
Fairwashing Explanations with Off-Manifold Detergent

A. Proofs

A.1. Theorem 1

We first recall a few basic definitions and theorems nec-

essary for the proof of Theorem 1. Our presentation will

be necessarily brief as it can hardly replace a course on

differential geometry. However we closely follow (Lee,

2012) to which we refer for a more detailed and complete

presentation.

Definition 2 An embedded submanifold S of M is a subset

S ⊂M that is itself a manifold (with respect to the subspace

topology) endowed with a smooth structure with respect to

which the inclusion map S −֒→ M is a smooth embedding.

If S is closed as a set, the submanifold is called properly

embedded.

Let U be an open subset of R
n and k ∈ {1, . . . , n}. A

k-slice of U is any subset S ⊂ U of the form

S = {(x1, . . . , xk, 0, . . . 0) ∈ U} .

We say that a submanifold S ⊂M satisfies the local k-slice

condition if each point p ∈ S is contained in the domain

of a chart (U, φ) for which φ(S ∩ U) is a single k-slice in

φ(U).

Theorem 3 An embedded k-dimensional submanifold S

satisfies the local k-slice condition.

We refer to Theorem 5.8 of (Lee, 2012) for a proof.

Definition 3 Let M be a smooth manifold and S ⊂ M an

embedded submanifold. A vector field X along S assigns to

each p ∈ S a vector Xp ∈ TpM .

For each p ∈ S, we can decompose the tangent space

TpM = TpS ⊕ TpS
⊥, where TpS

⊥ is the orthogonal com-

plement of TpS.

A standard tool for extending functions from a local coordi-

nate patch to the entire manifold is given by the following

definition:

Definition 4 Let M be a topological space and Φ =
(φα)α∈I an open cover indexed by the set I . A partition of

the unity subordinate to Φ is an family (ψα)α∈I of continu-

ous functions ψα :M → R with the properties:

1. ∀x ∈M and ∀α ∈ I: 0 ≤ ψα(x) ≤ 1

2. ∀α ∈ I: supp(ψα) ⊂ φα

3. (suppψα)α∈I is locally finite, i.e. ∀p ∈M , ∃U ⊂M

such that U ∩ supp(ψα) 6= ∅ for only finitely many

values of α.

It can be shown that for any open cover of a manifold M ,

a partition of the unity subordinate to this cover exists. We

refer to Theorem 2.23 of (Lee, 2012) for a proof.

Our main theorem is a generalization of the well-known sub-

manifold extension lemma (see, for example, Lemma 5.34

in (Lee, 2012)). While we could not find such a generaliza-

tion in the literature, we suspect that it is entirely obvious

to differential geometers but typically not needed for their

purposes. We now state this main theorem before giving a

proof:

Theorem 4 Let S ⊂ M be a properly embedded d-

dimensional submanifold of the D-dimensional manifold

M and V =
∑D

i=d+1 v
i∂i a smooth vector field along S

which for each p ∈ S assigns vectors in TpM
⊥. For any

smooth function f : S → R, there exists a smooth extension

F :M → R such that F |S = f and

∇F (x) = (∇1f(x), . . .∇df(x), v
1(x), . . . , vD−d(x))

for x ∈ S.

Proof: Since S is embedded, there exists a slice chart

(Up, φp) for each p ∈ S. We extend f in Up by the smooth

map

Fp(x1, . . . , xD) = f(x1, . . . , xd) +

D
∑

I=d+1

vI(x1, . . . , xd)x
I .

By the definition of a slice chart, φ(p) =
(x1, . . . , xd, 0, . . . , 0) for p ∈ S. Therefore, it follows that

F |S = f .

Let {ψp, p ∈ S} ∪ {χ} be a partition of unity subordinate

to the open cover {Up; p ∈ S} ∪ {M \ S}.8 We define

F (x) =
∑

p∈S

ψp(x)Fp(x) .

For x ∈ S, it holds that Fp(x) = f(x) and thus F (x) =
f(x)

∑

p∈S ψp(x) = f(x) because
∑

p∈S ψp(x) = 1.

Since the collection of supports of the ψp is locally finite,

F is smooth.

The gradient of F at x ∈ S can be straightforwardly calcu-

lated. For I ∈ {d+ 1, . . . , D}, one obtains

∇IF (x) = ∇I

∑

p

ψp(x)Fp(x)

=
∑

p

∇Iψp(x)Fp(x) +
∑

p

ψp(x)∇IFp(x)

= f(x)∇I

∑

p

ψp(x) +
∑

p

ψp(x)v
I(x) .

8We note that M \ S is open since S is closed.
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We note that sum and differentiation commute due to the

local finiteness of the partition ψ. Using
∑

p ψp(x) = 1, it

follows that ∂I
∑

p ψp(x) = 0. We thus have derived that

∂IF (x) = vI(x)
∑

p

ψp(x) = vI(x) .

For i ∈ {1, . . . , d}, one obtains

∇i

∑

p

ψp(x)Fp(x)

=
∑

p

∇iψp(x)Fp(x) +
∑

p

ψp(x)∇iFp(x)

=f(x)∇i

∑

p

ψp(x)+

+
∑

p

ψp(x)

(

∇if(x) +

D
∑

I=d+1

xI ∇iv
I(x)

)

.

The first term vanishes due to ∇i

∑

p ψp(x) = ∇i1 = 0.

For the last term, we use that for x ∈ S it holds that xI = 0.

As a result, we derive that

∇iF (x) = ∇if(x) .

�

A.2. Theorem 2

A.2.1. BOUNDS ON EXPLANATIONS

As noted in the main text, a global rescaling of the explana-

tion maps h is merely conventional. A natural convention

is to bound the explanations such that hi ∈ [−0.5, 0.5] for

all i = 1 . . . D. For the gradient map, this can be ensure by

defining h(x) = λ∇g(x) where λ = 1
C

(since by assump-

tion |∇ig(x)| ≤ C). In particular, all target explanation

maps are then chosen to obey this bound. For convenience,

we can absorb rescaling λ in the classifier g by redefining

g → λg. As a result, we always choose the convention that

|∇ig(x)| ≤ 1 without loss of generality.

More generally, let h denote any bounded explanation

method

|hi(x)| ≤ C ∈ R+ ∀x ∈ S (20)

We note that all considered explanation maps obey

g → λg ⇒ hg → λhg (21)

for λ ∈ R since they are linear in g.

From this, it follows that any bounded explanation method

can be assumed to be bounded by 0.5 because this can

be ensured by an irrelevant rescaling. We again adopt the

convention in which this rescaling factor is absorbed in g.

A.2.2. PROOFS FOR OTHER EXPLANATIONS

In this appendix, we will proof Theorem 2 for x⊙Grad and

ǫ-LRP.

x ⊙ Grad: We assume that the explanation map of g is

bounded, i.e. |hgi (x)| = |(x⊙∇ig(x))i| ≤ C ∈ R+ for all

x ∈ S. We furthermore assume that there exists a chart for

which the coordinates xi 6= 0 are non-vanishing for i > d.

In practice, this can be easily ensured by an appropriate shift

of the data.9 Given a target explanation ht(x), we choose a

extension G of g|S such that

∇G(x) = (∇1g(x), . . .∇dg(x),
ht
d+1(x)

xd+1
, . . . ,

ht
D(x)
xD

) .

The explanation ofG is given by hG(x) = x⊙∇G(x). The

mean-squared error between target and model explanation

is then given by

MSE(hG(x), h
t(x)) = 1

D

D
∑

i=1

(xi∇iG(x)− hti(x))
2

This sum can be decomposed as

1
D

d
∑

i=1

(xi∇ig(x)− ht)2 + 1
D

D
∑

i=d+1

x2i (∇iG(x)−
ht
i(x)
xi

)2

Using the fact that we can assume |hgi | = |xi∇ig(x)| ≤
0.5 without loss of generality10 and that we can rescale ht

arbitrarily, it then follows

MSE(hG(x), h
t(x) ≤

d

D
.

ǫ-LRP: We assume that the network uses relu non-

linearities. In fact, LRP can be shown to be theoretically

well-motivated under this assumption by using Deep Taylor

Decomposition (Montavon et al., 2017).

It can be shown that ǫ-LRP can be mathematically reformu-

lated as

hǫLRP = x⊙ ∇̃g(x) ,

where the operator ∇̃ acts on non-linearities f by

∇̃f(z) = f(z)
z

(22)

and on affine linear functions as the standard gradient ∇.

We refer to the Appendix A of (Ancona et al., 2018) for a

9If we do not allow for the freedom of shifting the data, any
valid x⊙Grad explanation map must have zero relevance for input
components xi which are vanishing. If one restrict the target map
ht to be valid, no shifts are needed for the proof.

10We note that the necessary rescaling of hg is not in conflict
with the shift to ensure xi 6= 0 because the latter condition is
scale-invariant.
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proof. By our assumption, all non-linearities are relu and

therefore obey

∇̃relu(x) = θ(x)

where θ(x) is the Heaviside step function. This coincides

with normal gradient operator ∇relu(x) = θ(x). This ob-

servation was, to the best of our knowledge, first made in

(Ancona et al., 2018). Therefore, the proof for x ⊙ Grad

applies verbatim for this method as well. �

A.3. Flat Manifolds and other Explanation Methods

It was shown in the main text that one can always construct

a model

g̃(x) = σ

(

wTx+
∑

i

λi(ŵ
(i)T x− bi) + c

)

, (23)

which agrees with g(x) = σ(wTx + c) for all datapoints

x ∈ S but has gradient explanation map

hgrad(x) = w +
∑

i

λiŵ
(i) . (24)

By choosing λi appropriately, we can always set compo-

nents of hgrad corresponding to orthogonal directions ŵi of

the data S to an arbitrary hti, i.e.

λi = hti − wT ŵ(i)

where we have normalized ŵ(i) such that it has unit norm.

For x⊙ Grad, we can similarly choose

λi =
hti − (x⊙ w)T ŵ(i)

(x⊙ ŵ(i))T ŵ(i)

As already discussed in Appendix A.2, valid x⊙ Grad ex-

planations map have to be zero in components hi for which

the corresponding input component xi are vanishing. As a

result, one only needs to set λi to a non-vanishing value if

xi 6= 0. Thus, the expression above is well-defined for all

valid explanation maps. The corresponding statement for

ǫ-LRP method can be proven completely analogously.

We also note that ǫ-LRP and IntGrad coincide with the

x⊙Grad method for logistic regression. For the latter, one

has to choose a vanishing baseline point x̄. The generaliza-

tion to non-vanishing baselines is however straightforward

by substituting x→ x− x̄.

B. Credit Risk using other Explanation

Methods

We originally tested our procedure on two credit-risk

datasets. Unfortunately, we realized that the licences of

these datasets do not permit publication of these results.

Since our results only mildly depend on the data (for exam-

ple, the gradient explanation is completely independent of

it), we decided to generate a synthetic dataset as follows:

the feature ’gender’ is sampled with equal probability for

the values 1 for male or −1 for female. The feature ’income’

is sampled from a normal distribution with mean µ = 5000
and standard deviation σ = 5000. We clipped to a minimum

of 250 to ensure only positive income. We then normalized

the income to take values between 0 and 1 by dividing by

the maximum income. The feature ’taxes’ is 0.4xincome and,

for simplicity, not further normalized. We use λ = 1000 as

scaling factor for the weights ŵ of the modified classifier g̃.

The bars in Figures 6 and 8 show the average explanation

map with error bars as standard deviations. We only show

explanation maps for positive classification results (exam-

ples where credit was given). All explanation maps are

normalized to have
∑

i |hi| = 1.
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Figure 6. Gradient explanations for classifier g and fairwashed

classifier g̃ highlight completely different features.
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Figure 7. Gradient tsp-explanations for original classifier g and

manipulated g̃ highlight the same features.Colored bars show the

median of the explanations over multiple examples.
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Figure 8. x⊙Grad explanations for classifier g and fairwashed clas-

sifier g̃ highlight completely different features.
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Figure 9. x⊙Grad tsp-explanations for original classifier g and

manipulated g̃ highlight the same features. Colored bars show

the median of the explanations over multiple examples.

C. TSP-Explanations

For the x⊙ Grad method, we let the projection operator act

only on the gradient factor of the explanation map, i.e.

ĥxGrad(x) = x⊙ P ∇g(x) . (25)

This is equivalent to redefining the projection matrix to

Pij →

{

xi

xj
Pij for xj 6= 0 ,

0 for xj = 0 .
(26)

and applying this redefined projection operator on the un-

projected map hxGrad, i.e.

ĥxGrad(x) = P hxGrad(x) . (27)

Analogously, we define for the IntGrad method

ĥIntGrad(x) =(x− x̄)

⊙ 1
N

N
∑

k=0

P ∇g
(

x̄+ k
N
(x− x̄)

)

, (28)

where P projects on the tangent space of the point at which

the corresponding gradient is calculated. In practice how-

ever, we cannot guarantee that all the corresponding points

lie on the data manifold S. We therefore propose to use the

projection operator for the data point x instead. We find

empirically that this leads to robuster explanations. This

definition can again be reformulated in terms of a redefini-

tion of the projection operator in complete analogy to the

case of x⊙ Grad.

For the LRP method, we propose to use the generalized

projection matrix (26) since ǫ-LRP is equivalent to x⊙Grad

for relu activations (see Appendix A.2) but we also find

empirically that the standard projection matrix on the data

manifold leads to more robust explanations.

C.1. Flat manifold and Logistic Regression

For x⊙Grad method, we again straightforwardly see that the

tsp-explanations for g and g̃ agree by applying the definition

(25), i.e.

ĥg(x) = x⊙ P ∇g(x) = x⊙ P ∇g̃(x) = ĥg̃(x) . (29)

The corresponding statement for ǫ-LRP can be proven anal-

ogously. The same is true for IntGrad if one assumes that

all intermediate point as well as the baseline point are on

the data manifold.

C.2. Autoencoder Method

In the following, we will first show how the proposed proce-

dure for estimating tangent space arises from certain asymp-

totic limit of autoencoders.

Definition 5 An asymptotically-trained autoencoder with

encoder E :M → Z and D : Z →M has zero reconstruc-

tion error, i.e.

Erc =

∫

S

dDx pdata(x) ||(D ◦ E)(x)− x||2 = 0 ,

where pdata is a continuous probability density describing

the data. Furthermore, the decoder maps on the data mani-

fold S, i.e.

∀z ∈ Z : D(z) ∈ S .

The latter condition arises from the fact that we want the

decoder to generate data samples from latent representa-

tions. We note there is good theoretical and experimental

evidence that these conditions hold asymptotically for (at

least some of the) popular autoencoder architectures, in

particular Variational Autoencoders (Kingma & Welling,

2014).
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Theorem 5 For a continuous data distribution pdata, it

holds that

Erc = 0 ⇒ ∀x ∈ S : x = (D ◦ E)(x) , (30)

i.e. every datapoint x is perfectly reconstructed.

Proof: Suppose, there exists a x0 ∈ S such that x0 6=
(D ◦ E)(x0). Since the integrand of Erc is continuous, we

can always find an ǫ > 0 such that this condition holds for

every x ∈ [x−ǫ, x+ǫ]. Let ∆ ∈ R+ denote the infimum of

the integrand on this interval. By positivity of the integrand,

it holds that Erc ≥ 2ǫ∆ > 0. �

This theorem then immediately implies that:

Theorem 6 The decoder D : Z → S of an asymptotically-

trained autoencoder is surjective on the data manifold S.

Proof: Assume the contrary, then there exists a x ∈ S such

that 6 ∃z ∈ Z: D(z) = x. But by the previous theorem,

it has to hold that z = E(x) obeys D(z) = x since the

autoencoder has vanishing reconstruction error.�

The differential dzD(z) = ∂D
∂z

(z) is a linear map from the

tangent space of Z to the tangent space of S, i.e. dzD(z) :
TzZ → TD(z)S. Since the decoder is surjective, the rank of

dzD is the same as the dimensionality of the data manifold

S, i.e. rk(dzD) = d. These are basic facts of differential

geometry and we refer to Chapter 5 and 6 of (Lee, 2012) for

a detailed discussion. As a result, the left-singular vectors

u1, . . . ud ∈ R
D, corresponding to the d non-vanishing

singular values of the decomposition dzD(z) = U ΣV ,

span the data tangent space TD(z)S.

In the non-asymptotic limit, it cannot be expected that this

relation holds exactly. For a sufficiently well-trained au-

toencoder, it is however reasonable to expect that the left-

singular values u1, . . . , ud ∈ R
D corresponding to the d

largest singular values are a good approximation for the

basis of the data tangent space.

We stress however that we do not have a rigorous proof for

this outside of the asymptotic regime discussed above. We

furthermore want to remark that our thinking was heavily

inspired by the discussion in (Shao et al., 2018) which uses

very similar techniques. Last but not least, there are a num-

ber of alternative approaches in the literature to estimate

tangent space. Notable examples include Contractive Au-

toencoders (Rifai et al., 2011) and semi-supervised GANs

(Kumar et al., 2017). It would be interesting to compare

these approaches to the one taken in this paper but we leave

this to future work.

D. Details on Experiments

Model Architecture: For FashionMNIST and MNIST,

we used a convolutional network with two groups of con-
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Figure 10. Left: SSIM of the target map ht and explanations of

original model g and manipulated g̃ respectively. Right: Same

as on the left but for tsp-explanations. The model g̃ was trained to

manipulate the tsp-explanation, but this time with a higher weight-

ing factor γ = 9. Even with this more aggressive manipulation

compared to the original experiment in Figure 3, tsp-explanations

are considerably more robust than their unprojected counterparts

on the left. Colored bars show the median. Errors denote the 25th

and 75th percentile.

volution with 20 and 50 filters of size 5 × 5 respectively,

relu activation and max-pooling over 2× 2, followed by a

dense layer with 500 outputs, a relu activation, and finally

another dense layer with outputs down to the number of

classes (10). We used VGG16 (Simonyan & Zisserman,

2015) for experiments on CIFAR10.

Model Training: All images were normalized to mean

0 and standard deviation 1 within the training set over all

pixels. For CIFAR10 training, we padded all images with 4

pixels of each side in every dimension, and then randomly

cropped back to the original size of 32× 32.

The original models for FashionMNIST and MNIST were

trained from scratch using standard SGD with a learning

rate of 0.01 and a momentum of 0.5. The original VGG-16

model for CIFAR10 was trained also trained using standard

SGD, but with a learning rate of 0.05, momentum of 0.9
and weight decay of 5× 10−4.

All manipulated models on all datasets were trained using

Adam (Kingma & Ba, 2015) by fine-tuning the original

model with a fixed learning rate of 10−5 until convergence.

We set the weighting factor γ of the loss function (11) to

4. We use the same hyperparameters for manipulating tsp-

explanations to ensure fair comparison. To ensure our re-

sults do not depend on a specific weighting factor γ, we

demonstrate the same experiment shown in Figure 3 with

γ = 9 in Figure 10.

Target Explanation: The target explanation map used in

our experiments is shown in Figure 11.
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Figure 11. Image used as the target explanation to train the manip-

ulated models.
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Figure 12. SSIM (left) and MSE (right) of original vs. recon-

structed image from the tangent-space directions, ordered by num-

ber of used directions. Images are drawn from the full FashionM-

NIST test set. A total of 200 neighbours was used for each image.

The black curve describes the median, while the surrounding blue

area marks the space between the 25th and 75th percentiles.

Model Statistics: The accuracies, MSE and KL-

divergence of the original and adversarially trained models

are documented in Tables 1, 2 and 3 respectively.

Estimating Tangent Space: In the following, we briefly

summarize the procedure used to estimate tangent space for

the various datasets.

MNIST, FMNIST: We use the hyperplane method described

in the main text. For a given data point, the nearest neigh-

bours are taken only from the training set. The dimension-

ality of the hyperplane is chosen to be 30. This number

was tuned by ensuring that the data points are well recon-

structed with respect to the MSE (which corresponds to the

Euclidean distances, i.e. the natural metric on the embed-

ding space R
D), see Figure 12. The hyperplane is fitted

using the nearest neighbours and the datapoint itself. Before

fitting, all datapoints are normalized to have zero mean and

a standard deviation of one.

CIFAR10: We use the autoencoder method described in the

main text. This is because the manifold is not densly sam-

pled enough for the hyperplane method, see Figure 13. We

normalize the data as described above and split it by class.

Method MNIST FashionMNIST CIFAR10

Original 98.97 94.72 92.47
Gradient 98.84 94.58 91.77

x ⊙ Grad 98.96 94.48 91.53
IntGrad 98.95 94.65 91.62

LRP 98.95 94.68 92.08

Table 1. Accuracies of all models in percent.

A separate autoencoder is trained for each class for three

epochs using the Adam optimizer with a learning rate of

0.001. We use a same VQ-VAE architecture as in this exam-

ple11. After training, the Jacobian ∂D
∂ze

(x) is calculated by

backpropagation for each data sample x. We note that this

could be sped up by forward-mode differentiation. We then

perform an SVD-decomposition of the result and tune the

number of singular components ensuring good reconstruc-

tion.

Figure 13. Nearest neighbours with respect to Euclidean distance

for image in the top left-hand corner. Clearly, the neighbours

are not local deformation of the image itself. As a result, the

hyperplane method cannot be used for the CIFAR10 dataset.

Figure 14. The input image is shown on the very left. Second

image is the reconstruction from the tangent-space directions of

which six are shown on the right.

D.1. FashionMNIST

D.1.1. ADDITIONAL HEATMAPS

11https://github.com/deepmind/sonnet/blob/

master/sonnet/examples/vqvae_example.ipynb

https://github.com/deepmind/sonnet/blob/master/sonnet/examples/vqvae_example.ipynb
https://github.com/deepmind/sonnet/blob/master/sonnet/examples/vqvae_example.ipynb
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Method MNIST FashionMNIST CIFAR10

Gradient 120.54 11.13 838.80
x ⊙ Grad 114.29 15.07 933.38

IntGrad 128.03 13.04 707.52
LRP 119.08 3.76 647.45

Table 2. MSE×105 of model outputs g(x) and g̃(x) after final

softmax.

Method MNIST FashionMNIST CIFAR10

Gradient 1.21 1.99 8.39
x ⊙ Grad 1.14 2.06 9.34

IntGrad 1.50 2.00 6.30
LRP 1.19 1.19 6.88

Table 3. Mean KL-Divergence×103 between models g and g̃.

IntGrad LRPx ⊙ GradGradInput

g g̃ g g̃ g g̃ g g̃

Figure 15. Projected explanations from the original model g (left)

and the manipulated model g̃ (right) where the projected heatmaps

were attacked for various images from the FashionMNIST test set.

D.1.2. ADDITIONAL DISTANCE METRICS FOR

QUANTITATIVE COMPARISON
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Figure 16. Median of SSIM of left: hg(x) (blue) and hg̃ (red),

right: ĥg(x) (blue) and ĥg̃ (red) where h(x) was manipulated, on

FashionMNIST.
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Figure 17. Median of PCC of ĥg(x) (blue) and ĥg̃ (red) on Fash-

ionMNIST where h(x) was manipulated.
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Figure 18. Median of MSE of ĥg(x) (blue) and ĥg̃ (red) on Fash-

ionMNIST where h(x) was manipulated.
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Figure 19. Median of PCC of ĥg(x) (blue) and ĥg̃ (red) on Fash-

ionMNIST where ĥ(x) was manipulated.
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Figure 20. Median of MSE of ĥg(x) (blue) and ĥg̃ (red) on Fash-

ionMNIST where ĥ(x) was manipulated.

D.2. MNIST

D.2.1. HEATMAPS

IntGrad LRPx ⊙ GradGradInput
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Figure 21. Example explanations from the original model g (left)

and the manipulated model g̃ (right) for various images from the

MNIST test set.
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Figure 22. Example tsp-explanations from the original model g

(left) and the manipulated model g̃ (right) for various images from

the MNIST test set.
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Figure 23. Example tsp-explanations from the original model g

(left) and the manipulated model g̃ (right) where the projected

heatmaps were attacked for various images from the MNIST test

set.

D.2.2. QUANTITATIVE COMPARISON
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Figure 24. Median of SSIM of left: hg(x) (blue) and hg̃ (red),

right: ĥg(x) (blue) and ĥg̃ (red) where ĥ(x) was manipulated, on

MNIST.
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Figure 25. Median of SSIM of left: hg(x) (blue) and hg̃ (red),

right: ĥg(x) (blue) and ĥg̃ (red) where h(x) was manipulated, on

MNIST.
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Figure 26. Median of PCC of ĥg(x) (blue) and ĥg̃ (red) on MNIST

where h(x) was manipulated.
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Figure 27. Median of MSE of ĥg(x) (blue) and ĥg̃ (red) on MNIST

where h(x) was manipulated.
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Figure 28. Median of PCC of ĥg(x) (blue) and ĥg̃ (red) on MNIST

where ĥ(x) was manipulated.
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Figure 29. Median of MSE of ĥg(x) (blue) and ĥg̃ (red) on MNIST

where ĥ(x) was manipulated.
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D.3. CIFAR10

D.3.1. HEATMAPS

IntGrad LRPx ⊙ GradGradInput

g g̃ g g̃ g g̃ g g̃

Figure 30. Example explanations from the original model g (left)

and the manipulated model g̃ (right) for various images from the

CIFAR10 test set.
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Figure 31. Example tsp-explanations from the original model g

(left) and the manipulated model g̃ (right) for various images from

the CIFAR10 test set.
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Figure 32. Example tsp-explanations from the original model g

(left) and the manipulated model g̃ (right) where the projected

heatmaps were attacked for various images from the CIFAR10 test

set.

D.3.2. QUANTITATIVE COMPARISON
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Figure 33. Median of SSIM of left: hg(x) (blue) and hg̃ (red),

right: ĥg(x) (blue) and ĥg̃ (red) where ĥ(x) was manipulated, on

CIFAR10.
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Figure 34. Median of SSIM of left: hg(x) (blue) and hg̃ (red),

right: ĥg(x) (blue) and ĥg̃ (red) where h(x) was manipulated, on

CIFAR10.
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Figure 35. Median of PCC of ĥg(x) (blue) and ĥg̃ (red) on CI-

FAR10 where h(x) was manipulated.
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Figure 36. Median of MSE of ĥg(x) (blue) and ĥg̃ (red) on CI-

FAR10 where h(x) was manipulated.
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Figure 37. Median of PCC of ĥg(x) (blue) and ĥg̃ (red) on CI-

FAR10 where ĥ(x) was manipulated.
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Figure 38. Median of MSE of ĥg(x) (blue) and ĥg̃ (red) on CI-

FAR10 where ĥ(x) was manipulated.

E. Pixel-flipping

We compare the original explanations with the respective

TSP-explanations using pixel-flipping (Samek et al., 2017).

This metric measures how fast the network confidence g(x)
declines when removing features with highest relevance.

The pixels are inpainted using the telea-method (Telea,

2004) to alleviate uncontrolled behaviour of the classifier

off the manifold. Our result clearly show that tsp-methods

perform well on this metric.
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Figure 39. Pixel-flipping performance of Gradient and TSP-

Gradient on FashionMNIST
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Figure 40. Pixel-flipping performance of x⊙Grad and TSP-

x⊙Grad on FashionMNIST
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