
The Differentiable Cross-Entropy Method

Brandon Amos 1 Denis Yarats 1 2

Abstract
We study the cross-entropy method (CEM) for
the non-convex optimization of a continuous and
parameterized objective function and introduce
a differentiable variant that enables us to differ-
entiate the output of CEM with respect to the
objective function’s parameters. In the machine
learning setting this brings CEM inside of the end-
to-end learning pipeline where this has otherwise
been impossible. We show applications in a syn-
thetic energy-based structured prediction task and
in non-convex continuous control. In the control
setting we show how to embed optimal action se-
quences into a lower-dimensional space. DCEM
enables us to fine-tune CEM-based controllers
with policy optimization.

1. Introduction
Recent work in the machine learning community has shown
how optimization procedures can create new building-
blocks for the end-to-end machine learning pipeline (Gould
et al., 2016; Johnson et al., 2016; Amos et al., 2017; Amos
& Kolter, 2017; Domke, 2012; Metz et al., 2016; Finn et al.,
2017; Zhang et al., 2019; Belanger et al., 2017; Rusu et al.,
2018; Srinivas et al., 2018; Amos et al., 2018; Agrawal et al.,
2019a). In this paper we focus on the setting of optimiz-
ing an unconstrained, non-convex, and continuous objective
function f✓(x) : Rn ⇥⇥! R as

x̂ := argmin
x

f✓(x), (1)

where we assume x̂ is unique and that f is parameterized
by ✓ 2 ⇥ and has inputs x 2 Rn. If it exists, some

(sub-)derivative r✓x̂ is useful in the machine learning set-
ting to make the output of the optimization procedure end-
to-end learnable. For example, ✓ could parameterize a pre-
dictive model that generates outcomes conditional on x.

1Facebook AI Research 2New York University.
Correspondence to: Brandon Amos <bda@fb.com>.

Proceedings of the 37 th
International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

End-to-end learning in these settings can be done by defin-
ing a loss function L on top of x̂ and taking gradient steps
r✓L. If f✓ were convex this gradient is easy to analyze and
compute when it exists and is unique (Gould et al., 2016;
Johnson et al., 2016; Amos et al., 2017; Amos & Kolter,
2017). Analyzing and computing a “derivative” through the
non-convex argmin in eq. (1) is not as easy and is challeng-
ing in theory and practice. The derivative may not exist or
may be uninformative in theory, it might not be unique, and
even if it does, the numerical solver being used to compute
the solution may not find a global or even local optimum
of f . One promising direction to sidestep these issues is
to approximate the argmin operation with an explicit opti-
mization procedure that is interpreted as another compute
graph and unrolled through, i.e. seen as a sequence of differ-
entiable computations. This is most commonly done with
gradient descent as in Domke (2012); Metz et al. (2016);
Finn et al. (2017); Belanger et al. (2017); Rusu et al. (2018);
Srinivas et al. (2018); Foerster et al. (2018); Zhang et al.
(2019). This approximation adds definition and structure to
an otherwise ill-defined desiderata at the cost of biasing the
gradients and enabling the learning procedure to over-fit to
the hyper-parameters of the optimization algorithm, such as
the number of gradient steps or the learning rate.

In this paper we show how to use the cross-entropy method

(CEM) (Rubinstein, 1997; De Boer et al., 2005) to approxi-
mate the derivative through an unconstrained, non-convex,
and continuous argmin. CEM for optimization is a zeroth-

order optimizer and works by generating a sequence of
samples from the objective function. We show a simple
and computationally negligible way of making CEM dif-
ferentiable that we call DCEM by using the smooth top-k
operation from Amos et al. (2019). This also brings CEM
into the end-to-end learning process in scenarios such as
control where there is otherwise a disconnection between
the objective that is being learned and the objective that is
induced by deploying CEM on top of those models.

We first study DCEM in a simple non-convex energy-based

learning setting for regression. We contrast using unrolled
gradient descent and DCEM for optimizing over a SPEN
(Belanger & McCallum, 2016). We show that unrolling
through gradient descent in this setting over-fits to the num-
ber of gradient steps taken and that DCEM generates a more
reasonable energy surface.

The Differentiable Cross-Entropy Method

We next focus on using DCEM in the context of non-convex

continuous control as a differentiable policy class that is
end-to-end learnable. This setting is especially interesting
as vanilla CEM is the state-of-the-art method for solving the
control optimization problem with neural network transition

dynamics as in Chua et al. (2018); Hafner et al. (2018). We
show that DCEM is useful for embedding action sequences

into a lower-dimensional space to make solving the control
optimization process significantly less computationally and
memory expensive. This controller induces a differentiable

policy class parameterized by the model-based components.
DCEM is a solution to the objective mismatch problem in
model-based control (Lambert et al., 2020), which is the
issue that arises when training model-based components
with the objective of maximizing the data likelihood but
then using the model-based components for the objective
of control. We use PPO (Schulman et al., 2017) to fine-

tune the model-based components, demonstrating that it is

possible to use standard policy learning for model-based RL
components in addition to maximum-likelihood fitting.

2. Background and Related Work
2.1. Differentiable optimization-based modeling in

machine learning

Optimization-based modeling is a way of integrating spe-
cialized operations and domain knowledge into end-to-end
machine learning pipelines, typically in the form of a pa-
rameterized argmin operation. Convex, constrained, and
continuous optimization problems, e.g. as in Gould et al.
(2016); Johnson et al. (2016); Amos et al. (2017); Amos &
Kolter (2017); Agrawal et al. (2019a), capture many stan-
dard layers as special cases and can be differentiated through
by applying the implicit function theorem to a set of optimal-
ity conditions from convex optimization theory, such as the
KKT conditions. Non-convex and continuous optimization
problems, e.g. as in Domke (2012); Belanger & McCallum
(2016); Metz et al. (2016); Finn et al. (2017); Belanger et al.
(2017); Rusu et al. (2018); Srinivas et al. (2018); Foerster
et al. (2018); Amos et al. (2018); Pedregosa (2016); Jenni
& Favaro (2018); Rajeswaran et al. (2019); Zhang et al.
(2019), are more difficult to differentiate through. Differ-
entiation is typically done by unrolling gradient descent

or applying the implicit function theorem to some set of
optimality conditions, sometimes forming a locally convex
approximation to the larger non-convex problem. Unrolling

gradient descent is the most common way and approximates
the argmin operation with gradient descent for the forward
pass and interprets the operations as another compute graph
for the backward pass that can all be differentiated through.
In contrast to these works, we show how continuous and
non-convex argmin operations can also be approximated
with the cross-entropy method.

2.2. Embedding domains for optimization problems

Oftentimes the solution space of high-dimensional opti-
mization problems may have structural properties that an
optimizer can exploit to find a better solution or to find the
solution quicker than an otherwise naïve optimizer. Meta-
learning approaches such as LEO (Rusu et al., 2018) and
CAVIA (Zintgraf et al., 2019) turn the optimization problem
for adaptation in a high-dimensional parameter space into
a lower-dimensional latent embedded optimization prob-
lem. In the context of Bayesian optimization this has been
explored with random feature embeddings, hand-coded em-
beddings, and auto-encoder-learned embeddings (Antonova
et al., 2019; Oh et al., 2018; Calandra et al., 2016; Wang
et al., 2016; Garnett et al., 2013; Ben Salem et al., 2019;
Kirschner et al., 2019). Luo et al. (2018) and Gómez-
Bombarelli et al. (2018) turn discrete search problems for
architecture search and molecular design, respectively, into
embedded continuous optimization problems. We show that
DCEM is another reasonable way of learning an embedded
domain for exploiting the structure in and efficiently solving
larger optimization problems, with the significant advantage
of DCEM being that the latent space is directly learned to be
optimized over as part of the end-to-end learning pipeline.

2.3. RL and Control

High-dimensional non-convex optimization problems that
have a lot of structure in the solution space naturally arise
in the control setting where the controller seeks to optimize
the same objective in the same controller dynamical system
from different starting states. This has been investigated in,
e.g., planning (Ichter et al., 2018; Ichter & Pavone, 2019;
Mukadam et al., 2018; Kurutach et al., 2018; Srinivas et al.,
2018; Yu et al., 2019; Lynch et al., 2019), and policy dis-
tillation (Wang & Ba, 2019). Chandak et al. (2019) shows
how to learn an action space for model-free learning and
Co-Reyes et al. (2018); Antonova et al. (2019) embed action

sequences with a VAE. There has also been a lot of work
on learning reasonable latent state space representations
(Tasfi & Capretz, 2018; Zhang et al., 2018; Gelada et al.,
2019; Miladinović et al., 2019) that may have structure im-
posed to make it more controllable (Watter et al., 2015;
Banijamali et al., 2017; Ghosh et al., 2018; Anand et al.,
2019; Levine et al., 2019; Singh et al., 2019). In contrast
to these works, we learn how to encode action sequences
directly with DCEM instead of auto-encoding the sequences.
This has the advantages of 1) never requiring the expensive
expert’s solution to the control optimization problem, 2)
potentially being able to surpass the performance of an ex-
pert controller that uses the full action space, and 3) being
end-to-end learnable through the controller for the purpose
of finding a latent space of sequences that DCEM is good at
searching over.

The Differentiable Cross-Entropy Method

Another direction the RL and control communities has been
pursuing is on the combination of model-based and model-
free methods by differentiating through model-based com-
ponents Bansal et al. (2017) does this with Bayesian opti-
mization and locally linear models. Okada et al. (2017);
Pereira et al. (2018) makes path integral control (Theodorou
et al., 2010) differentiable. Agrawal et al. (2019b) consid-
ers a class of convex controllers and differentiates through
them with Agrawal et al. (2019a). Amos et al. (2018) pro-
poses differentiable MPC and only do imitation learning
on the cartpole and pendulum tasks with known or lightly-
parameterized dynamics — in contrast, we are able to 1)
scale our differentiable controller up to the cheetah and
walker tasks, 2) use neural network dynamics inside of our
controller, and 3) backpropagate a policy loss through the
output of our controller and into the internal components.

3. The Differentiable Cross-Entropy Method
The cross-entropy method (CEM) (Rubinstein, 1997;
De Boer et al., 2005) is an algorithm to solve optimiza-
tion problems in the form of eq. (1). CEM is an iterative

and zeroth-order solver that uses a sequence of parametric

sampling distributions g� defined over the domain Rn, such
as Gaussians. Given a sampling distribution g�, the hyper-
parameters of CEM are the number of candidate points

sampled in each iteration N , the number of elite candidates

k to use to fit the new sampling distribution to, and the num-
ber of iterations T . The iterates of CEM are the parameters

� of the sampling distribution. CEM starts with an initial

sampling distribution g�1(X) 2 Rn, and in each iteration t

generates N samples from the domain [Xt,i]
N

i=1 ⇠ g�t
(·),

evaluates the function at those points vt,i := f✓(Xt,i), and
re-fits the sampling distribution to the top-k samples by
solving the maximum-likelihood problem1

�t+1 := argmax
�

X

i

1{vt,i  ⇡(vt)k} log g�(Xt,i), (2)

where the indicator 1{P} is 1 if P is true and 0 otherwise,
g�(X) is the likelihood of X under the distribution g✓, and
⇡(x) sorts x 2 Rn in ascending order so that

⇡(x)1  ⇡(x)2  . . .  ⇡(x)n.

We can then map from the final distribution g�T
back to the

domain by taking the mean of it, i.e. x̂ := E[g�T+1(·)]. In
some settings, the best sample can be returned as x̂.

Proposition 1. For multivariate isotropic Gaussian sam-

pling distributions we have that � = {µ,�2} and eq. (2)
has a closed-form solution given by the sample mean and

variance of the top-k samples as µt+1 := 1/k
P

i2It
Xt,i

1CEM’s name comes from eq. (2) more generally optimizing
the cross-entropy measure between two distributions.

k=1

k=2

000

101

010 110

011

100

111

001

0101
0110

1010
1001

1100

0011

Figure 1. The limited multi-label (LML) polytope Ln,k from Amos
et al. (2019) is the set of points in the unit n-hypercube with
coordinates that sum to k. Ln,1 is the (n� 1)-simplex. The L3,1

and L3,2 polytopes (triangles) are on the left in blue. The L4,2

polytope (an octahedron) is on the right. This polytope is also
referred to as the knapsack polytope or capped simplex.

and �
2
t+1 := 1/k

P
i2It

(Xt,i � µt+1)
2
, where the top-k

indexing set is It := {i : vt,i  ⇡(vt)k}.

This is well-known and is discussed in, e.g., Friedman et al.
(2001). We present this here to make the connections be-
tween CEM and DCEM clearer.

Differentiating through CEM’s output with respect to the
objective function’s parameters withr✓x̂ is useful, e.g., to
bring CEM into the end-to-end learning process in cases
where there is otherwise a disconnection between the objec-
tive that is being learned and the objective that is induced
by deploying CEM on top of those models. In the vanilla
form presented above the top-k operation in eq. (2) makes x̂
non-differentiable with respect to ✓. The function samples
can usually be differentiated through with some estimator
(Mohamed et al., 2019) such as the reparameterization trick

(Kingma & Welling, 2013; Rezende et al., 2014; Titsias &
Lázaro-Gredilla, 2014), which we use in all of our experi-
ments.

The top-k operation can be made differentiable by replacing
it with a soft version (Martins & Kreutzer, 2017; Malaviya
et al., 2018; Amos et al., 2019), or by using a stochastic ora-
cle (Brookes & Listgarten, 2018). Here we use the Limited

Multi-Label Projection (LML) layer (Amos et al., 2019),
which is a Bregman projection of points from Rn onto the
LML polytope shown in fig. 1 and defined by

Ln,k := {p 2 Rn | 0  p  1 and 1>p = k}. (3)

The LML polytope is the set of points in the unit n-
hypercube with coordinates that sum to k and is useful for
modeling in multi-label and top-k settings. If n is implied
by the context we will leave it out and write Lk.

We propose a temperature-scaled LML variant to project

The Differentiable Cross-Entropy Method

onto the interior of the LML polytope with

⇧Lk
(x/⌧) := argmin

0<y<1
�x>

y � ⌧Hb(y) s. t. 1>y = k

(4)
where ⌧ > 0 is the temperature parameter and

Hb(y) := �
X

i

yi log yi + (1� yi) log(1� yi)

is the binary entropy function. We introduce the hyper-
parameter ⌧ to show how DCEM captures CEM as a special
case as ⌧ ! 0. Equation (4) is a convex optimization layer
and can be solved in a negligible amount of time with a
GPU-amenable bracketing method on the univariate dual as
described in Amos et al. (2019). The derivativerx⇧Lk

(x/⌧)
necessary for backpropagation can be easily computed by
implicitly differentiating the KKT optimality conditions as
described in Amos et al. (2019).

We can use the LML layer to make a soft and differentiable
version of eq. (2) as

�t+1 := argmax
�

X

i

It,i log g�(Xt,i)

subject to It = ⇧Lk
(vt/⌧).

(5)

This is now a maximum weighted likelihood estimation prob-
lem (Markatou et al., 1997; 1998; Wang, 2001; Hu & Zidek,
2002), which still admits an analytic closed-form solution in
many cases, e.g. for the natural exponential family (De Boer
et al., 2005). Thus using the soft top-k operation with the
reparameterization trick, e.g., on the samples from g results
in a differentiable variant of CEM that we call DCEM and
summarize in alg. 1. We usually also normalize the values
in each iteration to help separate the scaling of the values
from the temperature parameter.

Proposition 2. The temperature-scaled LML layer

⇧Lk
(x/⌧) approaches the hard top-k operation as ⌧ ! 0+

when all components of x are unique.

We prove this in app. A with the KKT conditions of eq. (4).
The only difference between CEM and DCEM is the soft top-
k operation, thus when the soft top-k operation approaches
the hard top-k operation, we can conclude:

Corollary 1. DCEM becomes CEM as ⌧ ! 0+.

Proposition 3. With an isotropic Gaussian sampling dis-

tribution, the maximum weighted likelihood update in

eq. (5) becomes µt+1 := 1/k
P

i
It,iXt,i and �

2
t+1 :=

1/k
P

i
It,i (Xt,i � µt+1)

2
, where the soft top-k indexing

set is It := ⇧Lk
(vt/⌧).

This is well-known and is discussed in, e.g., De Boer et al.
(2005), and can be proved by differentiating eq. (5).

Corollary 2. Prop. 3 captures prop. 1 as ⌧ ! 0+.

4. Applications
4.1. Energy-Based Learning

Energy-based learning for regression and classification
estimate the conditional probability P(y|x) of an output
y 2 Y given an input x 2 X with a parameterized en-
ergy function E✓(y|x) 2 Y ⇥ X ! R such that P(y|x) /
exp{�E✓(y|x)}. Predictions are made by solving the opti-
mization problem

ŷ := argmin
y

E✓(y|x). (6)

Historically linear energy functions have been well-studied,
e.g. in Taskar et al. (2005); LeCun et al. (2006), as it makes
eq. (6) easier to solve and analyze. More recently non-
convex energy functions that are parameterized by neural
networks are being explored — a popular one being Struc-

tured Prediction Energy Networks (SPENs) (Belanger &
McCallum, 2016) which propose to model E✓ with neural
networks. Belanger et al. (2017) does supervised learning
of SPENs by approximating eq. (6) with gradient descent
that is then unrolled for T steps, i.e. by starting with some
y0, making gradient updates

yt+1 := yt � �ryE✓(yt|x)

resulting in an output ŷ := yT , defining a loss function L
on top of ŷ, and doing learning with gradient updates r✓L
that go through the inner gradient steps.

In this context we can alternatively use DCEM to approx-
imate eq. (6). One potential consideration when training
deep energy-based models with approximations to eq. (6) is
the impact and bias that the approximation is going to have
on the energy surface. We note that for gradient descent,
e.g., it may cause the energy surface to overfit to the number
of gradient steps so that the output of the approximate in-
ference procedure isn’t even a local minimum of the energy
surface. One potential advantage of DCEM is that the out-
put is more likely to be near a local minimum of the energy
surface so that, e.g., more test-time iterations can be used to
refine the solution. We empirically illustrate the impact of
the optimizer choice on a synthetic example in sect. 5.1.

4.2. Control and Reinforcement Learning

Our main application focus is in the continuous control

setting where we show how to use DCEM to learn a latent

control space that is easier to solve than the original problem
and induces a differentiable policy class that allows parts
of the controller to be fine-tuned with auxiliary policy or
imitation losses.

We are interested in controlling discrete-time dynamical
systems with continuous state-action spaces. Let H be the
horizon length of the controller and UH be the space of

The Differentiable Cross-Entropy Method

Algorithm 1 DCEM(f✓, g�,�1; ⌧, N, k, T)

DCEM minimizes a parameterized objective function f✓ and is differentiable w.r.t. ✓. Each DCEM iteration samples from
the distribution g�, starting with �1. DCEM enables the derivative of E[g�T+1(·)] with respect to ✓ to be computed by
differentiating all of the iterative operations.
for t = 1 to T do

[Xt,i]
N

i=1 ⇠ g�t
(·) . Sample N points from the domain. Differentiate with reparameterization.

vt,i = f✓(Xt,i) . Evaluate the objective function at those points.
It = ⇧Lk

(vt/⌧) . Compute the soft top-k projection of the values with eq. (4). Implicitly differentiate

Update �t+1 by solving the maximum weighted likelihood problem in eq. (5).
end for
return E[g�T+1(·)]

Algorithm 2 Learning an embedded control space with DCEM

Fixed Inputs: Dynamics f trans, per-step state-action cost Ct(xt, ut) that induces C✓(z;xinit), horizon H , full control
space UH , distribution over initial states D
Learned Inputs: Decoder fdec

✓
: Z ! UH

while not converged do
Sample initial state xinit ⇠ D.
ẑ = argmin

z2Z C✓(z;xinit) . Solve the embedded control problem eq. (8) with DCEM.
✓ grad-update(r✓C✓(ẑ)) . Update the decoder to improve the controller’s cost.

end while

control sequences over this horizon length, e.g. U could be
a multi-dimensional real space or box therein and UH could
be the Cartesian product of those spaces representing the
sequence of controls over H timesteps. We are interested in
repeatedly solving the control optimization problem2

û1:H := argmin
u1:H2UH

HX

t=1

Ct(xt, ut)

subject to x1 = xinit

xt+1 = f
trans(xt, ut)

(7)

where we are in an initial system state xinit governed by
deterministic system transition dynamics f

trans, and wish
to find the optimal sequence of actions û1:H such that we
find a valid trajectory {x1:H , u1:H} that optimizes the cost
Ct(xt, ut). Equation (7) can be seen as an instance of eq. (1)
by moving the rollout of the dynamics into the cost function.
Typically these controllers are used for receding horizon

control (Mayne & Michalska, 1990) where only the first
action u1 is deployed on the real system, a new state is ob-
tained from the system, and the eq. (7) is solved again from
the new initial state. In this case we can say the controller
induces a policy ⇡(xinit) := û1

3 that solves eq. (7) and
depends on the cost and transition dynamics, and potential
parameters therein. In all of the cases we consider f trans

is deterministic, but may be approximated by a stochas-
2We omit some explicit variables from the argmin operator

when they are can be inferred by the context.
3We also omit the dependency of u1 on xinit.

tic model for learning. Some model-based reinforcement
learning settings consider cases where f

trans and C are pa-
rameterized and potentially used in conjunction with another
policy class.

For sufficiently complex dynamical systems, eq. (7) is com-
putationally expensive and numerically instable to solve
and rife with sub-optimal local minima. The cross-entropy
method is the state-of-the-art method for solving eq. (7)
with neural network transitions f

trans (Chua et al., 2018;
Hafner et al., 2018). CEM in this context samples full action
sequences and refines the samples towards ones that solve
the control problem. Hafner et al. (2018) uses CEM with
1000 samples in each iteration for 10 iterations with a hori-
zon length of 12. This requires 1000⇥ 10⇥ 12 = 120, 000
evaluations (!) of the transition dynamics to predict the
control to be taken given a system state — and the transition
dynamics may use a deep recurrent architecture as in Hafner
et al. (2018) or an ensemble of models as in Chua et al.
(2018). One comparison point here is a model-free neural
network policy takes a single evaluation for this prediction,
albeit sometimes with a larger neural network.

The first application we show of DCEM in the continuous
control setting is to learn a latent action space Z with a
parameterized decoder f

dec
✓

: Z ! UH that maps back up
to the space of optimal action sequences, which we illus-
trate in fig. 8. For simplicity starting out, assume that the
dynamics and cost functions are known (and perhaps even
the ground-truth) and that the only problem is to estimate

The Differentiable Cross-Entropy Method

the decoder in isolation, although we will show later that
these assumptions can be relaxed. The motivation for having
such a latent space and decoder is that the millions of times
eq. (7) is being solved for the same dynamic system with the
same cost, the solution space of optimal action sequences
û1:H 2 UH has an extremely large amount of spatial (over
U) and temporal (over time in UH) structure that is being
ignored by CEM on the full space. The space of optimal
action sequences only contains the knowledge of the tra-
jectories that matter for solving the task at hand, such as
different parts of an optimal gait, and not irrelevant control
sequences. We argue that CEM over the full action space
wastes a lot of computation considering irrelevant action
sequences and show that these can be ignored by learning
a latent space of more reasonable candidate solutions here
that we search over instead. Given a decoder, the control
optimization problem in eq. (7) can then be transformed into
an optimization problem over Z as

ẑ := argmin
z2Z

C✓(z;xinit) :=
HX

t=1

Ct(xt, ut)

subject to x1 = xinit

xt+1 = f
trans(xt, ut)

u1:H = f
dec
✓

(z)

(8)

which is still a challenging non-convex optimization prob-
lem that searches over a decoder’s input space to find the
optimal control sequence. Equation (8) can be seen as an
instance of eq. (1) by moving the decoder and rollout of
the dynamics into the cost function C✓(z;xinit) and can be
solved with CEM and DCEM. We notationally leave out the
dependence of ẑ on xinit and ✓.

We propose in alg. 2 to use DCEM to approximately solve
eq. (8) and then learn the decoder directly to optimize the
performance of eq. (7). Every time we solve eq. (8) with
DCEM and obtain an optimal latent representation ẑ along
with the induced trajectory {xt, ut}, we can take a gradient
step to push down the resulting cost of that trajectory with
r✓C(ẑ), which goes through the DCEM process that uses
the decoder to generate samples to obtain ẑ. The DCEM
machinery behind this is not necessary if a reasonable local
minima is consistently found as this is an instance of min-
differentiation (Rockafellar & Wets, 2009, Theorem 10.13)
but in practice this breaks down in non-convex cases when
the minimum cannot be consistently found. DCEM helps by
providing the derivative information r✓ ẑ. Antonova et al.
(2019); Wang & Ba (2019) solve related problems in this
space and we discuss them in sect. 2.3. Learning an action
embedding also requires derivatives through the transition
dynamics and cost functions to compute r✓C(ẑ), even if
the ground-truth dynamics are being used. This gives the
latent space the knowledge of how the control cost will
change as the decoder’s parameters change.

DCEM in this setting also induces a differentiable policy

class ⇡(xinit) := u1 = f
dec(ẑ)1. This enables a policy or

imitation loss J to be defined on the policy that can fine-
tune the parts of the controller (decoder, cost, and transition
dynamics) gradient information from r✓J . In theory the
same approach could be used with CEM on the full opti-
mization problem in eq. (7). For realistic problems without
modification this is intractable and memory-intensive as it
would require storing and backpropagating through every
sampled trajectory, although as a future direction we note
that it may be possible to delete some of the low-influence
trajectories to help overcome this.

5. Experiments
Our experiments demonstrate applications of the cross-
entropy method in structured prediction, control, and rein-
forcement learning. sect. 5.1 illustrate a synthetic regression
structured prediction task where gradient descent learns a
counter-intuitive energy surface while DCEM retains the
minimum. sect. 5.2 shows how DCEM can embed con-
trol optimization problems in a case when the ground-truth
model is known or unknown, and we show that PPO (Schul-
man et al., 2017) can help improve the embedded controller.

Our PyTorch (Paszke et al., 2019) source code is
openly available at github.com/facebookresearch/dcem
and uses the PyTorch LML implementation from
github.com/locuslab/lml to compute eq. (4).

5.1. Unrolling optimizers for regression and structured
prediction

In this section we briefly explore the impact of the inner
optimizer on the energy surface of a SPEN as discussed in
sect. 4.1. For illustrative purposes we consider a simple uni-
dimensional regression task where the ground-truth data is
generated from f(x) := x sin(x) for x 2 [0, 2⇡]. We model
P(y|x) / exp{�E✓(y|x)} with a single neural network E✓

and make predictions ŷ by solving the optimization problem
eq. (6). Given the ground-truth output y?, we use the loss
L(ŷ, y?) := ||ŷ � y

?||22 and take gradient steps of this loss
to shape the energy landscape.

We consider approximating eq. (6) with unrolled gradient
descent and DCEM with Gaussian sampling distributions.
Both of these are trained to take 10 optimizer steps and
we use an inner learning rate of 0.1 for gradient descent
and with DCEM we use 10 iterations with 100 samples
per iteration and 10 elite candidates, with a temperature of
1. For both algorithms we start the initial iterate at y0 :=
0. We show in app. B that both of these models attain
the same loss on the training dataset but, since this is a
unidimensional regression task, we can visualize the entire
energy surfaces over the joint input-output space in fig. 2.

http://github.com/facebookresearch/dcem
https://github.com/locuslab/lml

The Differentiable Cross-Entropy Method

0 1 2 3 4 5 6

x

°6

°4

°2

0

2

4

6

y

Unrolled Gradient Descent

0 1 2 3 4 5 6

x

DiÆerentiable CEM

Figure 2. We trained an energy-based model with unrolled gradient descent and DCEM for 1D regression onto the black target function.
Each method unrolls through 10 optimizer steps. The contour surfaces show the (normalized/log-scaled) energy surfaces, highlighting that
unrolled gradient descent models can overfit to the number of gradient steps. The lighter colors show areas of lower energy.

This shows that gradient descent has learned to adapt from
the initial y0 position to the final position by descending
along the function’s surface as we would expect, but there is
no reason why the energy surface should be a local minimum
around the last iterate ŷ := y10. The energy surface learned
by CEM captures local minima around the regression target
as the sequence of Gaussian iterates are able to capture
a more global view of the function landscape and need
to focus in on a minimum of it for regression. We show
ablations in app. B from training for 10 inner iterations and
then evaluating with a different number of iterations and
show that gradient descent quickly steps away from making
reasonable predictions.

Discussion. Other tricks could be used to force the output
to be at a local minimum with gradient descent, such as
using multiple starting points or randomizing the number
of gradient descent steps taken — our intention here is to
highlight this behavior in the vanilla case. DCEM is also
susceptible to overfitting to the hyper-parameters behind it
in similar, albeit less obvious ways.

5.2. Control

5.2.1. STARTING SIMPLE: EMBEDDING THE
CARTPOLE’S ACTION SPACE

We first show that it is possible to learn an embedded control
space as discussed in sect. 4.2 in an isolated setting. We
use the standard cartpole dynamical system from Barto et al.
(1983) with a continuous state-action space. We assume that
the ground-truth dynamics and cost are known and use the
differentiable ground-truth dynamics and cost implemented
in PyTorch from Amos et al. (2018). This isolates the learn-
ing problem to only learning the embedding so that we can
study what this is doing without the additional complica-
tions that arise from exploration, estimating the dynamics,
learning a policy, and other non-stationarities. We show
experiments with these assumptions relaxed in sect. 5.2.2.

We use DCEM and alg. 2 to learn a 2-dimensional latent
space Z := [0, 1]2 that maps back up to the full control
space UH := [0, 1]H where we focus on horizons of length
H := 20. For DCEM over the embedded space we use 10
iterations with 100 samples in each iteration and 10 elite
candidates, again with a temperature of 1. We show the
details in app. C that we are able to recover the performance
of an expert CEM controller that uses an order-of-magnitude
more samples fig. 3 shows a visualization of what the CEM
and embedded DCEM iterates look like to solve the control
optimization problem from the same initial system state.
CEM spends a lot of evaluations on sequences in the control
space that are unlikely to be optimal, such as the ones the
bifurcate between the boundaries of the control space at
every timestep, while our embedded space is able to learn
more reasonable proposals.

5.2.2. SCALING UP TO CONTINUOUS LOCOMOTION

Next we show that we can relax the assumptions of hav-
ing known transition dynamics and reward and show that
we can learn a latent control space on top of a learned
model on the cheetah.run and walker.walk contin-
uous locomotion tasks from the DeepMind control suite
(Tassa et al., 2018) using the MuJoCo physics engine
(Todorov et al., 2012). We then fine-tune the policy in-
duced by the embedded controller with PPO (Schulman
et al., 2017), sending the policy loss directly back into
the reward and latent embedding modules underlying the
controller. Videos of our trained models are available at
https://sites.google.com/view/diff-cross-entropy-method.

We start with a state-of-the-art model-based RL approach
by noting that the PlaNet (Hafner et al., 2018) restricted
state space model (RSSM) is a reasonable architecture for
proprioceptive-based control in addition to just pixel-based
control. We show the graphical model we use in fig. 8,
which maintains deterministic hidden states ht and stochas-

https://sites.google.com/view/diff-cross-entropy-method

The Differentiable Cross-Entropy Method

Figure 3. Visualization of the samples that CEM and DCEM generate to solve the cartpole task starting from the same initial system state.
The plots starting at the top-left show that CEM initially starts with no temporal knowledge over the control space whereas embedded
DCEM’s latent space generates a more feasible distribution over control sequences to consider in each iteration. Embedded DCEM uses
an order of magnitude less samples and is able to generate a better solution to the control problem. The contours on the bottom show the
controller’s cost surface C(z) from eq. (8) for the initial state — the lighter colors show regions with lower costs.

tic (proprioceptive) system observations xt and rewards rt.
We model transitions as ht+1 = f

trans
✓

(ht, xt), observa-
tions with xt ⇠ f

odec
✓

(ht), rewards with rt = f
rew
✓

(ht, xt),
and map from the latent action space to action sequences
with u1:T = f

dec(z). We follow the online training proce-
dure of Hafner et al. (2018) to initialize all of the models
except for the action decoder fdec, using approximately 2M
timesteps. We then use a variant of alg. 2 to learn f

dec to
embed the action space for control with DCEM, which we
also do online while updating the models. We describe the
full training process in app. D.

Our DCEM controller induces a differentiable policy class
⇡✓(xinit) where ✓ are the parameters of the models that im-
pact the actions that the controller is selecting. We then use
PPO to define a loss on top of this policy class and fine-tune
the components (the decoder and reward module) so that
they improve the episode reward rather than the maximum-
likelihood solution of observed trajectories. We chose PPO
because we thought it would be able to fine-tune the policy

with just a few updates because the policy is starting at a
reasonable point, but this did not turn out to be the case and
in the future other policy optimizers can be explored. We im-
plement this by making our DCEM controller the policy in
the PPO implementation by Kostrikov (2018). We provide
more details behind our training procedure in app. D.

We evaluate our controllers on 100 test episodes and the
rewards in fig. 4 show that DCEM is almost (but not exactly)
able to recover the performance of doing CEM over the
full action space while using an order-of-magnitude less
trajectory samples (1,000 vs 10,0000). PPO fine-tuning
helps bridge the gap between the performances.

Discussion. The future directions of DCEM in the con-
trol setting will help bring efficiency and policy-based fine-
tuning to model-based reinforcement learning. Much more
analysis and experimentation is necessary to achieve this
as we faced many issues getting the model-based cheetah
and walker tasks to work that did not arise in the ground-

The Differentiable Cross-Entropy Method

Full CEM

Latent DCEM

Latent DCEM+PPO

Figure 4. We evaluated our final models by running 100 episodes each on the cheetah and walker tasks. CEM over the full action space
uses 10,000 trajectories for control at each time step while embedded DCEM samples only 1000 trajectories. DCEM almost recovers the
performance of CEM over the full action space and PPO fine-tuning of the model-based components helps bridge the gap.

truth cartpole task. We discuss this more in app. D. We also
did not focus on the sample complexity of our algorithms
getting these proof-of-concept experiments working. Other
reasonable baselines on this task could involve distilling the
controller into a model-free policy and then doing search on
top of that policy, as done in POPLIN (Wang & Ba, 2019).

6. Conclusions and Future Directions
We have shown how to differentiate through the cross-
entropy method and have brought CEM into the end-to-
end learning pipeline. Beyond further explorations in the
energy-based learning and control contexts we showed here,
DCEM can be used anywhere gradient descent is unrolled.
We find this especially promising for meta-learning and
can build on LEO (Rusu et al., 2018) or CAVIA (Zintgraf
et al., 2019). Inspired by DCEM, other more powerful
sampling-based optimizers could be made differentiable in
the same way, potentially optimizers that leverage gradient-
based information in the inner optimization steps (Sekhon
& Mebane, 1998; Theodorou et al., 2010; Stulp & Sigaud,
2012; Maheswaranathan et al., 2018) or by also learning
the hyper-parameters of structured optimizers (Li & Malik,
2016; Volpp et al., 2019; Chen et al., 2017).

Acknowledgments

We thank David Belanger, Roberto Calandra, Yinlam Chow,
Rob Fergus, Mohammad Ghavamzadeh, Edward Grefen-
stette, Shubhanshu Shekhar, and Zoltán Szabó for insightful
discussions, and the anonymous reviewers for many useful
suggestions and improvements to this paper.

We acknowledge the Python community (Van Rossum &
Drake Jr, 1995; Oliphant, 2007) for developing the core set
of tools that enabled this work, including PyTorch (Paszke
et al., 2019), Hydra (Yadan, 2019), Jupyter (Kluyver et al.,
2016), Matplotlib (Hunter, 2007), seaborn (Waskom et al.,
2018), numpy (Oliphant, 2006; Van Der Walt et al., 2011),
pandas (McKinney, 2012), and SciPy (Jones et al., 2014).

References
Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., and

Kolter, J. Z. Differentiable convex optimization layers. In
Advances in neural information processing systems, pp. 9562–
9574, 2019a.

Agrawal, A., Barratt, S., Boyd, S., and Stellato, B. Learning convex
optimization control policies. arXiv preprint arXiv:1912.09529,
2019b.

Amos, B. and Kolter, J. Z. Optnet: Differentiable optimization
as a layer in neural networks. In Proceedings of the 34th In-

ternational Conference on Machine Learning-Volume 70, pp.
136–145. JMLR. org, 2017.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural networks.
In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pp. 146–155. JMLR. org, 2017.

Amos, B., Jimenez, I., Sacks, J., Boots, B., and Kolter, J. Z. Dif-
ferentiable mpc for end-to-end planning and control. In Ad-

vances in Neural Information Processing Systems, pp. 8289–
8300, 2018.

Amos, B., Koltun, V., and Kolter, J. Z. The limited multi-label
projection layer. arXiv preprint arXiv:1906.08707, 2019.

Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-A., and
Hjelm, R. D. Unsupervised state representation learning in atari.
arXiv preprint arXiv:1906.08226, 2019.

Antonova, R., Rai, A., Li, T., and Kragic, D. Bayesian optimization
in variational latent spaces with dynamic compression. arXiv

preprint arXiv:1907.04796, 2019.

Banijamali, E., Shu, R., Ghavamzadeh, M., Bui, H., and Ghodsi, A.
Robust locally-linear controllable embedding. arXiv preprint

arXiv:1710.05373, 2017.

Bansal, S., Calandra, R., Xiao, T., Levine, S., and Tomlin, C. J.
Goal-driven dynamics learning via Bayesian optimization. In
IEEE Conference on Decision and Control (CDC), pp. 5168–
5173, 2017.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike
adaptive elements that can solve difficult learning control prob-
lems. IEEE transactions on systems, man, and cybernetics, pp.
834–846, 1983.

The Differentiable Cross-Entropy Method

Belanger, D. and McCallum, A. Structured prediction energy
networks. In International Conference on Machine Learning,
pp. 983–992, 2016.

Belanger, D., Yang, B., and McCallum, A. End-to-end learning for
structured prediction energy networks. In Proceedings of the

34th International Conference on Machine Learning-Volume

70, pp. 429–439. JMLR. org, 2017.

Ben Salem, M., Bachoc, F., Roustant, O., Gamboa, F., and Tomaso,
L. Sequential dimension reduction for learning features of ex-
pensive black-box functions. working paper or preprint, Febru-
ary 2019. URL https://hal.archives-ouvertes.
fr/hal-01688329.

Brookes, D. H. and Listgarten, J. Design by adaptive sampling.
arXiv preprint arXiv:1810.03714, 2018.

Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth, M. P.
Manifold gaussian processes for regression. In 2016 Inter-

national Joint Conference on Neural Networks (IJCNN), pp.
3338–3345. IEEE, 2016.

Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., and Thomas,
P. S. Learning action representations for reinforcement learning.
arXiv preprint arXiv:1902.00183, 2019.

Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Lilli-
crap, T. P., Botvinick, M., and de Freitas, N. Learning to learn
without gradient descent by gradient descent. In Proceedings of

the 34th International Conference on Machine Learning-Volume

70, pp. 748–756. JMLR. org, 2017.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep re-
inforcement learning in a handful of trials using probabilistic
dynamics models. In Advances in Neural Information Process-

ing Systems, pp. 4754–4765, 2018.

Co-Reyes, J. D., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and
Levine, S. Self-consistent trajectory autoencoder: Hierarchi-
cal reinforcement learning with trajectory embeddings. arXiv

preprint arXiv:1806.02813, 2018.

De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y.
A tutorial on the cross-entropy method. Annals of operations

research, 134(1):19–67, 2005.

Domke, J. Generic methods for optimization-based modeling. In
Artificial Intelligence and Statistics, pp. 318–326, 2012.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning
for fast adaptation of deep networks. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pp.
1126–1135. JMLR. org, 2017.

Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson, S., Abbeel,
P., and Mordatch, I. Learning with opponent-learning aware-
ness. In Proceedings of the 17th International Conference on

Autonomous Agents and MultiAgent Systems, pp. 122–130. In-
ternational Foundation for Autonomous Agents and Multiagent
Systems, 2018.

Friedman, J., Hastie, T., and Tibshirani, R. The elements of statis-

tical learning, volume 1. Springer series in statistics New York,
2001.

Garnett, R., Osborne, M. A., and Hennig, P. Active learning
of linear embeddings for gaussian processes. arXiv preprint

arXiv:1310.6740, 2013.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Bellemare,
M. G. Deepmdp: Learning continuous latent space models
for representation learning. arXiv preprint arXiv:1906.02736,
2019.

Ghosh, D., Gupta, A., and Levine, S. Learning actionable rep-
resentations with goal-conditioned policies. arXiv preprint

arXiv:1811.07819, 2018.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-
Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-
Iparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-Guzik,
A. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276,
2018.

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz, R. S., and
Guo, E. On differentiating parameterized argmin and argmax
problems with application to bi-level optimization. arXiv

preprint arXiv:1607.05447, 2016.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H.,
and Davidson, J. Learning latent dynamics for planning from
pixels. arXiv preprint arXiv:1811.04551, 2018.

Hu, F. and Zidek, J. V. The weighted likelihood. Canadian Journal

of Statistics, 30(3):347–371, 2002.

Hunter, J. D. Matplotlib: A 2d graphics environment. Computing

in science & engineering, 9(3):90, 2007.

Ichter, B. and Pavone, M. Robot motion planning in learned latent
spaces. IEEE Robotics and Automation Letters, 4(3):2407–2414,
2019.

Ichter, B., Harrison, J., and Pavone, M. Learning sampling distri-
butions for robot motion planning. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pp. 7087–
7094. IEEE, 2018.

Jenni, S. and Favaro, P. Deep bilevel learning. In Proceedings

of the European Conference on Computer Vision (ECCV), pp.
618–633, 2018.

Johnson, M., Duvenaud, D. K., Wiltschko, A., Adams, R. P., and
Datta, S. R. Composing graphical models with neural networks
for structured representations and fast inference. In Advances in

neural information processing systems, pp. 2946–2954, 2016.

Jones, E., Oliphant, T., and Peterson, P. {SciPy}: Open source
scientific tools for {Python}. 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

Kirschner, J., Mutnỳ, M., Hiller, N., Ischebeck, R., and Krause, A.
Adaptive and safe bayesian optimization in high dimensions via
one-dimensional subspaces. arXiv preprint arXiv:1902.03229,
2019.

https://hal.archives-ouvertes.fr/hal-01688329
https://hal.archives-ouvertes.fr/hal-01688329

The Differentiable Cross-Entropy Method

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bus-
sonnier, M., Frederic, J., Kelley, K., Hamrick, J. B., Grout, J.,
Corlay, S., et al. Jupyter notebooks-a publishing format for
reproducible computational workflows. In ELPUB, pp. 87–90,
2016.

Kostrikov, I. Pytorch implementations of reinforcement learn-
ing algorithms. https://github.com/ikostrikov/
pytorch-a2c-ppo-acktr-gail, 2018.

Kurutach, T., Tamar, A., Yang, G., Russell, S. J., and Abbeel,
P. Learning plannable representations with causal infogan. In
Advances in Neural Information Processing Systems, pp. 8733–
8744, 2018.

Lambert, N., Amos, B., Yadan, O., and Calandra, R. Objective mis-
match in model-based reinforcement learning. arXiv preprint

arXiv:2002.04523, 2020.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. A
tutorial on energy-based learning. Predicting structured data, 1
(0), 2006.

Levine, N., Chow, Y., Shu, R., Li, A., Ghavamzadeh, M., and Bui,
H. Prediction, consistency, curvature: Representation learning
for locally-linear control. arXiv preprint arXiv:1909.01506,
2019.

Li, K. and Malik, J. Learning to optimize. arXiv preprint

arXiv:1606.01885, 2016.

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. Neural architec-
ture optimization. In Advances in neural information processing

systems, pp. 7816–7827, 2018.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J., Levine,
S., and Sermanet, P. Learning latent plans from play. arXiv

preprint arXiv:1903.01973, 2019.

Maheswaranathan, N., Metz, L., Tucker, G., Choi, D., and
Sohl-Dickstein, J. Guided evolutionary strategies: Augment-
ing random search with surrogate gradients. arXiv preprint

arXiv:1806.10230, 2018.

Malaviya, C., Ferreira, P., and Martins, A. F. Sparse and con-
strained attention for neural machine translation. arXiv preprint

arXiv:1805.08241, 2018.

Markatou, M., Basu, A., and Lindsay, B. Weighted likelihood esti-
mating equations: The discrete case with applications to logistic
regression. Journal of Statistical Planning and Inference, 57(2):
215–232, 1997.

Markatou, M., Basu, A., and Lindsay, B. G. Weighted likelihood
equations with bootstrap root search. Journal of the American

Statistical Association, 93(442):740–750, 1998.

Martins, A. F. and Kreutzer, J. Learning what’s easy: Fully differ-
entiable neural easy-first taggers. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Pro-

cessing, pp. 349–362, 2017.

Mayne, D. Q. and Michalska, H. Receding horizon control of
nonlinear systems. IEEE Transactions on automatic control, 35
(7):814–824, 1990.

McKinney, W. Python for data analysis: Data wrangling with

Pandas, NumPy, and IPython. " O’Reilly Media, Inc.", 2012.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Unrolled
generative adversarial networks. CoRR, abs/1611.02163, 2016.
URL http://arxiv.org/abs/1611.02163.

Miladinović, Ð., Gondal, M. W., Schölkopf, B., Buhmann, J. M.,
and Bauer, S. Disentangled state space representations. arXiv

preprint arXiv:1906.03255, 2019.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. Monte
carlo gradient estimation in machine learning. arXiv preprint

arXiv:1906.10652, 2019.

Mukadam, M., Dong, J., Yan, X., Dellaert, F., and Boots, B.
Continuous-time gaussian process motion planning via prob-
abilistic inference. The International Journal of Robotics Re-

search, 37(11):1319–1340, 2018.

Oh, C., Gavves, E., and Welling, M. Bock: Bayesian optimiza-
tion with cylindrical kernels. arXiv preprint arXiv:1806.01619,
2018.

Okada, M., Rigazio, L., and Aoshima, T. Path integral net-
works: End-to-end differentiable optimal control. arXiv preprint

arXiv:1706.09597, 2017.

Oliphant, T. E. A guide to NumPy, volume 1. Trelgol Publishing
USA, 2006.

Oliphant, T. E. Python for scientific computing. Computing in

Science & Engineering, 9(3):10–20, 2007.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. Py-
torch: An imperative style, high-performance deep learning
library. In Advances in neural information processing systems,
pp. 8026–8037, 2019.

Pedregosa, F. Hyperparameter optimization with approximate
gradient. arXiv preprint arXiv:1602.02355, 2016.

Pereira, M., Fan, D. D., An, G. N., and Theodorou, E. Mpc-
inspired neural network policies for sequential decision making.
arXiv preprint arXiv:1802.05803, 2018.

Rajeswaran, A., Finn, C., Kakade, S., and Levine, S. Meta-learning
with implicit gradients. arXiv preprint arXiv:1909.04630, 2019.

Rao, C. R. Convexity properties of entropy functions and analysis
of diversity. Lecture Notes-Monograph Series, pp. 68–77, 1984.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic back-
propagation and approximate inference in deep generative mod-
els. arXiv preprint arXiv:1401.4082, 2014.

Rockafellar, R. T. and Wets, R. J.-B. Variational analysis, volume
317. Springer Science & Business Media, 2009.

Rubinstein, R. Y. Optimization of computer simulation models
with rare events. European Journal of Operational Research,
99(1):89–112, 1997.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R.,
Osindero, S., and Hadsell, R. Meta-learning with latent embed-
ding optimization. arXiv preprint arXiv:1807.05960, 2018.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov,
O. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
http://arxiv.org/abs/1611.02163

The Differentiable Cross-Entropy Method

Sekhon, J. S. and Mebane, W. R. Genetic optimization using
derivatives. Political Analysis, 7:187–210, 1998.

Singh, S., Richards, S. M., Sindhwani, V., Slotine, J.-J. E.,
and Pavone, M. Learning stabilizable nonlinear dynam-
ics with contraction-based regularization. arXiv preprint

arXiv:1907.13122, 2019.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn, C. Uni-
versal planning networks. arXiv preprint arXiv:1804.00645,
2018.

Stulp, F. and Sigaud, O. Path integral policy improvement with
covariance matrix adaptation. arXiv preprint arXiv:1206.4621,
2012.

Tasfi, N. and Capretz, M. Dynamic planning networks. arXiv

preprint arXiv:1812.11240, 2018.

Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. Learning
structured prediction models: A large margin approach. In
Proceedings of the 22nd international conference on Machine

learning, pp. 896–903. ACM, 2005.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L.,
Budden, D., Abdolmaleki, A., Merel, J., Lefrancq, A., et al.
Deepmind control suite. arXiv preprint arXiv:1801.00690,
2018.

Theodorou, E., Buchli, J., and Schaal, S. A generalized path
integral control approach to reinforcement learning. The Journal

of Machine Learning Research, 11:3137–3181, 2010.

Titsias, M. and Lázaro-Gredilla, M. Doubly stochastic variational
bayes for non-conjugate inference. In International conference

on machine learning, pp. 1971–1979, 2014.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pp. 5026–5033. IEEE,
2012.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. The numpy ar-
ray: a structure for efficient numerical computation. Computing

in Science & Engineering, 13(2):22, 2011.

Van Rossum, G. and Drake Jr, F. L. Python reference manual.
Centrum voor Wiskunde en Informatica Amsterdam, 1995.

Volpp, M., Fröhlich, L., Doerr, A., Hutter, F., and Daniel, C. Meta-
learning acquisition functions for bayesian optimization. arXiv

preprint arXiv:1904.02642, 2019.

Wang, S. X. Maximum weighted likelihood estimation. PhD thesis,
University of British Columbia, 2001.

Wang, T. and Ba, J. Exploring model-based planning with policy
networks. arXiv preprint arXiv:1906.08649, 2019.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and de Feitas,
N. Bayesian optimization in a billion dimensions via random
embeddings. Journal of Artificial Intelligence Research, 55:
361–387, 2016.

Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J.,
Lukauskas, S., Gemperline, D. C., Augspurger, T., Halchenko,
Y., Cole, J. B., Warmenhoven, J., de Ruiter, J., Pye, C., Hoyer, S.,
Vanderplas, J., Villalba, S., Kunter, G., Quintero, E., Bachant, P.,

Martin, M., Meyer, K., Miles, A., Ram, Y., Brunner, T., Yarkoni,
T., Williams, M. L., Evans, C., Fitzgerald, C., Brian, and Qalieh,
A. mwaskom/seaborn: v0.9.0 (july 2018), July 2018. URL
https://doi.org/10.5281/zenodo.1313201.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller, M.
Embed to control: A locally linear latent dynamics model for
control from raw images. In Advances in neural information

processing systems, pp. 2746–2754, 2015.

Yadan, O. Hydra - a framework for elegantly configuring complex
applications. Github, 2019. URL https://github.com/
facebookresearch/hydra.

Yu, T., Shevchuk, G., Sadigh, D., and Finn, C. Unsupervised
visuomotor control through distributional planning networks.
arXiv preprint arXiv:1902.05542, 2019.

Zhang, M., Vikram, S., Smith, L., Abbeel, P., Johnson, M. J.,
and Levine, S. Solar: Deep structured latent representa-
tions for model-based reinforcement learning. arXiv preprint

arXiv:1808.09105, 2018.

Zhang, Y., Hare, J., and Prügel-Bennett, A. Deep set prediction
networks. arXiv preprint arXiv:1906.06565, 2019.

Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K., and Whiteson,
S. Fast context adaptation via meta-learning. In International

Conference on Machine Learning, pp. 7693–7702, 2019.

https://doi.org/10.5281/zenodo.1313201
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra

