
The Differentiable Cross-Entropy Method

A. Proof of prop. 2
Proof. We first note that a solution exists to the projection
operation, and it is unique, which comes from the strict
convexity of the objective (Rao, 1984). The Lagrangian of
the temperature-scaled LML projection in eq. (4) is

L(y, ν) = −x>y − τHb(y) + ν(k − 1>y). (9)

Differentiating eq. (9) gives

∇yL(y, ν) = −x+ τ log
y

1− y
− ν (10)

and the first-order optimality condition ∇yL(y?, ν?) = 0
gives y?i = σ(τ−1(xi + ν∗)), where σ is the sigmoid func-
tion. Using lem. 1 as τ → 0+ gives

y?i =


1 if xi > −ν∗

0 if xi < −ν∗
1/2 otherwise.

(11)

Substituting this back into the constraint 1>y? = k gives
that π(x)k < −ν∗ < π(x)k+1, where π(x) sorts x ∈ Rn
in ascending order so that π(x)1 ≤ π(x)2 ≤ . . . ≤ π(x)n.
Thus we have that y?i = 1{xi ≥ π(x)k}, which is 1 when
xi is in the top-k components of x and 0 otherwise, and
therefore the temperature-scaled LML layer approaches the
hard top-k function as τ → 0+.

Lemma 1.

lim
τ→0+

σ(x/τ) =


1 if x > 0

0 if x < 0
1/2 otherwise,

(12)

where σ(x/τ) = (1 + exp{−x/τ})−1 is the temperature-
scaled sigmoid.

B. More details: Simple regression task
Figure 6 (left) shows the convergence of unrolled GD and
DCEM on the training data, showing that they are able to
obtain the same training loss despite inducing very different
energy surfaces. Figure 6 (right) and fig. 7 shows the impact
of training gradient descent and DCEM to take 10 inner
optimization steps and then ablating the number of inner
steps at test-time.

C. More details: Cartpole experiment
In this section we discuss some of the ablations we consid-
ered when learning the latent action space for the cartpole

τ = (1.0 0.1 0.0)

Figure 5. Improvement factor on the ground-truth cartpole task
from embedding the action space with DCEM compared to run-
ning CEM on the full action space, showing that DCEM is able
to recover the full performance. We use the DCEM model that
achieves the best validation loss. The error lines show the 95%
confidence interval around three trials.

task. In all settings we use DCEM to unroll 10 inner iter-
ations that samples 100 candidate points in each iteration
and has an elite set of 10 candidates.

For training, we sample initial starting states of the cartpole
and for validation we use a fixed set of initial states. Figure 9
shows the convergence of models as we vary the latent space
dimension and temperature parameter, and fig. 5 shows that
DCEM is able to fully recover the expert performance on
the cartpole. Because we are operating in the ground-truth
dynamics setting we measure the performance by comparing
the controller costs. We use τ = 0 to indicate the case
where we optimize over the latent space with vanilla CEM
and then update the decoder with ∇zC(fdecθ (ẑ)), where
the gradient doesn’t go back into the optimization process
that produced ẑ. This is non-convex min differentiation
and is reasonable when ẑ is near-optimal, but otherwise is
susceptible to making the decoder difficult to search over.

These results show a few interesting points that come up in
this setting, which may be different in other settings. Firstly
that with a two-dimensional latent space, all of the temper-
ature values are able to find a reasonable latent space at
some point during training. However after more updates,
the lower-temperature experiments start updating the de-
coder in ways that make it more difficult to search over and
start achieving worse performance than the τ = 1 case. For
higher-dimensional latent spaces, the DCEM machinery is
necessary to keep the decoder searchable. We notice that
just a 16-dimensional latent space for this task can be diffi-
cult for learning, one reason this could be is from DCEM
having too many degrees of freedom in ways it can update
the decoder to improve the performance of the optimizer.

D. More details: Cheetah and walker
experiments

For the cheetah.run and walker.walk DeepMind
control suite experiments we start with a modified PlaNet

The Differentiable Cross-Entropy Method

Figure 6. Left: Convergence of DCEM and unrolled GD on the regression task. Right: Ablation showing what happens when DCEM
and unrolled GD are trained for 10 inner steps and then a different number of steps is used at test-time. We trained three seeds for each
model and the shaded regions show the 95% confidence interval.

0 1 2 3 4 5 6

x

−7.5

−5.0

−2.5

0.0

2.5

y

Unrolled Gradient Descent

0 1 2 3 4 5 6

x

Differentiable CEM

Number of Inner Loop Iterations

1 10 20 30

Figure 7. Visualization of the predictions made by ablating the number of inner loop iterations for unrolled GD and DCEM. The
ground-truth regression target is shown in black.

(Hafner et al., 2018) architecture without a pixel decoder.
We started with this over PETS (Chua et al., 2018) to show
that this RSSM is reasonable for proprioceptive-based con-
trol and not just pixel-based control. This model is graphi-
cally shown in fig. 8 and has 1) a deterministic state model
ht = f(ht−1, xt−1, ut−1), 2) a stochastic state model
xt ∼ p(xt, ht), and 3) a reward model: rt ∼ p(rt|ht, xt).
In the proprioceptive setting, we posit that the deterministic
state model is useful for multi-step training even in fully
observable environments as it allows the model to “push for-
ward” information about what is potentially going to happen
in the future.

For the modeling components, we follow the recommen-
dations in Hafner et al. (2018) and use a GRU (Cho et al.,
2014) with 200 units as the deterministic path in the dy-
namics model and implement all other functions as two
fully-connected layers, also with 200 units with ReLU ac-
tivations. Distributions over the state space are isotropic
Gaussians with predicted mean and standard deviation. We
train the model to optimize the variational bound on the

multi-step likelihood as presented in (Hafner et al., 2018)
on batches of size 50 with trajectory sequences of length 50.
We start with 5 seed episodes with random actions and in
contrast to Hafner et al. (2018), we have found that interleav-
ing the model updates with the environment steps instead of
separating the updates slightly improves the performance,
even in the pixel-based case, which we do not report results
on here.

For the optimizers we either use CEM over the full control
space or DCEM over the latent control space and use a
horizon length of 12 and 10 iterations here. For full CEM,
we sample 1000 candidates in each iteration with 100 elite
candidates. For DCEM we use 100 candidates in each
iteration with 10 elite candidates.

Our training procedure has the following three phases,
which we set up to isolate the DCEM additions. We evaluate
the models output from these training runs on 100 random
episodes in fig. 4 in the main paper. Now that these ideas
have been validated, promising directions of future work
include trying to combine them all into a single training run

The Differentiable Cross-Entropy Method

z

h1 h2 h3 · · ·

u1 u2 u3

x1 x2 x3

r1 r2 r3

Figure 8. Our RSSM with action sequence embeddings

and trying to reduce the sample complexity and number of
timesteps needed to obtain the final model.

Phase 1: Model initialization. We start in both environ-
ments by launching a single training run of alg. 3 to get
initial system dynamics. These models take slightly longer
to converge than in (Hafner et al., 2018), likely due to how
often we update our models. We note that at this point, it
would be ideal to use the policy loss to help fine-tune the
components so that policy induced by CEM on top of the
models can be guided, but this is not feasible to do by back-
propagating through all of the CEM samples due to memory,
so we instead next move on to initializing a differentiable
controller that is feasible to backprop through.

Phase 2: Embedded DCEM initialization. Our goal in
this phase is to obtain a differentiable controller that is
feasible to backprop through.

Our first failed attempt to achieve this was to use offline
training on the replay buffer, which would have been ideal
as it would require no additional transitions to be collected
from the environment. We tried using alg. 2, the same
procedure we used in the ground-truth cartpole setting, to
generate an embedded DCEM controller that achieves the
same control cost on the replay buffer as the full CEM
controller. However we found that when deploying this
controller on the system, it quickly stepped off of the data
manifold and failed to control it — this seemed to be from
the controller finding holes in the model that causes the
reward to be over-predicted.

We then used an online data collection process identical to
the one we used for phase 1 to jointly learn the embedded
control space while updating the models so that the embed-
ded controller doesn’t find bad regions in them. We show
where the DCEM updates fit into alg. 3. One alternative that
we tried to updating the decoder to optimize the control cost

on the samples from the replay buffer is that the decoder
can also be immediately updated after planning at every
step. This seemed nice since it didn’t require any additional
DCEM solves, but we found that the decoder became too bi-
ased during the episode as samples at consecutive timesteps
have nearly identical information. For the hyper-parameters,
we kept most of the DCEM hyper-parameters fixed through-
out this phase to 100 samples, 10 elites, and a temperature
τ = 1. We ablated across 1) the number of DCEM iter-
ations taken to be {3, 5, 10}, 2) deleting the replay buffer
from phase 1 or not, and 3) re-initializing the model or not
from phase 1.

Phase 3: Policy optimization into the controller. Finally
now that we have a differentiable policy class induced by
this differentiable controller we can do policy learning to
fine-tune parts of it. We initially chose Proximal Policy
Optimization (PPO) (Schulman et al., 2017) for this phase
because we thought that it would be able to fine-tune the
policy in a few iterations without requiring a good estimate
of the value function, but this phase also ended up consum-
ing many timesteps from the environment. Crucially in this
phase, we do not do likelihood fitting at all, as our goal is to
show that PPO can be used as another useful signal to update
the parts of a controller — we did this to isolate the improve-
ment from PPO but in practice we envision more unified
algorithms that use both signals at the same time. Using the
standard PPO hyper-parameters, we collect 10 episodes for
each PPO training step and ablate across 1) the number of
passes to make through these episodes {1, 2, 4}, 2) every
combination of the reward, transition, and decoder being
fine-tuned or frozen, 3) using a fixed variance of 0.1 around
the output of the controller or learning this, 4) the learning
rate of the fine-tuned model-based portions {10−4, 10−5}.

The Differentiable Cross-Entropy Method

Algorithm 3 PlaNet (Hafner et al., 2018) variant that we use for proprioceptive control with optional DCEM embedding

. Models: a deterministic state model, a stochastic state model, a reward model, and (if using DCEM) an action sequence
decoder.
. Initialize dataset D with S random seed episodes.
. Initialize the transition model’s deterministic hidden state h0 and initialize the environment, obtaining the initial state
estimate x0.
. CEM-Solve can use DCEM or full CEM
for t = 1, . . . , T do

ut ← CEM-solve(ht−1, xt−1)
Add exploration noise ε ∼ p(ε) to the action ut.
{rt, xt+1, dt} ← env.step(ut) . Properly restarting if necessary
Add [rt, xt, ut, dt] to D
ht = update-hidden(ht−1, xt, ut, dt)
if t ≡ 0 (mod update-interval) then

Sample trajectories τ = [rτ , xτ , uτ , dτ]Hτ=1 ∼ D from the dataset.
Obtain the hidden states of the {hτ , x̂τ} from the model.
Compute the multi-step likelihood bound L(τ, hτ , x̂τ) . Eq. 6 of Hafner et al. (2018)
θ ← grad-update(∇θLθ(τ, hτ , x̂τ)) . Optimize the likelihood bound
if using DCEM then

ẑτ = arg minz∈Z Cθ(z;hτ , x̂τ) . Solve the embedded control problem in eq. (8)
θ ← grad-update(∇θ

∑
τ Cθ(ẑτ)) . Update the decoder

end if
end if

end for

τ = (1.0 0.1 0.0)

Figure 9. Training and validation loss convergence for the cartpole task. The dashed horizontal line shows the loss induced by an expert
controller. Larger latent spaces seem harder to learn and as DCEM becomes less differentiable, the embedding is more difficult to learn.
The shaded regions show the 95% confidence interval around three trials.

The Differentiable Cross-Entropy Method

Figure 10. Learned DCEM reward surfaces for the cartpole task. Each row shows a different initial state of the system. We can see that as
the temperature decreases, the latent representation can still capture near-optimal values, but they are in much narrower regions of the
latent space than when τ = 1.

