a logistic regression classifier g by choos-

ing the weights w = (0.9, 0.1), i.e. female applicants are

severely discriminated against. The discriminating nature of

the algorithm may be detected by inspecting, for example,

the gradient explanation maps h
grad
g = w.

Conversely, if the explanations did not show any sign of

discrimination for another classifier g̃, the user may interpret

this as a sign of its trustworthiness and fairness.

However, the bank can easily ”fairwash” the explanations,

i.e. hide the fact that the classifier is sexist. This can be

done by adding new features which are linearly dependent

on the previously used features. As a simple example, one

could add the applicant’s paid taxes xtaxes as a feature. By

definition, it holds that

xtaxes = 0.4xincome , (13)

where we assume that there is a fixed tax rate of 0.4 on

all income. The features used by the classifier are now

x = (xgender, xincome, xtaxes). By (13), all data samples x

obey

ŵTx = 0 with ŵ = (0, 0.4,−1) . (14)

Therefore, the original classifier g(x) = σ(wTx) with

w = (0.9, 0.1, 0) leads to the same output as the classi-

fier g̃(x) = σ(wTx + 1000 ŵTx). However, as shown in

Figure 1, the classifier g̃ has explanations which suggest that

the two financial features (and not the applicant’s gender)

are important for the classification result.

This example is merely an (oversimplified) illustration of a

general concept: for each additional feature which linearly

depends on the previously used features, a condition of the

form (14) for some normal vector ŵ is obtained. We can

then construct a classifier with arbitrary explanation along

each of these normal vectors.

https://github.com/fairwashing/fairwashing
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Image Classification: We will now experimentally

demonstrate the practical applicability of our methods in the

context of image classification with deep neural networks.

Datasets: We consider the MNIST, FashionMNIST, and

CIFAR10 datasets. We use the standard training and test

sets for our analysis. The data is normalized such that it

has mean zero and standard deviation one. We sum the

explanations over the absolute values of its channels to get

the relevance per pixel. The resulting relevances are then

normalized to have a sum of one.

Models: For CIFAR10, we use the VGG16 (Simonyan &

Zisserman, 2015) architecture. For FashionMNIST and

MNIST, we use a four layer convolutional neural network.

We train the model g by minimizing the standard cross

entropy loss for classification. The manipulated model g̃ is

then trained by minimizing the loss (11) for a given target

explanation ht. This target was chosen to have the shape of

the number 42. For more details about the architectures and

training, we refer to the Appendix D.

Quantitative Measures: We assess the similarity between

explanation maps using three quantitative measures: the

structural similarity index (SSIM), the Pearson correlation

coefficient (PCC) and the mean squared error (MSE). SSIM

and PCC are relative similarity measures with values in

[0, 1], where larger values indicate high similarity. The

MSE is an absolute error measure for which values close to

zero indicate high similarity. We also use the MSE metric

as well as the Kullback-Leibler divergence for assessing

similarity of the class scores of the manipulated model g̃

and the original network g.

Results: For all considered models, datasets, and explana-

tion methods, we find that the manipulated model g̃ has

explanations which closely resemble the target map ht, e.g.

the SSIM between the target and manipulated explanations

is of the order 0.8. At the same time, the manipulated net-

work g̃ has approximately the same output as the original

model g, i.e. the mean-squared error of the outputs after

the final softmax non-linearity is of the order 10−3. The

classification accuracy is changed by about 0.2 percent.

Figure 2 illustrates this for examples from the FashionM-

NIST and CIFAR10 test sets. We stress that we use a single

model for Gradient, x⊙Grad, and Integrated Gradient meth-

ods which demonstrates that the manipulation generalizes

over all considered gradient-based methods.

The left-hand-side of Figure 3 shows quantitatively that

manipulated model g̃ closely reproduces the target map ht

over the entire test set of FashionMNIST. We refer to the

Appendix D for additional similarity measures, examples,

and quantitative analysis for all datasets.

IntGrad LRPx ⊙ GradGradInput

g g̃ g g̃ g g̃ g g̃

IntGrad LRPx ⊙ GradGradInput

g g̃ g g̃ g g̃ g g̃

Figure 2. Example explanations from the original model g (left)

and the manipulated model g̃ (right). Images from the test sets of

FashionMNIST (top) and CIFAR10 (bottom).

3. Robust Explanations

Having demonstrated both theoretically and experimentally

that explanations are highly vulnerable to model manipu-

lation, we will now use our theoretical insights to propose

explanation methods which are significantly more robust

under such manipulations.

3.1. TSP Explanations: Theory

In this section, we will define a robuster gradient explana-

tion method. Appendix C discusses analogous definitions

for other methods.

We can formally define an explanation field Hg which as-

sociates to every point x on the data manifold S the corre-

sponding gradient explanation hg(x) of the classifier g. We

note that Hg is generically a vector field along the manifold

since hg(x) ∈ R
D ∼= TxM , i.e. it is an element of the

tangent space TxM of the embedding manifold M and not

an element of the tangent space TxS of data manifold S.

As explained in Section 2.1, we can decompose the tan-

gent space TpM of the embedding manifold M as follows

TxM = TxS ⊕ TxS
⊥. Let P : TxM → TxS be the pro-

jection on the first summand of this decomposition. We

stress that the form of the projector P depends on the point

x ∈ S but we do not make this explicit in order to simplify

notation. We can then define:
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Definition 1 The tangent-space-projected (tsp) explanation

field Ĥg is a vector field on the data manifold S. It as-

sociates to each x ∈ S, the tangent-space-projected (tsp)

explanation ĥg(x) given by

ĥg(x) = (P ◦ hg) (x) ∈ TxS . (15)

Intuitively, the tsp-explanation ĥg(x) is the explanation of

the model g projected on the ”tangential directions” of the

data manifold.

We recall from our discussion of Theorem 2 that we can

always find classifiers g̃ which coincide with the original

classifier g on the data manifold S but may differ in the

gradient components orthogonal to the data manifold, i.e.

for some x ∈ S it holds that

(1− P )∇g(x) 6= (1− P )∇g̃(x) .

On the other hand, the components tangential to the mani-

fold S agree

P ∇g(x) = P ∇g̃(x) , ∀x ∈ S .

In other words, the tsp-gradient explanations of the original

model g and any such model g̃ are identical:

ĥg(x) = ĥg̃(x) ∀x ∈ S . (16)

It can therefore be expected that tsp-explanations ĥg are

significantly more robust compared to their unprojected

counterparts hg .

For other explanation methods, the corresponding tsp-

explanations may be obtained using a slightly modified

projector P . We refer to Appendix C for more details.

3.2. TSP Explanations: Methods

Flat Submanifolds and Logistic Regression: Recall from

Section 2.3 that for a logistic regression model g(x) =

σ(wTx + c) with gradient explanation h
grad
g = w, we can

define a manipulated model

g̃(x) = σ

(

wTx+
∑

i

λi(ŵ
(i)T x− bi) + c

)

with gradient explanation h
grad
g̃ = w +

∑

i λiŵ
(i) for arbi-

trary λi ∈ R. Since the vectors ŵi are normal to the data

hypersurface S, it holds that Pŵi = 0. As a result, the

gradient tsp-explanations of the original model g and its

manipulated counterpart g̃ are identical, i.e.

ĥgrad
g = ĥ

grad
g̃ = Pw . (17)

We discuss the case of other explanation methods in the

Appendix C.1.
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Figure 3. Left: SSIM of the target map ht and explanations of

original model g and manipulated g̃ respectively. Clearly, the

manipulated model g̃ has explanations which closely resemble the

target map ht over the entire FashionMNIST test set. Right: Same

as on the left but for tsp-explanations. The model g̃ was trained

to manipulate the tsp-explanation. Evidently, tsp-explanations are

considerably more robust than their unprojected counterparts on

the left. Colored bars show the median. Errors denote the 25th and

75th percentile. Other similarity measures show similar behaviour

and can be found in Appendix D.
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Figure 4. x⊙Grad tsp-explanations for original classifier g and

manipulated g̃ highlight the same features. Colored bars show

the median of the explanations over multiple examples.

General Case: In many practical applications, we do not

know the explicit form of the projection matrix P . In these

situations, we propose to construct P by one of the follow-

ing two methods:

Hyperplane method: for a given datapoint x ∈ S, we find

its k-nearest neighbours x1, . . . , xk in the training set. We

then estimate the data tangent space TxS by constructing the

d-dimensional hyperplane with minimal Euclidean distance

to the points x, x1, . . . , xk. Let this hyperplane be spanned

by an orthonormal basis q1, . . . qd ∈ R
D. The projection
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matrix P on this hyperplane is then given by

P =

d∑

i=1

qi q
T
i .

Autoencoder method: the hyperplane method requires that

the data manifold is sufficiently densely sampled, i.e. the

nearest neighbors are small deformations of the data point

itself. In order to estimate tangent space for datasets without

this property, we use techniques from the well-established

field of manifold learning. Following (Shao et al., 2018),

we train an autoencoder on the dataset and then perform an

SVD decomposition of the Jacobian of decoder D,

∂D

∂z
= U ΣV . (18)

The projector is constructed from the left-singular values

u1, . . . , ud ∈ R
D corresponding to the d largest singular

values. The projector is obtained by

P =
d∑

i=1

ui u
T
i . (19)

The underlying motivation for this procedure is reviewed in

Appendix C.2.

After one of these methods is used to estimate the projector

P for a given x ∈ S, the corresponding tsp-explanation can

be easily computed by ĥ(x) = P h(x).

3.3. TSP Explanations: Practice

In this section, we will apply tsp-explanations to the exam-

ples of Section 2.4 and show that they are significantly more

robust under model manipulations.

Credit Assessment: From the arguments of the previous

section, it follows that the explanations of the manipulated

and original model agree. We indeed confirm this experi-

mentally, see Figure 4. We refer to the Appendix B for more

details.

Image Classification: For MNIST and FashionMNIST,

we use the hyperplane method to estimate the tangent space.

For CIFAR10, we find that the manifold is not densely sam-

pled enough and we therefore use the autoencoder method.

This is computationally expensive and takes about 48h using

four Tesla P100 GPUs. We refer to Appendix D for more

details.

Figure 5 shows the tsp-explanations for the examples of

Figure 2. The explanation maps of the original and manip-

ulated model show a high degree of visual similarity. This

suggests the manipulation occurred mainly in directions or-

thogonal to the data manifold (as the tsp-explanations are

IntGrad LRPx ⊙ GradGradInput

g g̃ g g̃ g g̃ g g̃

IntGrad LRPx ⊙ GradGradInput

g g̃ g g̃ g g̃ g g̃

Figure 5. Tsp-explanations for the models and images of Figure 2.

The tsp-explanations of the original model g and manipulated g̃

are similar suggesting that the manipulations were mainly due to

components orthogonal to the data manifold.

obtained from the original explanations by projecting out the

corresponding components). This is also confirmed quan-

titatively, see Appendix D. Furthermore, tsp-explanations

tend to be considerably less noisy than their unprojected

counterparts (see Figure 5 vs 2). This is expected from

our theoretical analysis: consider gradient explanations for

concreteness. Their components orthogonal to the data man-

ifold are undetermined by training and are therefore essen-

tially chosen at random. This fitting noise is projected out in

the tsp-explanation which results in a less noisy explanation.

If the adversaries knew that tsp-explanations are used, they

could also try to train a model g̃ which manipulates the

tsp-explanations directly. However, tsp-explanations are

considerable more robust to such manipulations, as shown

on the right-hand-side of Figure 3.

We refer to Appendix D for more detailed discussion.

4. Conclusion

A central message of this work is that widely-used expla-

nation methods should not be used as proof for a fair and

sensible algorithmic decision-making process. This is be-

cause they can be easily manipulated as we have demon-

strated both theoretically and experimentally. We propose

modifications to existing explanation methods which make
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them more robust with respect to such manipulations. This

is achieved by projecting explanations on the tangent space

of the data manifold. This is exciting because it connects

explainability to the field of manifold learning. For apply-

ing these methods, it is however necessary to estimate the

tangent space of the data manifold. For high-dimensional

datasets, such as ImageNet, this is an expensive and chal-

lenging task. Future work will try to overcome this hurdle.

Another promising direction for further research is to apply

the methods developed in this work to other application

domains such as natural language processing.

Acknowledgements

We thank the reviewers for their valuable feedback. P.K. is

greatly indebted to his mother-in-law as she took care of

his sick son and wife during the final week before submis-

sion. We acknowledge Shinichi Nakajima for stimulating

discussion. K-R.M. was supported in part by the German

Ministry for Education and Research (BMBF) under Grants

01IS14013A-E, 01GQ1115, 01GQ0850, 01IS18025A and

01IS18037A. This work is also supported by the Informa-

tion & Communications Technology Planning & Evaluation

(IITP) grant funded by the Korea government (No. 2017-0-

001779), as well as by the Research Training Group ”Differ-

ential Equation- and Data-driven Models in Life Sciences

and Fluid Dynamics (DAEDALUS)” (GRK 2433) and Grant

Math+, EXC 2046/1, Project ID 390685689 both funded by

the German Research Foundation (DFG).

References

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I. J., Hardt,

M., and Kim, B. Sanity checks for saliency maps. In Ad-

vances in Neural Information Processing Systems 31: An-

nual Conference on Neural Information Processing Sys-

tems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
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